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Abstract. In this paper, we propose a computer information processing algorithm that can be used for biomedical image
processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension
is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1, k2) outlier. It can be used to detect
abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has
several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1, k2) outlier in
uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods’ high accuracy and
high efficiency.
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1. Introduction

Biomedical image processing is an important tool for disease diagnosis and predication. Data process-
ing using computers is the basic technique in this field. For example, urinary bladder cancer has become
the fourth most common cancer among males [1]. The early detection of bladder cancer is extremely im-
portant. With recent advances in imaging and visualization techniques, virtual cystoscopy (VCy), which
is based on volumetric computed tomography (CT) or magnetic resonance (MR) imaging data, has re-
vealed its potentials for detecting bladder abnormalities [2]. As reported in [3], bladder cancerous tissue
invades gradually from the mucosa into the wall muscles, inducing morphological changes and texture
changes in the bladder wall. Therefore, the bladder image (MR or CT) contains some important clinical
information for bladder cancer prediction. such as bladder wall thickness (BWT) [4], textural grey-level
intensity, and many other features. Figure 1 show an MR bladder image acquired from a patient. The
red and yellow contours represent the inner and outer borders of a bladder wall, respectively. Naturally,
the BWT of the abnormal region is larger than the normal wall tissue. After we collect these abstract

*Address for correspondence: Fei Liu, Team 7, School of Computer, National University of Defense Technology, Changsha,
Hunan, 410073, China. Tel: +86 15873192183; Fax: +86 0731 84574614; E-mail:1986figo@163.com.

0959-2989/15/$35.00 © 2015 – IOS Press and the authors.

DOI 10.3233/BME-151422
IOS Press

Bio-Medical Materials and Engineering 26 (2015) S1249–S1255

This article is published with Open Access and distributed under the terms of the Creative Commons Attribution and Non-Commercial License.

S1249



Fig. 1. MR bladder images.
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Fig. 2. A two-dimensional deterministic
space.
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Fig. 3. A two-dimensional uncertain s-
pace.

features together, we can construct a multi-dimensional space. Each dimension is a feature, and each
biomedical image is a data object in the space. In a set of many biomedical images, the data objects far
away from their neighbor objects can be considered abnormal, because some of their features’ values are
very different from the others’. The difference could be caused by pathological changes. For example,
in the two-dimensional space in Figure 2, A is considered ’abnormal’, because its feature values depart
from the majority. B is considered ’normal’ because it is similar to many of the surrounding data objects.

At the same time, uncertainty is inherent in real application due to various factors, like noise, device
imprecision, incompleteness of data, delay in data transfer, or even manual misplay [5–7]. In this case,
the feature values of a data object in some dimensions would be uncertain. For example, in Figure 3, data
object A could be represented by three different instances: a, b, or c. It’s difficult to obtain A’s distance
from its neighbors and compare A with other objects. Our research in this paper focuses on this problem
and attempts to detect abnormal data objects, denoted as outliers, in uncertain space.

An outlier is an observation that deviates so much from the other observations that it arouses suspi-
cion that it was generated by a different mechanism [8]. Outlier detection is a basic technique in data
analysis and is widely used in many applications. Many kinds of outlier have been proposed, such as
the Distribution-based outlier, the Distance-based outlier, the Density-based outlier, and so on. In this
paper, we use the concept of a Distance-based outlier, where the distance between a data object and its
neighbors are used as the measurement for outlier detection.

We use the classic x-tuple model [9] and possible world semantics [10] to describe uncertain data. An
uncertain data object (abbreviated as object) is noted as an x-tuple, containing several tuples. Each tuple
belonging to an x-tuple is a possible data instance (abbreviated as instance) of the corresponding object.
Each instance has an appearance probability. Instances belonging to the same object are exclusive. The
sum of these instances’ probabilities is no more than 1. For example, in Table 1, t11 and t12 are two
tuples of x-tuple T1, and t11 and t12 cannot both appear at the same time. t21 with probability p21 is the
unique tuple of x-tuple T2. If p11+p12<1, T1 would not appear with a probability 1-p11-p12.

