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Abstract. Motor imagery EEG-based BCI has advantages in the assistance of human control of peripheral devices, such as 
the mobile robot or wheelchair, because the subject is not exposed to any stimulation and suffers no risk of fatigue. However, 
the intensive training necessary to recognize the numerous classes of data makes it hard to control these nonholonomic 
mobile systems accurately and effectively. This paper proposes a new approach which combines motor imagery EEG with 
the Adaptive Neural Fuzzy Inference System. This approach fuses the intelligence of humans based on motor imagery EEG 
with the precise capabilities of a mobile system based on ANFIS. This approach realizes a multi-level control, which makes 
the nonholonomic mobile system highly controllably without stopping or relying on sensor information. Also, because the 
ANFIS controller can be trained while performing the control task, control accuracy and efficiency is increased for the user. 
Experimental results of the nonholonomic mobile robot verify the effectiveness of this approach. 
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1. Introduction 

BCI (Brain Computer Interface) technology is not only a result of human brain cognitive research, 
but can also further aid the control of peripheral equipment by replicating actions induced by human 
thought, inspiring promising application prospects in the biomedical and bioengineering domains. The 
subject suffers no risk of fatigue in the motor imagery paradigm, because there is no need for the 
subject to be exposed during the simulation process [1]. Therefore, ERD/ERS motor imagery EEG 
offers distinct advantages in the research of EEG-based control for peripheral devices, such as 
nonholonomic systems including the mobile robot and intelligent wheelchair.  

Different protocols have been suggested for nonholonomic system control tasks based on motor 
imagery EEG. One example is the motor imagery BCI system developed by R. Leeb, in which the 
tetraplegic patient only imagines the movements of his paralyzed feet, one control command for a 
self-paced wheelchair control [2]. Other research has presnented easier ways to initiate more control 
commands. A previous study achieved the development of a robot which performed “turn left then 
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move forward” or “turn right then move forward” in respond to two kinds of motor imagery EEG 
signals [3]. K. Choi developed the wheelchair, which could realize three motion behaviors: turning left, 
turning right and moving forward [1]. A 2-D virtual wheelchair controlled by ERD/ERS was designed 
by D. Huang, but its steering behavior is limited to forward movement, stop, right and left turn [4].  

To increase the motion flexibility of the nonholonomic system, the motor imagery EEG-based 
hybrid BCI is proposed. This framework combines motor imagery EEG with other types of mental 
activity modalities or non-brain based activities systems, such as electromyogram or EOG. A hybrid 
BCI approach comprising motor imagery and P300 was previously designed by Y. Li, et al. [5]; 
acceleration and deceleration were determined by a joint feature composed of P300 and motor imagery 
EEG, to control both the direction and speed of a wheelchair [6]. This approach was further developed 
to utilize blinking of the eyes to achieve seven steering behaviors of a wheelchair; the forward, 
backward, right and left steering behaviors were determined by motor imagery, while stop was 
determined by eye-blinking [7]. A hybrid interface of eye movements and motor imagery EEG, which 
augments the number of control commands, was proposed to enable the flying robot to travel in eight 
different directions [8]. S. Bhattacharyya employed finger-elbow-shoulder movement classification in 
addition to arm movement classification to increase the motion freedom of a mobile robot. However, 
the complexity of the hybrid system necessitates more complex coding for extensive control [9]. 

A higher number of commands ease the mobile system’s navigation through the environment. 
However, because the discrimination between different ERD/ERS patterns becomes more difficult 
with increasing class number, more command options may require more training. A classification 
error corresponds to a wrong control command, which can cause dangerous situations in the real world. 
Significant work has been done to match the number of commands to the number of mental tasks [10, 
11]. For example, by incorporating motor imagery EEG with auditory BCI, F. Velasco-Álvarez 
operated only two mental tasks: relaxed state versus imagination of right hand movements to reduce 
the probability of misclassification [12]. Now four generally accepted common classes of ERD/ERS 
based EEG can be ensured for recognition and classification accuracy. Furthermore, the limited 
number of recognized control inputs makes the nonholonomic system stop frequently to achieve full 
direction maneuvers. J. Millan proposed the use of three classes of motor imagery EEG combined with 
an intelligent system to control a wheelchair; the results show the feasibility of continuously 
controlling complex robotic devices [13]. K.T. Kim presented a motor imagery based brain-actuated 
wheelchair system using an extended five command protocol: left, right, forward, left-diagonal, and 
right-diagonal, the smooth turning increasing the efficiency for the user [14].  

