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Abstract. Arrhythmia diagnosis is very significant to ensure human health. In this paper, a new model is developed for arrhyth-
mia diagnosis. A salient feature of the algorithm is a synergistic combination of statistical and fuzzy set-based techniques. It
is distribution-free and is realized in an unsupervised mode. Arrhythmia diagnosis is viewed as a certain statistical hypothesis
testing. ‘Abnormal’ is typically a much complex concept, so it can be described with the technology of fuzzy sets which bring
a facet of robustness to the overall scheme and play an important role in the successive step of hypothesis testing. Intensive
fuzzification is engaged in parameters determination which is self-adaptive and no parameter needs to be specified by the user.
The algorithm is validated with a number of experiments, which prove its effectiveness for arrhythmia diagnosis.
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1. Introduction

The electrocardiogram (ECG) provides great information on normal and pathological physiology.
Main problems in arrhythmias detection are that one disease may have dissimilar signs for different pa-
tients and two diseases may have similar effects on ECG signals. Various methods were developed, in-
cluding classification[1], nearest neighbor-based techniques[2], clustering[3], statistical techniques[4], et
al. However, classification[5] cannot detect unknown ECG signals. Although many clustering methods[6]
show good performance in the lab, there are few techniques gaining popularity in practical applications.
There are three main reasons, including sensitivity to initialization, trapping into local minima and lack
of prior knowledge. For statistical methods[7], statistical features are taken into account. They fit a statis-
tical model to given data, then apply a statistical inference test to determine whether an instance belongs
to this model. The main drawbacks are statistical features are unknown and various, what’s more, they
may not coincide with the specified value of the process characteristic and several parameters need to
be determined[8]. However, they can detect unseen patterns. The nearest neighbor-based technique is a
nonparametric method[9]. Despite its simplicity, its critical shortcomings are the low tolerance to noise
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and the fact that it relies on existing data, assuming that training set defines decision boundaries among
the classes perfectly, which is not always the case[10]. The fact that ‘normal’ and ‘abnormal’ are fuzzy
makes fuzzy logic theory used successfully[11,12]. Fuzzy logic theory can avoid hard threshold, there-
by increasing the tolerance towards contradictions in the data. However, fuzzy rules and membership
functions are difficult to determine. If information is insufficient, the performance will become worse.

According to characteristics of ECG signals and above-mentioned methods, a combination of statistical
and fuzzy set-based technique is proposed. Arrhythmia diagnosis is viewed as a statistical test. Because
ECG signals have non-stationary statistical attributes, mean of samples’ characteristics isn’t adopted, but
a threshold. ‘Abnormal’ includes fuzziness, so fuzzy set theory is taken into account. What’s more, pred-
icates in statistical test are treated as fuzzy predicates (the degree of inclusion). Intensive fuzzification is
adopted to realize parameters determination which is self-adaptive. So parameters are not required to be
predefined. Due to fuzzy set theory, statistical test is distribution-free and totally unsupervised.

2. Material and preprocessing

In this work, MIT/BIH arrhythmia database[13] is used for arrhythmia diagnosis, which includes 48
records. The length of each record is around 650,000 samples. Each record is an annotation file, in which
each beat has been identified by several expert cardiologist annotators. These labels are referred to as
annotations of ground truth and can be used to do the training and evaluate the performance.

All ECG records are first segmented into beat cycles. More than 100,000 cycles are segmented with
all samples. Each cycle and the position of QRS complex can be located. QRS complex is aligned at the
central point of each cycle. The cycle time and duration from P to T wave for a normal cycle is around
0.5 and 0.8s, respectively. Sampling rate of an ECG signal is 360 samples/s[14]. Since most features are
located in PQRST waves, 200 samples are taken, which correspond to 0.56s, for each cycle. This length
can cover the range for PQRST waves. After detection of QRS complex, 99 samples were chosen from
the left side of QRS mid-point and 100 samples after QRS mid-point and the QRS mid-point itself as a
beat of 200 samples[15]. After preprocessing, an ECG beat complex is represented by a sequence of 200
discrete samples. 75023 Normal and 25002 abnormal (7256 Right Bundle Branch Block (RBBB), 8071
Left Bundle Branch Block (LBBB), 2546 Atrial Premature Contraction (APC) and 7129 Ventricular
Premature Contraction (VPC)) beats are extracted. A brief description of used beats is explained in [16].