Based on the x-tuple model, a possible world is a subset of tuples from different x-tuples. There would
be no more than one tuple of the same x-tuple appearing in a possible world. Table 2 shows six possible
worlds produced from the x-tuples in Table 1. {t11} is the second possible world with a probability
p11(1-p21). It contains only one tuple, t11.

The remainder of this paper is organized as follows. In section 2, some preliminary definitions are
introduced. A naive sampling method is described in section 3. Section 4 proposes an efficient sampling
algorithm to accelerate the naive sampling method. We experimentally evaluate our algorithms in section
5. We introduce some existing research related to our work in section 6 and conclude our contribution in
section 7.
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Table 1
x-tuple Model

x-tuple tuple probability

T1
t11 p11

t12 p12

T2 t21 p21

Table 2
Possible Worlds

possible world probability

{} (1-p11-p12)(1-p21)
{t11} p11(1-p21)
{t12} p12(1-p21)
{t21} (1-p11-p12)p21
{t11,t21} p11p21

{t12,t21} p12p21

2. Preliminary

An uncertain dataset is constituted by many x-tuples. A large number of possible worlds would be pro-
duced as instances of the uncertain dataset. Let D be an uncertain dataset, t be a tuple and T (t) be the x-
tuple containing t. P (t) is t’s appearance probability and P (T )=

∑
t∈T P (t). Let W be the set of all possi-

ble worlds produced from D. For a possible world w ∈ W , t ∈ w means tuple t appears in w, and T ∈ w
means that a tuple of T appears in w. Let P (w) be the probability of w, and P (w)=

∏
t∈w P (t)

∏
T /∈w(1-

P (T )). For each tuple t, we assign it an outlier score s(w, t) in possible world w, which is the aver-
age distance between t an its n nearest neighbors in w. Based on the above assumptions, we propose
following definitions.

Definition 1 Top k1 outliers in a possible world: In a possible world w, the top k1 outliers are the k1
tuples with the largest outlier scores.

Definition 2 Pk1 probability: For an x-tuple T , its Pk1 probability, Pk1(T ), is the probability sum of all
possible worlds where one of T ’s tuples is a top k1 outlier. Formally, Pk1(T )=

∑
w∈W (T ) P (w). W (T )

is the set of possible worlds, where there is a tuple t ∈ T and t is a top k1 outlier.

Definition 3 Top (k1,k2) outliers in an uncertain dataset: In an uncertain dataset D, the top (k1,k2) out-
liers are the k2 x-tuples with the highest Pk1 probabilities.

The straightforward calculation of an x-tuple’s Pk1 probability according to definition 2 needs to tra-
verse all possible worlds. It is a #p-complete [11,12] problem leading to a time cost that is too high.
Therefore, we propose an approximate method based on sampling to detect the top (k1,k2) outliers with
high accuracy and efficiency.

3. Naive sampling method

To avoid enumerating all possible worlds, we sample x-tuples one by one to produce samples of pos-
sible worlds. In each sampled possible world, the top k1 outliers can be detected in a deterministic situ-
ation. For each x-tuple T , let Fk1(T ) be T ’s frequency of being a top k1 outlier in M sampled possible
worlds. Based on the law of large numbers [13,14], Fk1(T ) converges to Pk1(T ) in a large sampling
frequency. We use Fk1(T ) as the approximation of Pk1(T ) and sort all x-tuples according to Fk1(T ) in
descending order. The first k2 x-tuples are output as the top (k1,k2) outliers. We call this process the
naive sampling algorithm, whose details are shown in algorithm 1. The classic RBRP [15] algorithm is
used to detect the top k1 outliers in a possible world.
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Algorithm 1 Naive sampling algorithm
Input: M , D, k1, k2, F , F [i]=0, 0<i≤|D|, m=0.
Step 1: sample each x-tuple in D to construct a possible world w.
Step 2: calculate outlier score for each tuple t using RBRP .
Step 3: detect top k1 outliers in w.
Step 4: for each x-tuple Ti and each tuple t ∈ Ti, if t is a top k1 outlier, F [i]=F [i]+1.
Step 5: if m<M , go to step 1.
Output: k2 x-tuples with largest values F [i]/M .

