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Abstract. Support vector machine (SVM) is one of the most effective classification methods for cancer detection. The 
efficiency and quality of a SVM classifier depends strongly on several important features and a set of proper parameters. 
Here, a series of classification analyses, with one set of photoacoustic data from ovarian tissues ex vivo and a widely used 
breast cancer dataset- the Wisconsin Diagnostic Breast Cancer (WDBC), revealed the different accuracy of a SVM 
classification in terms of the number of features used and the parameters selected. A pattern recognition system is proposed 
by means of SVM-Recursive Feature Elimination (RFE) with the Radial Basis Function (RBF) kernel. To improve the 
effectiveness and robustness of the system, an optimized tuning ensemble algorithm called as SVM-RFE(C) with correlation 
filter was implemented to quantify feature and parameter information based on cross validation. The proposed algorithm is 
first demonstrated outperforming SVM-RFE on WDBC. Then the best accuracy of 94.643% and sensitivity of 94.595% 
were achieved when using SVM-RFE(C) to test 57 new PAT data from 19 patients. The experiment results show that the 
classifier constructed with SVM-RFE(C) algorithm is able to learn additional information from new data and has significant 
potential in ovarian cancer diagnosis. 
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1. Introduction 

Ovarian cancer is the fifth leading cause of cancer-related death among women, and has the highest 
mortality of gynecologic cancer due to the lack of precancerous symptom in early stage [1]. Efficient 
technologies to detect and diagnose ovarian cancer at a pre-cancer level would produce a considerable 
impact on improving the cure rate. Photoacoustic tomography (PAT), an emerging imaging modality 
characterized by both excellent optical contrast and good ultrasound resolution, provides a huge 
potential in ovarian cancer diagnosis noninvasively via transvaginal approach [2]. The principle and 
the construction of the PAT imaging system have been reported in previous publications [3]. However, 
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distinguishing a malignant tumor from a benign one is still a challenging task due to the multitude of 
variants and the lack of visual identifiable vascular distribution features between the two.  

It is necessary and urgent to extract describable features from ovarian PAT images for cancer 
diagnosis with computer aided detection (CAD) systems, which have been  demonstrated a positive 
result on early cancer detection [4, 5]. Unfortunately, literature is scarce referring to utilization of 
CAD in ovarian cancer detection. Concentrated on the imaging patterns, power distribution over the 
spatial frequency, and spatial statistical properties, Umar Alqasemi etc. [1] concluded that SVM with 
a polynomial kernel, which was able to exclusively separate cancerous cases from non-cancerous, 
outperformed other classification methods such as the generalized linear model and neural network 
for ovarian cancer detection. Nevertheless, they did not investigate the design and feature selection 
for SVM classifier, which might improve contribute to the classification accuracy. 

Hence, with a consensus that the SVM is a distribution-free algorithm that can overcome poor 
statistical estimation [6, 7], and the radial basis function (RBF) is an universal kernel function that can 
be applied to any of the distribution of the samples through the choice of parameters [6, 7], we focus 
on an automatic design, which couples feature selection and optimizing parameters based on SVM 
with RBF, to construct an improved better SVM classifier system for ovarian cancer detection. A new 
feature selection approach is proposed with the combination of the Support Vector Machines 
Recursive Feature Elimination (SVM-RFE) [8] and a linear correlation filter to obtain an optimal 
feature subset. Moreover, the optimal values of SVM parameters are derived using grid searching 
based on 10-fold cross validation (10-CV). Five metrics are adopted to evaluate the performance of 
SVM classifiers, while Receiver Operating Characteristic (ROC) curve and Area Under ROC Curve 
(AUC) are additionally calculated to proof the robustness of our proposed approach. 

The remainder of this paper is organized as follows: Section 2 presents a review of the principle of 
SVM and Section 3 discusses the proposed automatic design of SVM. Section 4 describes the datasets 
used and gives the experimental results. Discussion and conclusion have been given in Section 5.  