3. Arrhythmia diagnosis as a statistical test

Arrhythmia is abnormal cardiac activity. So, arrhythmia diagnosis is a kind of anomaly detection. A
hypothesis testing is to discover whether the data is significantly different from the present in the popu-
lation. The testing is evaluated by fundamental tradeoff between false positive and false negative rates.
Hypothesis testing explains how to pick thresholds decision when one problem is faced with balancing
this tradeoff. In fact, any anomaly detection method requires a threshold. So hypothesis testing is avail-
able to discover whether current data is significantly different from the whole information. Any anomaly
detection method at some point uses a statistical test to verify whether a hypothesis is true.

3.1. Anomaly score

Considering a dataset, P is an instance(beat) with q samples. According to section 2, q is 200 in this
study. A key component of the algorithm is the distance used to determine how closely two instances
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are matched. For each instance, the degree to which the instance differs from others is defined, termed
anomaly score. It is defined as the average of distances between an instance and its K nearest neighbors.
Formally speaking, anomaly score of an instance P is computed by Eq.(1), where Pt ∈ KNNSet (P ),
which denotes the set of K nearest neighbors of P . Distance (P, Pt) is measured by Euclidean distance.

Score (P ) =
1

K

K∑
t=1

Distance (P, Pt) (1)

3.2. Statistical hypothesis testing

Traditional hypothesis testing relies heavily on prior knowledge of data distribution and is not suitable
for unknown data. What’s more, hypothesis testing is based on statistical estimation of distribution pa-
rameters. Because the distribution is unknown, it is impossible to estimate its parameters. In practice,
the process mean may not coincide with the specified value of the feature. So threshold θ is considered.
Following hypothesis H0 for the case when there is an anomaly, and an alternate hypothesis H1 for the
case when there is no anomaly are formed.

H0 : anomaly score > θ
H1 : anomaly score ≤ θ

(2)

Neither the distribution nor the values of its parameters is known, such as mean and standard deviation.
But according to the definition of anomaly score, the average of distances between an instance and its K
nearest neighbors can be determined. Meanwhile, standard deviation of this instance can be calculated. T-
test is a hypothesis test which is commonly applied when the test statistic follows the normal distribution.
When the scaling term is unknown and is replaced by an estimate, the test statistic follows a Student’s
t-test, which doesn’t need known distribution parameters. The instance mean and standard deviation
are used to replace distribution parameters. When considered in the problem, the test statistic t(P ) and
rejection region come in Eq.(3). Where Score (P ) is the anomaly score of instance P , s is the standard
deviation between an instance and its K nearest neighbors, and α is significance level.

t (P ) =
Score (P )− θ

s/
√
K

≤ t1−α(K − 1) (3)

There are two parameters to be determined, which are θ and K. ‘Abnormal’ includes fuzziness. For
example, if anomaly score is equal to θ−ε (ε is an infinitesimal positive number), this instance is normal.
But if anomaly score is equal to θ + ε, it is difficult to determine whether it is normal. In this sense,
fuzzy sets arise naturally. Correspondingly, inequalities in statistical test are treated as fuzzy predicates.
θ determination and the reason why there is no need to care data distribution will be illustrated in next
section. The algorithm is unsupervised, but training can be used as decision support. Optimal results can
be derived by optimizing K whose value is estimated based on training. In order to determine optimum
K, a simple way is to alter K from 1 to a large enough value. Based on diagnosis results with each K,
performance measures are computed and the K for which best performance is obtained is chosen. In
this way, optimum K is determined. Furthermore, only K optimization needs training. In this paper, a
predefined K which assumes any value can be considered. In this case, the algorithm is unsupervised.
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4. Self-adaptive and distribution-free mode

As mentioned earlier, threshold determination can be realized by engaging fuzzy sets. In this section,
threshold determination and a certain intensive fuzzification process that leads to inequalities as fuzzy
predicates are shown. The aim of fuzzification is to achieve optimized parameters in statistical test.
Because of fuzzification, the algorithm is a self-adaptive and distribution-free statistical test.