4. Efficient sampling algorithm

Although the naive sampling algorithm can detect the top (k1, k2) outliers successfully, a high fre-
quency of sampling is needed to get high accuracy. RBRP algorithm must be repeated in each sampled
possible world. Clustering and detecting the n nearest neighbors’ in the RBRP algorithm leads to a high
time cost. In order to overcome this problem, we propose an efficient sampling algorithm.

We find that the n nearest neighbors of a tuple always exist nearby. We maintain a local region for a
tuple, where most of its possible neighbors are located; then we can detect its n nearest neighbors just
in the local region in each possible world. For tuple t, let LN (t) be t’s nearest neighbors list. For any
tuple ti in L, T (ti) �=T (t). All tuples in LN (t) are sorted in ascending order according to their distance
from t. The RBRP algorithm can be used to construct LN (t). Let μ be the sum of all tuple’s probability
in LN (t). When μ is large enough, the n nearest neighbors of t in a possible world will always appear
in LN (t). In order to detect t’s n nearest neighbors in a sampled possible world, we can just search
LN (t) in order to get the first n appearing tuples. The outlier score can then be calculated easily. This
procedure is in linear time cost and much more efficient than the naive sampling algorithm. The steps
of the efficient sampling algorithm are shown in algorithm 2. In this way, the clustering operation of the
RBRP algorithm is executed once before sampling, and the detection of the n nearest neighbors for each
tuple is greatly accelerated.

4.1. Improvement

Although the efficient sampling algorithm avoids repeating clustering and improves the efficiency of
detecting the n nearest neighbors, it’s also redundant. Because k1 is always much smaller than |D| and
n is always much smaller than |LN (t)|, it’s unnecessary to sample all x-tuples to produce a possible

Algorithm 2 Efficient sampling algorithm
Input: M , D, k1, k2, F , F [i]=0, 0<i≤|D|, m=0.
Step 1: detect |LN (t)| possible n nearest neighbors for each tuple t and construct LN (t).
Step 2: sample each x-tuple in D to construct a possible world w.
Step 3: calculate outlier score for each tuple t using LN (t).
Step 4: detect top k1 outlier in the possible world.
Step 5: if t ∈ Ti is a top k1 outlier, F [i]=F [i]+1.
Step 6: if m<M , go to step 2.
Output: k2 x-tuples with largest values F [i]/M .
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Fig. 4. An example of improved sampling process.

world. If we can sample tuples with large outlier scores early on, many other x-tuples can be pruned
without sampling. In this way, we propose an improved efficient sampling algorithm. Step 2 and step 3
in the efficient sampling algorithm are substituted by following process. All tuples are sorted in a list L
according to their expected outlier score in descending order before sampling, because tuples with larger
expected outlier scores are more likely to be a top k1 outlier in a possible world. The expected outlier
score can be calculated using dynamic algorithm, whose details are neglected due to space limitation.
Then the tuples in L are processed one by one for sampling. Suppose ti is sorted in front of tj and
T (ti) �=T (tj). We sample x-tuple T (ti) first. If ti is not selected, then we sample x-tuple T (tj). If ti is
selected, then we search the tuples in LN (ti) to get ti’s n nearest neighbors. Suppose the first tuple in
LN (ti) is tk, and T (tk) has been sampled, but tk is not selected. Then tk is jumped over, and the next
tuple in LN (ti) is checked. If tk is selected, tk is added to ti’s n nearest neighbors in this possible world.
Then we check the nest tuple in LN (ti) until the n nearest neighbors of ti are detected. Then, ti’s outlier
score in the possible world is calculated. After that, tj is processed similarly. If no less than k1 tuples in L
have been processed, the k1th largest outlier score can be a threshold h. For any following tuple tx, if the
upper bound of tx’s outlier score is smaller than h, tx can be pruned. The upper bound of tuple t can be
calculated using function

