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Abstract. To improve the speed and accuracy of cerebral vessel extraction, a fast and robust method is proposed in this paper. 
First, volume data are divided into sub-volumes by using octree, and at the same time invalid volume data are eliminated. 
Second, fuzzy connectedness is introduced to achieve fast cerebral vessel segmentation from 3D MRA Images. The values of 
gradient and Laplacian transformation are then calculated to improve the accuracy of the distance field. Last, the center of 
gravity is utilized to refine the initial centerline to make it closer to the actual centerline of the vessel cavity. The experiment 
demonstrates that the proposed method can effectively improve the speed and precision of centerline extraction. 
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1. Introduction 

Cerebrovascular disease is one of the most common neurological diseases and seriously threatens 
the life and health of human beings. Over the years, the incidence of cerebrovascular disease has been 
rising steadily. Currently, the diagnostic methods of cerebrovascular disease can be classified into two 
categories: intervention-based methods and image-based methods. Intervention-based methods are 
direct and effective, but often bring great pains to the patients [1, 2]. Image-based methods, combining 
computer technologies with medical science, could provide more objective and accurate information 
to doctors and do not bring psychological and physical pains to the patients [3-8].  

Existing imaging modes mainly include: DSA (Digital subtraction angiography), CTA (Computed 
tomography angiography), MRA (magnetic resonance angiography), VU (Vascular ultrasound), etc. 
Among them, MRA with the advantages of non-invasion, no radiation and significant reduction in the 
side effects, has got very broad applications in the treatments of cerebrovascular disease. When 
image-based methods are employed in clinical applications, a good visualization of cerebral vessels 
could provide doctors with better information for analysis. It is a challenging task to get the structure 
of cerebral vessels in the field of medical visualization. Because cerebral vessels have the features of 
small shape, special position and complex topology, it is necessary to extract the centerline of cerebral 
vessels to describe the structure of cerebral vessels. The centerline extraction is useful to compute the 
diameter of cerebral vessels and estimate the lesion degree. Thus, the centerline extraction of cerebral 
vessels for MRA images has far-reaching significance to the clinical applications and the diagnosis of 
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cerebrovascular disease.  
The methods of vessels centerline extraction can be divided into several categories [9]: 1) Manual 

tracking methods [10]; 2) Hessian-based method [11-13]; 3) stochastic tracking methods [14-16]; 4) 
multiple hypothesis methods [17]; 5) ridge-based methods [18]; 6) model-based methods [19]; 7) 
deformable model methods [20-22], 8) centerline-based methods [23-25], and so on. Manual tracking 
method assigns center points slice by slice and constructs a centerline by connecting all these points 
[10]. The method has a high precision but it is time consuming. Hessian-based methods are commonly 
used for automatic features detection in shape space based on second-order intensity variations. Lv 
proposed a centerline extraction method based on Hessian matrix [12]. The method computes the 
Hessian matrix for each target-voxel in the distance map and uses the scale space analysis to generate 
a centerline. Stochastic tracking methods are used for vessels tracking and segmentation based on 
uncertainty analysis or statistical theory. Cheng proposed an automated delineation method for 
calcified vessels in mammography by using uncertainty techniques [14]. Florin proposed a method of 
particle filter for coronaries segmentation by using a region-based statistical mixture on intensity 
distributions [15]. Multiple hypothesis methods are used for segmentation of vessel structures by 
tracking multiple hypothetical vessel trajectories simultaneously. Friman proposed a multiple 
hypothesis template tracking method to extract an accurate vessel centerline by using a mathematical 
vessel template model. This method can get a fast speed and be combined with other segmentation 
techniques to form robust hybrid methods. Ridge-based methods deal with vessels as local ridges of 
the image hyper-surface and exploit both edge and region information [18]. These methods may have 
bad effects when vessels have many branches. Model-based methods track the vessel networks by 
using the appearance or geometric models to describe the features of vessels. Zou proposed a 
model-based algorithm for the automated tracking of vascular networks in 2-D digital subtraction 
angiograms [19]. Deformable models obtain the boundaries of objects through the external and 
internal forces to constrain the contour geometry and regularity. Level set methods are most used in 
deformable models and evolve a contour to fit the object boundary through the zero level of a higher 
dimension function. Manniesing proposed a cerebral vasculature segmentation method by using the 
level set to model the vessel boundary and achieve good effects [20]. Centerline-based methods focus 
on extracting the vessel centerline directly and can be utilized to constrain an accurate segmentation of 
the contours efficiently. Xu proposed an improved algorithm which combined the geometrical 
topology information with the intensity distribution information to obtain the centerline [23]. Wette, et 
al. proposed a corkscrew algorithm to extract the centerline. The major drawback of this algorithm 
was that the computed border points could not form a smooth surface in 3D or a closed curve in planes 
perpendicular to the centerline [24].  