2. Support vector machine 

Support vector machine (SVM) [9] is a pattern classification technique developed by Vapnik, et al. 
based on statistical learning theory. It targets on minimizing the structural risk and uses kernel 
function to tackle nonlinearly separable problem [6]. For a binary classification, let T=(x1,x2,…,xL )T 
denotes a training set with L samples, in which each sample xi RN (i=1,2,…,L) is a N-dimension 
vector, also called feature vector. Let yi {-1,+1} denotes the target class label of xi, then SVM 
attempts to find an optimal hyperplane maximizing the margin between it and input data. Then, the 
optimization problem can be solved by its dual form with Lagrange multipliers α=(α1,α2,…, αL)T [9]: 
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where K(xi · xj) =exp(-0.5||xi-xj||2/σ2) is the RBF kernel function that maps a feature vector into a high 
dimension space and C is a regularization constant penalizing the training errors. In this paper, we 
focus on constructing SVM based on RBF kernel due to its flexibility and accuracy [9]. 
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3. Proposed method 

The quality of SVM depends strongly on both its kernel parameters and input features. The 
parameters determines the distribution of training data and controls the tradeoff between confidence 
range and experiential risk [9]. Also, an efficient feature selection is important in improving 
classification precision and computing complexity [10]. Thus we propose hereon a methodology on 
SVM that can with automatically selecting feature subsets and then tuning SVM parameters under the 
selected features. The scheme of the ensemble SVM design is presented in Figure 1. It illustrates the 
procedure about how the feature selection (FS) module produces an optimal feature subset under 
which the Parameter Estimation (PE) module can estimate appropriate SVM parameters.  

3.1. Feature selection 

Methods of feature selection can be approximately categorized into two types: Filter and Wrapper 
[10]. The former measures the performance metric of attributes only based on intrinsic characteristics 
of data, while the latter attempts to seek features yielding the best classification accuracy [10]. 
Compared with the Filter method, therefore, Wrapper approach might be less computationally 
efficient but available for better accuracy [10]. A common wrapper-based method is Support Vector 
Machine Recursive Feature Elimination (SVM-RFE), proposed by Guyon, et al. [8], for selecting 
genes and now it is widely used for feature selection. It starts with the full feature set, and eliminates 
recursively the least important feature at each step. Usually, SVM-RFE could generate a good feature 
subset for classification. However, it does not take the redundancy among features into account.  

Hence, a novel two-stage feature selection approach, called SVM-RFE(C), is proposed in FS 
module, shown in Figure 1. In the first stage, all features are ranked in terms of importance for 
classification by SVM-RFE [8], and then, a linear correlation filter is applied to identify and discard 
high redundant features. Specially, the support vector count [7], denoted by Sr=NSV/L (where NSV and 
L is the number of support vectors and the total input samples respectively), is employed as the 
feature ranking criterion in SVM-RFE. It bounds the possible error of removing a feature (e.g., fi) 
from the current set S and is given by the average of 10-fold cross validation (10-CV). And, the 
Pearson correlation coefficient is used to measure the correlation between two features fi, fj: 
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where 

if
� , E(fi) and E(fi

2) are the mean, expectation and square expectation of fi. 

3.2. SVM parameter estimation  

Two parameters need to be estimated in RBF-based SVM: the width of RBF σ and regularization 
constant C. Ideally we would like to choose σ and C minimizing the true risk of the SVM classifier. 
Unfortunately, since this quantity is not accessible, one has to build estimates or bounds for them [7]. 
Here, a kind of grid-search [7, 11] is implemented to obtain the best (σ, C). Giving a range of different 
combinations of (σ, C), a grid is obtained. And the task is to pick the best one maximizing the 
accuracy of SVM [11] on the grid. To locate the best (σ, C) as possible, the seeking is conducted in 
two steps. First a coarse grid is exploited with a larger searching step to generate a suboptimal (σ, C). 

R. Wang et al. / Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging S977



Initial: full feature set S
Rank list R=[ ]

Ranked list R, subset F=[ ]

Update: F=[F,temp]

Y

Select a feature fobs R in order

r(fi ,fobs)<φ, fi F

Y

N

Redundancy Filter

10 fold CV Sri on S1

For any feature fi

S, S1=S \ [ fi ]

Find ft =arg min{Sri }

S=S \ [ ft ], R=[R ft ]

Features Ranking

Optimal feature
subset F

Training set T

Large-step
search 1,C1

Small-step
search , C

Parameter Estimation
Module

Start

N

End

Train SVM

Test SVM

S=[ ]
End criterion

N

Y

Feature Selection Module

 
Fig. 1. The general flowchart of the proposed SVM scheme. 