∑
1≤i≤n′ d(t, t′i) +

∑
|LN (t)|−n+n′+1≤k≤|LN (t)| d(t, LN (t)[k]), where t′i is one

of t’s n nearest neighbors that have been detected and LN (t)[k] is the kth tuple in LN (t). For example in
Figure 4, let L=<t1, t2, t3, t4...>, T (t1)=T (t2). t1 is the first tuple and T (t1) is sampled. Suppose t2 is
selected. Then t1 is jumped over, and the tuples in LN (t2) are checked. Suppose LN (t2) = <t3, t4...>.
Then t3, t4 ... are checked one by one until the n neighbors of t2 are detected. Then t2’s outlier score can
be calculated. Suppose both t3 and t4 are selected. Then the tuples in LN (t3) are checked to detect t3’s
n nearest neighbors. Suppose LN (t3)=<t2, t4...>. Because T (t2) and T (t4) have been processed, they
will not be redundantly sampled.

5. Experiments

In this section, we conduct an empirical study on a PC with a2 2.5 GHz intel Core i5 CPUs, 8.0 GB
main memory, running on the Microsoft Windows 7 operating system. Because our research is based on
the novel proposed definitions, we compare the three algorithms we proposed in this paper, the naive
sampling algorithm, the efficient sampling algorithm, and the improved efficient sampling algorithm.
We construct a synthetic dataset to simulate data objects with the features of biomedical images. In the
synthetic dataset, every object contains no more than 10 instances. The number of instances of a data
object is decided randomly. For each feature, the value is in region (0,1), satisfying normal distribution
with both the expectation and variance randomly produced in (0,1).

We first test the accuracy of our algorithms. We compare the efficient sampling algorithm with the
different parameter values of μ and the naive sampling algorithm. We use the result of the naive sampling
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Fig. 5. Accuracy of algorithms.
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Fig. 6. Efficiency and scalability of algorithms.

algorithm with a sampling frequency 105 as the real outliers. In Figure 5(a), n=5, k1=10, and k2=20. The
x-axis shows the sampling frequency. The y-axis shows the accuracy of outlier detection. In Figure 5(b),
n=5, k1=10, and k2=30. In Figure 5(c), n=5, k1=20 and k2=20. A larger μ means a larger LN (t) and
higher memory cost, but it also means higher accuracy. As shown in these figures, when μ is larger than
5, the accuracy of the efficient sampling algorithm is no less than 90% of the naive sampling algorithm’s
accuracy.

We then test the efficiency of our algorithms. Figure 6(a) shows the time cost of the three algorithms.
The x-axis shows four groups of histograms. The first groups corresponds to the parameter set {μ=5,
n=5, k1=10, k2=20}. The second one corresponds to the parameter set {μ=5, n=5, k1=10, k2=30}. The
third one corresponds to the parameter set {μ=5, n=10, k1=10, k2=20}. The y-axis shows the time cost
(millisecond). It is obvious that the efficient sampling algorithm greatly increases efficiency, and the
improvement method leads to further acceleration.

Finally, we show the scalability of the algorithms. Figure 6(b) shows the time cost of the three algo-
rithms with increasing sampling frequencies. The x-axis shows the changing sampling frequency, and the
y-axis shows the time cost (millisecond). The results show that the naive sampling algorithm costs much
more time than the other algorithms, and the improved efficient sampling algorithm saves the most time.
Figure 6(c) shows the time cost of the three algorithms with a sampling frequency of 100 at different
dataset sizes. The x-axis shows the changing dataset sizes. The y-axis is the logarithmic value of the
time cost (millisecond). We can find that the efficient sampling algorithm, especially the improved one
performs much better than the naive sampling algorithm.

6. Related work

In order to detect outliers in uncertain space, [16] proposes an outlier model and the detection method
on uncertain data. However, they do not consider the diversity of a data object where a data object is only
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represented by a single instance, so they cannot be used for uncertain biomedical images processing with
many possible instances. In their research, grid-based pruning is used to improve efficiency. The grid is
only discussed in two dimensions and is not suitable for high-dimension space.

7. Contribution

We propose a new definition of outliers in uncertain space and offer the naive sampling algorithm. We
design an efficient sampling algorithm to avoid redundant clustering operations and accelerate the detec-
tion of n nearest neighbors. Then we further improve its efficiency using sorting and pruning strategies.
Experiments show the effectiveness of our methods.
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