All the methods above can extract the centerline of vessels, but the low processing speed is the 
common bottleneck. To solve this problem, a method for extracting vessels centerlines with higher 
speed and accuracy is proposed in this paper. The method eliminates invalid volume data by using 
octree, and refines the centerline by using the center of gravity. The experimental result shows that the 
proposed method can effectively improve the speed and precision of centerline extraction. 

2. Materials and methods 

To improve the speed and accuracy of cerebral vessel extraction, a fast and robust method is 
proposed in this paper. First, the volume data are divided into sub-volumes by using octree, and at the  
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Fig. 1. The flow diagram of the proposed method. 
 

same time invalid volume data are eliminated. Then fuzzy connectedness is introduced to realize fast 
cerebral extraction from MRA images. The values of gradient and Laplacian transformation are 
calculated to improve the accuracy of distance field. Last, the center of gravity is used to refine the 
initial centerline to make it closer to the actual centerline of the vessel cavity. The flow diagram of the 
process is shown in Figure 1.  

2.1. Octree 

Octree is a tree-form data structure used to describe three-dimensional space. Each node of octree 
presents the voxel of a cube and has eight child nodes. The sum of volume corresponding to the 
children nodes is equal to the volume corresponding to the father node. The octree structure is defined 
as follows: 
Struct Octree  
{  
char   LevelX, LevelY, LevelZ;     //  depth values of octree in x, y, z directions.  
unsigned int   Xmin, Xmax, Ymin, Ymax, Zmin, Zmax;    //coordinate range of the octree node in x, y, z 
directions. 
bool    IsLeaf;                  //  a bool value   
int     Min_value,  Max_value;     //  Minimum and maximum values of the octree node 
Octree*   Children[8];            // The child nodes of the octree node 
}  

The depth values of the octree in three directions are assigned first and then the octree is initialized 
according to the depth values. Root node of the octree presents the whole dataset and its depth value 
equals to 0. The Root node has eight children nodes whose depth value is 1. The volume data are 
divided based on the space position layer by layer. On each layer, the volumes corresponding to the 
octree nodes are subdivided into eight sub-blocks along the orthogonal coordinate axes of the tree. The 
correlative information is stored in the children nodes of current octree nodes and the depths of 
children nodes increase by 1. When the depth of the octree node is equal to the pre-set depth, the 
subdivision is stopped. Each octree node is a leaf node if its depth equals to the specified value. When 
segmenting cerebral vessels, the minimum and maximum values of each block are compared to the 
given threshold to determine whether the block should be ignored, so that only sub-blocks including 
blood vessel voxels are processed. 