In order to solve the limitations of control accuracy and frequent stopping, this paper proposes a 
new approach which combines motor imagery EEG with the Adaptive Neural Fuzzy Inference System 
(ANFIS). This approach may be segmented into two parts: the first one allows the mobile system to 
plan a “collision-free holonomic path” based on four classes of ERD/ERS EEG, and the second is 
composed of position and orientation controls based on ANFIS, allowing the nonholonomic mobile 
system to approximate the desired path. The advantage of this hybrid control system is that its 
execution mimics a human control mechanism; the motion planning process is accomplished by the 
brain and the implementing process is realized by a kind of “unconscious” biosome mechanism, as is 
the process of human leg movement.  

2. Motion planning by motor imagery EEG 

2.1. Signal acquisition 
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EEG signals are referentially recorded using Brain Products actiCHamp system with 32 electrodes 
placed on the subject’s head: nine electrodes are related to imagery EEG data acquisition. The 
reference electrodes are mounted on the right and left ear. The sampling frequency rate is 500 Hz, and 
all electrode impedances are maintained below 5 kΩ. Taking into account that the subject needs to 
achieve right hand, left hand and foot movements accurately and promptly, we chose the subject who 
had previous experience driving a car (male, 28 years old). 

2.2. Signal preprocessing, feature extraction and classification  

The signal and noise disperse in the entire scalp and form diffuse noise, which results in a strong 
correlation between the electrodes. Linear combination of data from multiple EEG electrodes can 
effectively improve the signal to noise ratio. Because the signal and noise of an EEG have the 
characteristics of obvious spatial distribution, Common Average Reference (CAR) is chosen to reduce 
the correlation between electrodes.  

Spatial patterns of motor imagery EEG are calculated by one versus rest (OVR) common spatial 
patterns (CSP) computationally [15], this method is parallel to nature and requires only scalar products. 
Therefore, it is optimal for real-time applications. 

The linear Support Vector Machine (SVM) is used to classify the feature vectors obtained from 
EEG signals into each class of motor imagery. The SVM constructs a hyperplane in high-dimensional 
space for classification. Each hyperplane separates the training data point of any class with the largest 
possible margin. 

3. Trajectory tracking for nonholonomic mobile system by ANFIS 

3.1. Nonholonomic mobile system 

A mobile system is said to be nonholonomic when the dimension of the configuration space is 
greater than the number of controls [16].  
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For example, a two-wheeled robot or a wheelchair’s kinematic model can be expressed as Eq. (1), 

where r�  and l�  are the actuating speeds of the right and left wheel respectively, r denotes radius 
of wheel and L denotes span. �  represents the angle between the longitudinal axes of the robot and 
the coordinate system. The configuration space can be expressed by ( , , )x y � , which is in 
3-dimensions and the number of controlled dimensions limit to two. 

3.2. ANFIS controller for nonholonomic mobile system 
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The path planning produced by a limited number of motor imagery EEG-based control commands is 
only viable for holonomic systems. In order to execute continuous maneuvers, the controller of the 
nonholonomic mobile system has to accomplish two functions: first, approximate a collision-free 
holonomic path in order to find a reference path feasible for the nonholonomic system. Secondly, track 
the reference path by controlling the position and orientation of the object. 

3.2.1. Approximation for trajectory of holonomic mobile system 
Motor imagery EEG is acquired and classified according to Section 2. The four identified classified 

motions are: step forward (↑, the label "3"), step backward (↓, the label "4"), step left (←, the label 
"5"), and step right (→, the label "6"). The robot only has eight possible motion trajectories starting 
from its arbitrary initial state, given that there are only four motor imagery EEG control commands. 
An arc of 1/4 circle is adopted to interpolate the initial point and end point, which ensures the velocity 
vector remains tangent to the arc. If the step length of each motion is chosen appropriately and, this 
approximation trajectory for nonholonomic mobile system provides a collision-free path. 

3.2.2. Trajectory tracking with ANFIS  
If the controller has m inputs 1 2 3( , , , )mx x x x )m  and one output y , the defined linguistic rules can be 

expressed as follows, where ijA is a fuzzy set for the i -th rule and the j -th linguistic variable, and iw  
is a real number that indicates its consequent part: 

If 1x  is 1iA  and 2x  is 2iA  and  and mx  is imA , Then y  is iw . 
The Gaussian function is chosen as the membership function, given by Eq. (2). The output of the 

inference fuzzy system is computed by Eq. (3). 
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The value iu represents the firing strength of each rule calculated by Eq. (4). 
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parameters to be adapted in the neural network. Therefore, center values ija and width values ijb of the 
Gaussian function and consequent values iw  must be adapted in order to achieve the necessary 
difference between desired output and actual output minimum. For example, take the wheeled robot as 
an example of the nonholonomic system. The function minimized for the position controller and 
orientation controller is represented by Eqs. (5) and (6) respectively [17]. 
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2( ) ( ( ) ( ))dV t t t� � �� �                                (6) 