4.1. Fuzzification

As the aim is to realize arrhythmia diagnosis, two fuzzy sets are selected, namely ‘normal’ and ‘abnor-
mal’. Because of their smoothness, infinite support, Gaussian membership functions are adopted, which
are described in Eq.(4). Each membership function is characterized by two important parameters. a (or b)
represents function centre, whereas σ denotes the spread. Higher values of σ correspond to larger spreads
of fuzzy sets. Same σ is selected for two functions. In this case, σ can be viewed as a constant. So it is a or
b, not σ, which determines an overlap between these two functions. When abnormal (x) > normal (x),
there is an anomaly. The threshold is given by the condition abnormal (x) = normal (x).

normal (x) =

{
1, x ≤ a

exp(− (
x−a
σ

)2
), x > a

, abnormal (x) =

{
exp(− (

x−b
σ

)2
), x ≤ b

1, x > b
(4)

Now, how to determine parameters a and b is illustrated. In principle, a sound membership function
not only can reflect fuzzy characteristics of a fuzzy concept, but also can describe the objective content
as clear as possible. The clarity can be measured by fuzziness degree of one fuzzy set. When fuzziness
degree is smaller, fuzzy set expresses the problem more clearly. So the principle of minimum fuzziness
degree is used to determine related parameters. Fuzzy entropy is selected to express the fuzziness degree,
leading to the optimization model in Eqs.(5)and (6), where N is the number of samples in the dataset.

minH (a, b) =
1

N ln 2

N∑
i=1

{s (normal (xi)) + s (abnormal (xi))} (5)

s(x) =

{−x lnx− (1− x) ln(1− x), x ∈ (0, 1)
0, x = 0, 1

(6)

4.2. Intensive fuzzification

The fuzzy set-based scheme which is an intensive fuzzification process is proposed in Figure 1. Solid
line represents the first fuzzification in which anomaly score is the data object. The aim of the first fuzzi-
fication is to obtain an optimized threshold. Dashed line shows the second fuzzification, in which t(P ) is
the data object. Because optimized threshold is a numeric value and inequality (≤) is a fuzzy predicate,
a second fuzzification is conducted to determine the degree of inclusion. The scheme is developed in two
stages: training and testing, which are almost the same. Both of them are intensive fuzzification scheme.
Their only difference is K optimization. Training is needed only when an optimized K is required. Then,
optimized K is used at testing stage. Otherwise, training and K optimization are not necessary. K will
be predefined by users when testing.The scheme consists of five major components as follows:
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Fig. 1. Intensive fuzzification detection scheme. Fig. 2. Membership functions with different variables.

1. Fuzziness degree inference: Fuzziness degree is expressed by membership functions in Eq.(4).
2. Parameters optimization: a and b are optimized by the minimum of fuzziness degree in Eq.(5).
3. Fuzzy sets building: Membership functions are constructed by optimized a, b and predefined σ.
4. Threshold determination: θ in Eq.(3) exists when two membership degrees are the same.
5. Result estimation: P is an anomaly and H0 is accepted when abnormal(t(P )) > normal(t(P )),

and K optimization is carried out.

4.3. Distribution-free statistical test

Now, the reason why there is no need to care the data distribution is illustrated. Only in the second
fuzzification, data distribution need be considered. As shown in Eq.(3), t(P ) and t1−α (K − 1) have to
be calculated. If K and α are known, t1−α (K − 1) will be a constant. Predicted result of t(P ) will be
the same as that of t(P ) − t1−α (K − 1). For example, x and y are two variables, and y = x + h, h is
a constant. If membership functions of x are normal(x) and abnormal(x), membership functions of
y are normal(y − h) and abnormal(y − h). abnormal(y − h) and normal(y − h) are on the right
of abnormal(x) and normal(x) as shown in Figure 2. Their distance is h and shapes are the same.
CrossX and CrossY are their crossing points and the distance is h. It means CrossY = CrossX +h.
So the hypothesis x < CrossX is equivalent to the hypothesis y < CrossY . Additionally, if their
membership functions can be determined respectively, their crossing points can be determined without
caring the value of h. Therefore, t1−α (K − 1) in Eq.(3) is not considered, and only t(P ) is regarded as
the test object. So, there is no need to care whether the data follows a normal distribution or not.