2.2. Segmentation 

In this paper, the fuzzy connectedness method is utilized to extract the boundary of cerebral vessels 
from MRA images [26]. First, some objective seeds region So and background seeds S1 should be 
selected in an interactive way before the segmentation procedure by users. Then, for each voxel p in 
the volume dataset, the fuzzy connectedness of Sb and So should be computed respectively, and the 
relationship of voxel p is calculated according to Eq. (1): 
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0 0( ) ( , ) / ( , )R p p S p S� ��                             (1) 
where 0( , )p S�  represents the local fuzzy connectedness between p and S0 in MRA images and 

1( , )p S�  represents the local fuzzy connectedness between p and S1 in MRA images. 
When R > 1, the point p belongs to objective region. When R ≤ 1, the point p belongs to background 

region. Then, the algorithm can be mainly divided into the following steps: 
Step 1: An objective MRA image dataset is chosen, and displayed from three cross sections, which 

are coronal view, sagittal view and transverse view, respectively, as shown in Figure 2 with grey 
images; 

Step 2: The whole volume data is browsed in the three views slice by slice. Some objective seeds S0 
and some background seeds S1 are selected by hand; 

Step 3: The fuzzy connectedness of the point p is calculated, and the relationship whether the point 
p belongs to the objective region or the background region is determined according to Eq. (1); 

Step 4: The segmentation of the cerebral vessels is generated.  
If the traversal method is selected for the segmentation procedure to compute the global optimal 

value of the fuzzy connectedness for each point, a large amount of computation is needed. To improve 
the efficiency of the algorithm, the dynamic programming method is selected in the segmentation 
procedure and an adjacent path m = 6 for the volume dataset is chosen to compute the fuzzy 
connectedness.  

2.3. Distance from boundary 

Distance from Boundary (DFB) is defined as the distance of the target voxel to the nearest boundary. 
Daniel, et al. [25] calculated the input of DFB as the binary data after segmentation, i.e., the target 
voxel in the vessel and background. Thus, when DFB is calculated, all the original values of target 
voxels in the vessels are same which loses the original feature. In this paper, we mark the position of 
the segmented target voxels, based on which we calculate the gradient and perform Laplacian 
transformation on the target voxels in the source data. Then, we set the original value of DFB as the 
sum of gradient inverse and Laplacian transformation. As a result, the closer to the centerline a target 
voxel is, the bigger of its original value becomes, and vice versa. Therefore, we increase the weighing 
factor of the target voxels which are closer to the centerline for computing the DFB while decreasing 
the weighing factor of the target voxels located in the boundary. We use the Euclidean distance to 
compute DFB. The Euclidean distance between any two adjacent voxels in the space can be expressed 
by value 1, 2 , 3  based on their relative space position. To simplify the calculation, we use value 10, 
14, 17 to replace value 1, 2 , 3  as shown in Figure 2. 
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Fig. 2. The Euclidean distance of the point in 3D space. 
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It is assumed that any point in 3D DFB field has an initial distance value which equals to fstart(p) 
and it becomes f(i, j, k) after calculation. N3(p) denotes the 26 neighborhoods of the point p and can be 
divided into three categories: N3-1 (p) N3-2(p) and N3-3(p). They denote the nearest neighborhood, the 
diagonal neighborhood in face and the diagonal neighborhood in volume, respectively. 

 
fstart(p) = 1/fG +fL                                (2) 

 
where fG is the gradient value of current point, and fL is the Laplacian transformation value of current 
point. Utilizing the 26 neighborhoods of the point p, the distance of the three types of neighborhoods 
can be calculated according to Eq. (3): 
 

f(N3-1(p)) = min(fstart(N3-1(p))+10)                               
f(N3-2(p)) = min(fstart(N3-2(p))+10)                             (3) 

f(N3-3(p)) = min(fstart(N3-3(p))+10)                                
 
Finally, 
 

f(i,j,k) = min(f(N3-1(p)), f(N3-2(p)), f(N3-3(p)))                   (4) 
 
Utilizing the octree, calculating DFB can be accelerated by ignoring the invalid sub-blocks which 

do not contain cerebral vessels. 

2.4. Maximum spanning tree 

The procedure of building the maximum spanning tree follows the idea of Dijkstra dynamic 
programming and is implemented as follows [27]: the target voxels in vessels are represented by the 
nodes of the tree; each non-root node directs to its parent node and a directed tree is generated to link 
all the voxels in vessels. DFB is utilized to build the maximum spanning tree where the weight from 
node Pj to Pi is wij = DFB (Pi), i.e., the cost to link nodes Pj and Pi is wij. 