 
( ( ), ( ))d dx t y t  represents the desired position and ( )d t�  represents the desired orientation of the 

nonholonomic robot, which are provided by the approximation trajectory in section 3.2.1. For the 
position controller and orientation controller respectively, the Godjevac algorithm is adopted to update 
the vector according to Eqs. (7)-(9). a� , b�  and w�  are predefined constants. 
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4. Experiment and validation 

Our experiment utilized a two-wheeled robot as the typical nonholonomic system. The experiment 
was divided into two stages: the subject training stage and the nonholonomic robot control stage. The 
subject underwent a training session to master the coordination of motion direction with four classes 
of motor imagery EEG. Brain Products actiCHamp system with 32 electrodes was used to record EEG 
signals. In the robot control stage, the subject was exposed to a real scene with a Kheperal III robot 
and provided the motor imagery commands to generate collision-free motion planning for the robot.  

4.1. Subject training stage 

At the beginning of each training test, labeled “1”, a cross is projected on a screen for three seconds 
while the subject is in a relaxed state. A continuous sound stimulus is initiated at the second second, 
which indicates the upcoming experiment, and it is labeled “2”. Starting from the third second, 
four-direction arrows randomly appear on the screen for a duration of one second: forward (↑, the 
label "3"), stop (↓, the label "4"), left (←, the label "5"), and right (→, the label "6"). The subject 
imagines corresponding tongue, foot, left hand and right hand movements according to the prompts on 
the screen, for a duration of four seconds. There follows a one second pause, followed by a sound 
stimulus to indicate the end of the experiment. In order to prevent the overlap of two experiments and 
provide the subject some blinking and swallowing time, a 1.5-second blank time was reserved at the 
end. For the training stage, each experiment consisted of 16 minutes and 100 sets of data were  
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Fig. 1. Time sequence of experimental setup in subject training stage. 

W. Yu et al. / Nonholonomic mobile system control by combining EEG-based BCI with ANFIS S1129



 
Fig. 2. Multi-level control strategy for nonholonomic robot. 

 
collected. The experiment timing diagram is shown in Figure 1. 

4.2. Nonholonomic robot control stage 

4.2.1. ANFIS based controller 
ANFIS is composed of a position and an orientation ANFIS controller allowing the robot to follow 

the desired collision-free path calculated from the holonomic path approximation. The planning of the 
holonomic path is implemented by the subject viewing the actual obstacle environment (Figure 2). 

For the position controller, ANFIS is determined to contain five membership functions on its input, 
which are regularly distributed within [ 1,1]�  and are identical in width. There are three types of 
parameters to be adapted according to Eqs. (7)-(9): center values ija , width values ijb and consequent 
values iw  The initial center values for each membership function are set to: 

1 2 3 4 5[ (0), (0), (0), (0), (0)] [ 0.1, 0.05,0,0.05,0.1]j j j j ja a a a a � � � . The corresponding initial width (0) 0.2ijb � . 
The antecedent consequent value (0) 0iw � . The predefined constants a� , b�  and w� , which influence 
the tracking speed and overshoot of the controller, are set to 1.00, 1.00 and 0.78 respectively. 

For the orientation controller, ANFIS is also chosen to contain five membership functions which are 
regularly distributed within[ / 8, / 8]� �� and with the same width. The initial center values for each 
membership function are set to: 1 2 3 4 5[ (0), (0), (0), (0), (0)] [ / 8, /16,0, /16, / 8]j j j j ja a a a a � � � �� � � . The 
corresponding width value (0)ijb = 0.3. The antecedent consequent value (0)iw = 0. The predefined 
constants a� , b�  and w� are chosen to be 1.00, 1.00 and 0.90 respectively. 

4.2.2. Experiment results and analysis 
It is notable that motor imagery of the foot corresponds to the motion of “turn180� and stop” for the 

robot. In this case, the robot maneuvers in the opposite direction without stepping backward. 
Therefore, the robot can compensate its mistaken command recognition of the previous step 
immediately. The actual scene is designed to verify the performance of the proposed control strategy, 
as shown in Figure 3. A single-step prediction strategy is adopted for the subject to project the robot’s 
motion one step in advance. The control strategy involves “conscious” motion planning by the subject 
and “unconscious” robot execution by neuron controller.  