5. Experiments and discussions

5.1. Performance measures

Four measures are used to assess results, which are sensitivity(Sen), specificity(Spe), positive predic-
tive value(PPV) and accuracy(Acc). They are defined as follows: Sen = TP/(TP + FN), Spe =
TN/(FP + TN), PPV = TP/(TP + FP ), Acc = (TP + TN)/(TP + FN + FP + TN). True
positive (TP) is the number of true arrhythmias successfully detected; false positive(FP) is the number
of true arrhythmias that are missed; true negative (TN) is the number of non-target arrhythmias correctly
detected; false negative(FN) is the count of non-target arrhythmias detected wrongly.

To determine optimum K corresponding to the best accuracy, K is altered from 1 to a large enough
value(in this study, Kmax = 7000). In this process, ten-fold cross validation method is used. The entire
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Table 1
Comparison for several techniques from two points of view

Measures Algorithm APC LBBB VPC RBBB
PPV SP(1630) 0.10 0.31 0.45 0.46

SO 0.12 0.32 0.51 0.60
SFP(1630) 0.38 0.40 0.88 0.89
SFO 0.55 0.77 0.88 0.92

Sen SP(1630) 0.83 1.00 1.00 1.00
SO 0.86 1.00 1.00 1.00
SFP(1630) 0.55 1.00 0.84 1.00
SFO 0.50 0.95 0.88 0.98

Spe SP(1630) 0.74 0.76 0.89 0.89
SO 0.78 0.77 0.91 0.93
SFP(1630) 0.97 0.84 0.99 0.99
SFO 0.99 0.97 0.99 0.99

Acc SP(1630) 0.77 0.80 0.90 0.90
SO 0.80 0.82 0.92 0.94
SFP(1630) 0.96 0.86 0.98 0.99
SFO 0.97 0.97 0.98 0.99

Table 2
Comparison with four competing algorithms

Measures Algorithm APC LBBB VPC RBBB
PPV SFO 0.55 0.77 0.88 0.92

K-distance 0.43 0.40 0.88 0.89
LOF 0.42 0.40 0.86 0.89
Random Walk 0.31 0.40 0.88 0.53
Brute Force 0.41 0.18 0.75 0.57

Sen SFO 0.50 0.95 0.88 0.98
K-distance 0.64 1.00 0.84 1.00
LOF 0.62 1.00 0.86 1.00
Random Walk 0.46 1.00 0.84 0.57
Brute Force 0.60 0.44 0.71 0.63

Spe SFO 0.99 0.97 0.99 0.99
K-distance 0.97 0.84 0.99 0.99
LOF 0.97 0.84 0.99 0.99
Random Walk 0.97 0.84 0.99 0.95
Brute Force 0.97 0.78 0.98 0.95

Acc SFO 0.97 0.97 0.98 0.99
K-distance 0.96 0.86 0.98 0.99
LOF 0.96 0.86 0.98 0.99
Random Walk 0.95 0.86 0.98 0.92
Brute Force 0.96 0.75 0.96 0.93

training set is divided into ten disjoint subsets of almost equal size. In every fold, one subset is used for
the training and the rest nine subsets are used for the test. The process is repeated ten times so that every
subset will be tested in different folds. Based on correct diagnosis results with each K, performance
measures are computed in each fold and K for which the best accuracy is obtained in all folds is chosen.

5.2. Performance analysis

Some techniques in this algorithm are analyzed. Because every arrhythmia has its own characteristics,
a predefined and same K isn’t used. Of course, if there is limited training data, a predefined and same
K can be used for all arrhythmias. In this case, the algorithm will be a totally unsupervised model.
According to characteristics of the algorithm, four experiments are performed as follows:

1. The algorithm based on statistical testing and a predefined K is called SP.
2. The algorithm based on statistical testing and an optimized K is called SO.
3. The algorithm based on statistical testing, fuzzy set theory and a predefined K is called SFP.
4. The algorithm based on statistical testing, fuzzy set theory and an optimized K is called SFO.