The procedure of building the maximum spanning tree is described in detail below: 
Step 1, Start from the origin P, set the node P as the parent node and make all its 26 neighborhoods 

direct to P. Add DFB of the 26 neighborhoods to the queue S. 
Step 2, Select the node Pmax with the maximum DFB from S and link the unprocessed nodes in the 

26 neighborhoods of C to Pmax. Set Pmax as the parent node of these unprocessed nodes and add their 
DFBs to the queue S. 

Step 3, Continue the loop until all the target voxels in vessels are processed. 
To improve the efficiency of the procedure, a fast queue sorting method is employed in the 

procedure: first, a dynamic index table is built whose range is within the interval [0, 255]; then all 
DFBs of target voxels are normalized in the interval [0, 255] and the corresponding target voxels are 
added to the table according to their indexes; Finally, target voxels are chosen from the table in the 
descending order of their indices. 

2.5. Path extraction 

As the trunk of the maximum spanning tree is the centerline of cerebral vessels, it is only needed to 
extract the trunk of the maximum spanning tree. If the end point is not specified, the point of the 
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maximum DFB value defaults to the path terminal E. According to the direction of the node, point E 
can be directly connected to the source node S. 

Although the trunk of the maximum spanning tree can be denoted as the centerline of cerebral 
vessels, all the points of trunk cannot be ensured to be the centers of gravity which will cause an error 
of the center path extraction. The center path extraction is corrected with a centroid method which 
makes the corrected center path stay close to the true center path of vascular as much as possible. 

The gravity center of 2D gray image is defined as shown in Eq. (5): 
 

, ,
,

, ,

( , ) ( , )
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                   (5) 

 
Where B presents the objective region contained in the boundary of cerebral vessels, w(x, y) is the 
weight and its value equals to a*(f2D(x, y)-m), a is a coefficient of weight, and f2D(x, y) is the value of 
pixel in the position (x, y) of B [21]. In this paper, a=-1, m= , 2max ( ( , ))x y Df x y�� . 

Due to small diameter of cerebral vessels, the error of the central path extraction is relatively small. 
Each point in the centerline is traversed and the normal vector of the point is calculated to determine 
the cross section. Finally, the center of gravity of the cross sections is calculated, and then is as the 
point of the corrected centerline. 

3. Results and discussion 

A head aneurysm dataset is used to verify the rationality and effectiveness of the method proposed 
in this paper. The dataset is composed of 512 × 512 × 512 voxels with the actual size of 100 mm in X, 
Y and Z directions, and stored in 8 bits with a capacity of 128 MB. 

The experimental platform is shown as follows: CPU is Intel I5 3.2 GHz, memory is DDR3 4.0 GB, 
GPU is NVIDIA GeForce GTX650, the size of GPU memory is 1G, and the programming 
environment is Visual Studio C++.NET 2012.  

Octree has significant advantages in efficiently accelerating the process of segmenting vessels 
voxels and the process of establishing DFB filed. The comparison of the performances between the 
octree subdivision algorithm and the global traversal algorithm is listed in Table 1. Obviously, the 
octree method takes less time in the segmentation process and the DFB field establishment than the 
global traversal algorithm. The experimental result shows that the octree with the block size of 16 × 

 
Table 1  

Experimental datasets 

Octree 
Depth 

Octree Global traverse 
Octree 
Construction 

Segmentation DFB 
Construction 

Segmentation DFB 
Construction 

3 
4 
5 
6 
7 
8 

0.08 
0.11 
0.16 
0.21 
0.27 
0.35 

2.86 
2.54 
2.10 
1.98 
1.95 
1.94 

3.14 
2.84 
2.76 
2.63 
2.52 
2.41 

2.86 
2.86 
2.86 
2.86 
2.86 
2.86 

3.14 
3.14 
3.14 
3.14 
3.14 
3.14 
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Fig. 3. Graphical user interface of experimental platform, (a) is coronal view, (b) is sagittal view, (c) is transverse view, (d) is 
the result of segmentation. 
 