Suppose the ideal velocity of the Kephera III robot is set to 1.5 cm/s when it moves in a rectilinear 
line. For each motor imagery command, the operation of the robot lasts one step in duration, which  
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Fig. 3. Experimental setup in the robot control stage. 

  
(a) Turning with a duration time of one step. (b) Turning with a duration time of two steps. 

Fig. 4. Velocity scalar of robot for each step. 
 

equates to 20 seconds. The velocity scalar of the robot for the fourth trial is listed in Figure 4(a), 
demonstrating that both the overshoot and velocity oscillations are very sharp when the robot makes a 
turn, if it receives a new command. By altering the duration of completion of the swerve to be twice 
that of a step, the subject can wait for the duration of a step when making their next prediction. The 
oscillation of velocity decreases dramatically when the robot makes a turn, as shown in Figure 4(b). 
Thus, the robot’s locomotion is very smooth when responding to the new control command. 

Results of five experimental trials are shown in Table 1. The first trial, for example, lasts 6.0 
minutes and encompassed 18 control commands; all EEG signals were classified correctly with the 
exception of one motor imagery of the tongue, and one motor imagery of each the right hand and left 
hand, providing a total classification accuracy of 83.33%. 

The fourth trial achieves the highest classification accuracy of 88.24%. It requires 17 EEG 
commands to control the robot from the initial position to the goal, as shown in Figure 5. The arrow 
indicates the planned motion for each step, and the associated number represents the label for the four 
classes of motor imagery EEG. For the fourth command in Trial 4, the motor imagery EEG of step 
forward is incorrectly classified as step left; because a single-step prediction is used, the robot had 

 
Table 1 

Control commands and classification accuracy of motor imagery EEG for five experimental trials. 

Trial Time Total Classification Tongue Foot Left Hand Right Hand 
1 6.0 18 83.33% 11 (1) 0 (0) 4 (1) 3 (1) 
2 7.0 20 80.00% 12 (2) 1 (0) 4 (1) 3 (1) 
3 7.4 21 80.95% 14 (2) 1 (0) 3 (1) 3 (1) 
4 5.8 17 88.24% 12 (1) 0 (0) 3 (0) 2 (1) 
5 6.5 19 84.21% 10 (1) 2 (0) 3 (1) 4 (1) 
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Fig. 5. Motor imagery 
command in the fourth 
trial. 

Fig. 6. Curvilinear motion trajectory based 
on ANFIS. 

Fig. 7. Snapshot of actual robot motion 
trajectory. 

 
already turned left when the fifth command was made. So, the subject made the step left command to 
correct the previous error. 

The approximation of the holonomic robot’s trajectory produced by motor imagery EEG is based on 
the method described in Section 3.2.1. The desired collision-free trajectory for the fourth experimental 
trial is shown as the continuous blue line in Figure 6. The parallel positions of the ANFIS controller 
and the orientation ANFIS controller are designed according to Section 3.2.2, in order to track the 
desired path. Without the necessity of advance training, the ANFIS controller can perform the control 
task while training. Therefore, the difference between the desired motion trajectory and real trajectory 
decreases with time, simultaneously improving the control accuracy. The curvilinear motion trajectory 
performed by the robot is presented as the red dashed line in Figure 6, demonstrating that the robot can 
follow the desired trajectory very quickly. Figure 7 displays the snapshots of the Khepera III robot 
motion trajectory with the proposed approach. 

5. Conclusion 

This paper proposed a new approach to increase the efficiency and control accuracy of 
nonholonomic mobile systems with an EEG-based BCI system, combinging the intelligence of human 
being and robot. This approach may be segmented into two parts: the first allows four classes of 
ERD/ERS based EEG to find a collision-free holonomic path, and the second is comprised of position 
and orientation controllers based on ANFIS to approximate the desired collision-free path. The 
advantage of this approach is that motion planning, which may be interpreted as conscious planning, is 
provided directly by human thoughts through motor imagery EEG. Moreover the nonholonomic 
mobile system operates in a reflexive way, through a fuzzy inference based adaptive controller. This 
approach realizes a multi-level control which allows the nonholonomic mobile system to change 
direction without stopping or relying on sensor information, thus increasing control precision and 
efficiency for the user. 

Because the single-step prediction strategy was applied to plan the robot’s motion, this would cause 
the subject to divide their attention, thereby influencing the recognized accuracy of ERD/ERS EEG 
signal. In future research, we will focus on combined non-brain based activities, such as eye-blinking, 
to improve the mapping between the robot’s motion and control command.  

W. Yu et al. / Nonholonomic mobile system control by combining EEG-based BCI with ANFISS1132



Acknowledgment 

This research has been made possible by “111 project” (Grant No.B13044) supported by the 
Ministry of Education of China. 