Because the aim is arrhythmia diagnosis, results of four arrhythmias are just listed, which are RBBB,
LBBB, APC and VPC. The performance is analyzed from two points of view: K selection and fuzzifi-
cation. In the first (SP) and third (SFP) experiments, a fixed K(1630) is selected for the experiments. In
other two experiments, optimized K is used, which may be different for different arrhythmias. All results
are listed in Table 1. If K optimization is needed, results when the best accuracy is obtained are listed,
otherwise, experiments are performed in every subset and average results are listed for every arrhythmia.
K optimization is to obtain best accuracy. When K is different, the performance may be different.

This conclusion can be come up with from performance comparison of SO with SP(1630) and compar-
ison of SFO with SFP(1630) in Table 1. Taking comparison of SO with SP(1630) for example, better
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results are marked in bold. All results of SO are better than those of SP(1630). All positive predictive
value, specificity and accuracy are improved significantly. Values of sensitivity are unchanged or slightly
better. Similar conclusions occur in comparison of SFO with SFP(1630). SFO achieves better positive
predictive value, specificity and accuracy. Values of sensitivity are unchanged or slightly worse. It means
K optimization is necessary. If there is no training data, K can be any value. In this case, sensitivity is
not significantly affected by different K. That means that the performance is improved greatly.

The analysis of fuzzification is shown by comparing SFP(1630) with SP(1630) and comparing SFO
with SO in Table 1. Taking comparison of SFO with SO for example, better results with fuzzification are
marked in bold. All positive predictive value, specificity and accuracy are better than those of SO. All
sensitivity values are smaller or stay the same. Similar conclusions occur in the comparison of SFP(1630)
with SP(1630). According to the analysis, SP and SO just use statistical testing to do arrhythmia diagno-
sis. Data distribution is unknown, so it is unreasonable. In this case, the cut-off is too small, making too
many instances are detected as abnormal beats, so sensitivity is best and other measures are worst in SP
and SO. According to Table 1, SFO algorithm outperforms other algorithms on positive predictive value,
specificity and accuracy. Fuzzification is workable and effective for performance improvement.

5.3. Performance comparison

Because this algorithm is unsupervised, it is compared against four unsupervised methods, which are
Brute force[17], LOF[18], Random Walk[19] and K-distance[20]. LOF and K-distance use a minimum
point(K) to define the neighborhood. All competing methods need parameter N to determine the number
of predicted anomalies. Selection of K and N for these approaches must be predefined.

Different Sizes of datasets lead to the difficulty in N selection. N has significant influence on four
measures which can’t reach their maximum values at same N . In general, when N is larger, sensitivity is
better and other three measures are worse. So there is no meaning to compare the performance when N is
different. Same N is selected, which is automatically generated by SFO. For SFO, LOF and K-distance,
K optimization is conducted by the method in subsection 5.1. For Random Walk and Brute Force, results
when accuracy is maximized are shown. It means that results for all algorithms when accuracy is the best
are shown in Table 2. Best results are marked in bold. More best results means this algorithm is better.
Results indicate SFO can obtain best performances in measures except sensitivity. Even so, its sensitivity
is better than that of Random Walk and Brute Force. Random Walk performs a random walk on Markov
chain. There are some correlations for instances, but Markov property may not exist. SFO, K-distance,
Brute Force and LOF are distance-based methods, which are simple and intelligible, but the performance
is not stable, especially for sparse data. The advantage of a local instead of a global view is detailed in
LOF. However, if densities of two different instances are similar, LOF is not effective. K-distance and
Brute Force just consider one distance that is the Kth largest distance to the nearest neighbor, therefore
they are not thoughtful. Overall, the proposed algorithm is better than competing algorithms.

6. Conclusion

In this work, a novel algorithm for arrhythmia diagnosis is first developed. The problem is viewed as a
statistical hypothesis testing. Exploiting fuzzy set theory, hypothesis testing is distribution-free and self-
adaptive, and is an unsupervised model. K optimization and fuzzification are necessary for performance
improvement. Positive predictive value, specificity and accuracy have been greatly improved by K op-
timization and intensive fuzzification process, while sensitivity is not significantly affected by different
K. A careful comparison confirms the effectiveness of the proposed algorithm.
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