16 × 16 has the best performance, which takes the least time in total and reduces the time by 56.1% 
compared to the global traversal method. The fuzzy connectedness method is combined with octree in 
this paper to segment cerebral vessels interactively, and the result is shown in Figure 3. 

To verify the accuracy of the proposed method, five types of paths are extracted. Path 1 is an 
average path of many paths extracted manually, which is considered as the reference path; Path 2 is a 
path extracted by DFB method [11]; Path 3 is the result of using the 2D cross-sectional analysis 
method proposed by Kumar [17]; Path 4 is the result of using Hessian Matrix proposed by Lv [12]; 
and Path 5 is the result of using the method proposed in this paper. 

In the experiment, the vessel path named No. 1 is extracted. No. 1 is composed of 50 points as 
shown in Figure 4(a), while No. 2 is composed of 40 points as shown in Figure 4(b). In both two 
figures, the blue line denotes the distance between path 2 and the reference path, the red line denotes 
the distance between path 3 and the reference path, the green line denotes the distance between path 4 
and the reference path, the purple line denotes the distance between path 5 and the reference path. The 
horizontal coordinate of the two figures represents the sequence number of the points in paths, and the 
vertical coordinate represents the distance between the points in paths and the corresponding points in 
the reference path, which is measured by voxel. 

In Figure 4(a), the average value of the blue lines is 3.792 which means the distance between path 2 
and the reference path is 3.792 in voxel; the average value of the red lines is 2.78, the average value of 
the green lines are 2.576, and the average value of the purple lines are 2.262, which indicates that the 
centerline of method 4 is closest to the actual. In Figure 4(b), the average value of the blue lines is 
3.278, the average value of the red lines is 2.585, the average value of the green lines is 2.49, and the  

(a) 

(c) 

(b) 

(d) 
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(a) 

 
(b) 

Fig. 4. The accuracy comparison between the proposed method and the methods of the same kind. Distances between the 
centerline of the proposed methods and the centerline assigned by hand are counted. Method 1 is DFB, Method 2 is the 2D 
cross-sectional analysis method, and Method 3 is the method proposed in this paper. (a) is the No. 1 path, and (b) is the No. 2 
path.  

 
In the two above figures, the blue lines are above both the red lines and the green line, which 

indicates that path 5 is the closest to the reference path. Therefore, the method proposed in this paper 
can get a better result than method 1, method 2 and method 3. Virtual endoscopy visualization of this 
vessel aneurysm dataset by using path 4 is shown as Figure 5. 
 

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

Method 1

Method 2

Method 3

Method 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40

Method 1

Method 2

Method 3

Method 4

Y axis: Distance (voxels) 

5
Y axis: Distance ( voxels) 

X axis: Serial Number of points in centerline 

X axis: Serial Number of points in centerline 

H. Zou et al. / An improved cerebral vessel extraction method for MRA imagesS1238



 
Fig. 5. Virtual endoscopy of the two centerlines extracted by the proposed method. 

4. Conclusion 

Aiming at extracting the centerline of cerebral vessels with a high precision, a robust and fast 
extraction method based on octree and fuzzy connectedness is proposed in this paper. First, the 
volume data are divided into sub-volumes using octree, and invalid volume data are eliminated. 
Second, fuzzy connectedness is introduced to achieve fast cerebral vessel segmentation from 3D MRA 
data. The values of gradient and Laplacian transformation are then calculated to improve the accuracy 
of the distance field. Last, the center of gravity is used to refine the initial centerline to make it closer 
to the actual centerline of the vessel cavity. The experimental results show that the proposed method 
can effectively improve the speed and precision of centerline extraction.  
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