References 

[1] K. Choi and A. Cichocki, Control of a wheelchair by motor imagery in real time, Lecture Notes in Computer Science 
5326 (2008), 330–337. 

[2] R. Leeb, D. Friedman, G.R. Muller-Putz, R. Scherer, M. Slater and G. Pfurtscheller, Self-paced (asynchronous) BCI 
control of a wheelchair in virtual environ-ments: A case study with a tetraplegic, Computational Intelligence and 
Neuroscience 2007 (2007), 79642. 

[3] C.S.L. Tsui and J.Q. Gan, Asynchronous BCI control of a robot simulator with supervised online training, Lecture Notes 
in Computer Science 4881 (2007), 125–134. 

[4] D. Huang, K. Qian, D.Y. Fei, W. Jia, X. Chen and O. Bai, Electroencephalography (eeg)-based brain-computer interface 
(bci): A 2-d virtual wheelchair control based on event-related desynchronization/synchronization and state control, IEEE 
Transactions on Neural Systems Rehabilitation Engineering 20 (2012), 379–388. 

[5] Y. Li, J. Long, T. Yu, Z. Yu, C. Wang, H. Zhang and C. Guan, An EEG-based BCI system for 2-D cursor control by 
combining Mu/Beta rhythm and P300 potential, IEEE Transactions on Biomedical Engineering 57 (2010), 2495–2505. 

[6] J. Long, Y. Li, H. Wang, T. Yu, J. Pan and F. Li, A hybrid brain computer interface to control the direction and speed of a 
simulated or real wheelchair, IEEE Transactions on Neural Systems Rehabilitation Engineering 20 (2012), 720–729. 

[7] H. Wang, Y. Li, J. Long, T. Yu and Z. Gu, An asynchronous wheelchair control by hybrid EEG–EOG brain–computer 
interface, Cognitive Neurodynamics 8 (2014), 399-409.  

[8] B.H. Kim, M. Kim and S. Jo, Quadcopter flight control using a low-cost hybrid interface with EEG-based classification 
and eye tracking, Computers in Biology and Medicine 51 (2014), 82–92.  

[9] S. Bhattacharyya, A. Sengupta, T. Chakraborti, D. Banerjee, A. Khasnobish, A. Konar, D.N. Tibarewala and R. 
Janarthanan, EEG controlled remote robotic system from motor imagery classification, In Proceedings of International 
Conference on Computing Communication & Networking Technologies, Coimbatore, 2012, pp. 1–8. 

[10] J. Kronegg, G. Chanel, S. Voloshynovskiy and T. Pun, EEG-based synchronized brain–computer interfaces: A model for 
optimizing the number of mental tasks, IEEE Transactions on Neural System Rehabilitation Engineering 15 (2007), 
50–58. 

[11] R. Ron-Angevin, A. Dıaz-Estrella and F. Velasco-Alvarez, A two-class brain computer interface to freely navigate 
through virtual worlds, Biomed Tech 54 (2009), 126–133. 

[12] F. Velasco-Alvarez, R. Ron-Angevin, L. da Silva-Sauer and S. Sancha-Ros, Audio-cued motor imagery-based 
brain-computer interface: Navigation through virtual and real environments, Neurocomputing 121 (2013), 89–98. 

[13] J.D.R. Millan, F. Galan, D. Vanhooydonck, E. Lew, J. Philips and M. Nuttin, Asynchronous non-invasive brain-actuated 
control of an intelligent wheelchair, In Proceedings of IEEE International Conference on Engineering in Medicine and 
Biology Society, Minneapolis, 2009, pp. 3361–3364. 

[14] K.T. Kim, T. Carlson and S.W. Lee, Design of a robotic wheelchair with a motor imagery based brain-computer interface, 
In Proceedings of International Winter Workshop on Brain-Computer Interface, Gangwo, 2013, pp. 46–48. 

[15] B. Blankertz, G. Dornhege, G. Curio and K.R. Muller, Boosting bit rates in noninvasive EEG single-trial classification by 
feature combination and multiclass paradigms, IEEE Transactions on Neural Systems Rehabilitation Engineering 51 
(2004), 993–1002. 

[16] F. Jean, Complexity of nonholonomic motion planning, International Journal of Control 74 (2001), 776–782. 
[17] T. Wang, F. Gautero, C. Sabourin and K. Madani, A neural fuzzy inference based adaptive controller for nonholonomic 

robots, International Journal of Computing 10 (2011), 56–65. 

W. Yu et al. / Nonholonomic mobile system control by combining EEG-based BCI with ANFIS S1133