 
Then, the best values of (σ, C) would be derived on a finer grid with a reduced step.  

Once an optimal feature subset is achieved, the corresponding SVM parameters could be estimated 
with the grid-search on the basis of 10-CV. Thus an optimal SVM classifier would be trained on the 
training set and could be evaluated by some metrics on the testing set. 

4. Experiments and results 

4.1. Datasets and evaluation metrics 

In order to evaluate our methods, this paper first conducted comparative experiments between 
SVM-RFE(C) and SVM-RFE on UCI benchmark database, Wisconsin Diagnostic Breast Cancer 
(called as WDBC) [12].This dataset consists of 569 pathological samples and 30 features. 

Then, a series of experiments were carried out via a dataset (called OvaryPAT) including 169 PAT 
data  from 19 ex vivo ovaries , which  was obtained with Photoacoustic imaging system reported in 
[1]. 27 features, which were summarized in Table 1, were extracted with the principle similar to that 
described in [1, 13]. In this data set, 112 are from malignant ovarian tissues and 57 from benign ones.  

The two datasets (WDBC and OvaryPAT) were divided randomly into training set (about 2/3 of all 
used samples) and testing set. Furthermore, as mentioned in section 1, five common metrics [14, 15]: 
accuracy (Acc), sensitivity (Se), specificity (Sp), positive predict value (PPV) and negative predict 
value (NPV) were used to evaluate the performance of different SVM classifiers. Moreover, ROC  

 
Table 1 

Distribution and ranking of 27 features on OvaryPAT (the selected features by SVM-RFE(C) at φ=0.6 were in bold) 

Feature category Feature index Ranking in descending order of significance 

(I) Statistical parameters of PAT image and its 
envelope data 

1-7 10, 9, 13, 23,12, 26, 24, 8, 7, 25, 11, 21, 18, 
20, 27, 19, 
4, 17, 3, 16, 14, 2, 15, 6, 1, 22, 5 (II) Peak outputs of 3spatial filters (for malignant 

template, normal template resp.) 
8-13 

(III) Texture features of PAT image 14-23 
(IV) Spectral parameters of PAT beams 24-27 
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curves and AUC [15] were calculated to further quantify the proposed algorithm. 

4.2. Feature selection and parameter estimation 

To verify the effectiveness and feasibility of the proposed algorithm, all features are ranked firstly 
by SVM-RFE, and then the relationship between the support vector count and the number of selected 
features is observed to determine the best number of features for SVM-RFE. Finally a suitable value 
of φ is decided for SVM-RFE(C) to acquire a similar size feature subset.  

The procedure above would be conducted on both WDBC and OvaryPAT. Table 1 listed the 
ranking results of all features on OvaryPAT using SVM-RFE. Then the curves of support vector 
count with respect to feature number on both datasets were generated respectively, shown in Figure 2. 
And the first minimums of the two curves were also marked with purple ‘*’. Evidently, the curves 
decline initially and then fluctuate repeatedly or rise slightly along with the increase of features. As 
illustrated in Section 3.1, a lower support vector count means a smaller classification error, thus one 
could conclude the best feature number from the curves. Consequently, the top 14 features on WDBC 
and 8 features on OvaryPAT were obtained by SVM-RFE respectively. 

Furthermore, the number of features that might be identified as redundancy by SVM-RFE(C) was 
collected in Figure 3. On WDBC, the number of 14, exactly coincides with the numbers at asterisk in 
Figure 2, is generated for the non-redundant features at φ =0.8. Thus the 14 were selected as the 
number for uncorrelated features. On OvaryPAT, however, the number of non-redundant features is 
always larger than 8 when φ varied from 0.4 to 0.9. Furthermore, all of the 11 selected non-redundant 
features at φ =0.6 were listed in Table 1. Obviously, some of them seemed to be at the back in the 
ranking list of significance. Thus, a tradeoff between significance and redundancy was decided. With 
the golden section ratio 0.618 for φ, the top 8 non-redundant features were finnally selected.  

Under the feature subsets obtained by the two algorithms, the corresponding SVM parameters were 
estimated. And for the two subsets obtained by SVM-RFE(C), the best (σ, C) were logσ =0.5, 
logC=1.5 on WDBC and logσ =0, logC=1 on OvaryPAT, repspectively.  

4.3. Comparison and analysis  

From section 4.2, different SVM classifiers obtained by RFE and RFE(C) respectively were built on 
two datasets. The ROC curves of SVMs were illustrated in Figure 4, and Table 2 listed the test 
performance as well as the AUC value of different SVMs trained with feature subsets over each 
dataset. The performance of SVM built on every full feature set was also derived for comparison. 

In Table 2, SVM-RFE(C) outperforms SVM-RFE in kinds of aspects. Firstly, the SVMs generated 
 

   
Fig. 2. The support vector count versus 
the number of features after ranking. 

Fig. 3. Number of features might be 
filtered with different values of φ. 

Fig. 4. ROC curves of feature subsets 
obtained by two methods on datasets. 
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Table 2  

Comparison results of different feature selection methods on WDBC and OvaryPAT 

Data Methods Size Acc (%) Se (%) Sp (%) PPV (%) NPV (%) AUC 
WDBC  30 94.681 88.889 98.276 96.970 93.443 0.98994 

SVM-RFE(C) 14 97.197 94.286 100.000 100.000 96.067 0.98412 
SVM-RFE 14 92.059 85.758 94.376 92.667 90.063 0.97932 

OvaryPAT  27 89.286 91.892 84.211 91.892 84.211 0.97582 

SVM-RFE(C) 8 94.643 94.595 94.737 97.222 90.000 0.97318 
SVM-RFE 8 92.857 91.892 94.737 97.143 85.714 0.96454 

 

  
Fig. 5. p-values of the selected feature by SVM-RFE(C) and SVM-RFE on WDBC and OvaryPAT. The index of each 
selected feature was marked below each bar.  

 
by SVM-RFE(C) achieve the best accuracy of 97.197% and 94.643% on two datasets, respectively, 
which outstandingly improves the classification performance of the full feature set. Besides, the 
sensitivity and specificity of SVM classifier constructed by SVM-RFE(C) on OvaryPAT also touched 
94.595% and 94.737% respectively, showing a rather high performance. Furthermore, the SVMs 
constructed using SVM-RFE(C) held larger AUC values than that obtainted using SVM-RFE. This 
also suggested an improvement of robustness in constructing SVM classifiers with SVM-RFE(C). 

The superiority of SVM-RFE(C) was also confirmed by the following statistical analysis. On each 
dataset, the p-values of features selected by SVM-RFE(C) and SVM-RFE were respectively 
calculated with t-tests, shown in Figure 5. Generally, most features selected by SVM-RFE(C) 
achieved relatively high confidence probability to distinguish malignant from benign tissues. On both  
two datasets, the p-values of all features selected by SVM-RFE(C) were lower than 0.05, showing a 
remarkable statistical significance for differentiating malignant from benign samples. On the contrary, 
some of features picked by SVM-RFE produced relative large p-values. These results verified that 
SVM-RFE(C) is more reliable and practical than SVM-RFE does from a statistical standpoint. 

5. Conclusion 

This study explored an SVM-based automatic recognition algorithm for ovarian cancer diagnosis 
using photoacoustic imaging. The proposed approach named SVM-RFE(C) can automatically tune 
the kernel parameters of a SVM with RBF and the selection of features by adding a correlation filter 
into SVM-RFE.SVM-RFE. Experiments on WDBC confirmed that SVM-RFE(C) achieved better  
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performance and robustness than that of SVM-RFE. The 8-feature SVM classifier obtained by SVM-
RFE(C) exhibited the best accuracy of 94.643% with the highest AUC of 0.97318 on OvaryPAT. The 
conclusions strongly supported that the architecture can fuse the outputs of different classifiers for a 
more specificity and comprehensive output. The successful utilization of the constructed SVM system 
means that it could be used for diagnostic purposes of ovarian tumors using photoacoustic data.  
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