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Abstract. The objective of this study is to build a fuzzy linguistic prediction model (FLPM) for analyzing the actuation 
duration of acute hyperglycemia to sinoatrial node field potential. The field potential was recorded using microelectrode 
arrays (MEA). The experimental data were analyzed using partial least squares (PLS), support vector machine (SVM), back 
propagation neural network (BPNN) and the proposed method. The experimental results showed that the fuzzy linguistic 
prediction model could be adopted for predicting the actuation duration of high glucose to the sinoatrial node field potential. 
Compared with the other aforementioned models, the proposed model had higher prediction accuracy. 
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1. Introduction 

In the biological researches, electrophysiological study is a significant field. A variety of cells such 
as heart cells, brain cells and retinal cells have electrophysiological characteristics. Meanwhile, 
sensors for recording electrophysiological signals progress rapidly. The experimental data have 
increased several times over because of the fast development and extensive application of multiple 
electrodes electrophysiological sensors [1-3]. The traditional data processing method is extracting 
some features artificially and using simple statistics. The method is effective when the quantity of data 
is small. However, when the amount of data is huge, some of the features may be hidden in the data 
and difficult to be found. Moreover, most existing conclusions of the electrophysiological study were 
statistical descriptions of the experimental results. These descriptions could not establish effective 
prediction models. In fact, researchers tend to pay more attention to whether the existing results and 
experiences can be used to evaluate the new experimental data. Therefore, accurate prediction models 
need to be built. So far the most common modeling methods are partial least squares (PLS) [4], 
support vector machine (SVM) [5] and back propagation neural network (BPNN) [6]. These methods 
have been used widely in electrophysiological studies [7-9]. In this paper, a fuzzy linguistic prediction 
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model (FLPM) was used for sinoatrial node field potential analysis in high glucose environment. 
Linguistic prediction [10] can provide the human-readable description for electrophysiological data 
analysis. Fuzzy rules are the if-then statements which are usually adopted for linguistic modeling [11]. 
Sinoatrial node field potential is an important electrophysiological signal. It generates from the 
sinogatrial node and conducts around the heart [12]. Experimental data showed that sinoatrial node 
field potential was highly sensitive to acute hyperglycemia. As time went on, the signals in high 
glucose changed constantly and showed distinct characteristics. We used microelectrode arrays (MEA) 
[13] to record the changes of field potential in acute high glucose at different time points. After that, 
we built prediction models for high glucose duration using FLPM, PLS, SVM and BPNN. We then 
compared the prediction results of the models. The experimental results showed that the fuzzy 
linguistic prediction model had higher prediction accuracy. 

2. Prediction modeling methods 

2.1. PLS 

The output of PLS can be written by Eq. (1): 
 

Y X rβ= +                                                                 (1) 
 

where X is the input, � is a regression coefficient matrix, and r is a bias vector. 
When a small number of principal components are defined by linear combinations of the input 

matrix, the output of PLS could be rewritten as Eq. (2): 
 

Y Tu r= +                                                                   (2) 
 
where vector u is corresponding to the latent variables. The matrix T could be written as Eq. (3): 

 
� � ����	�
��                                                           (3) 

 
In Eq. (3), X is the input. Loading matrix P is influenced by matrix X. Weight loading matrix W can 

indicate the relevance of X and Y. 

2.2. SVM 

The regression model of SVM can be written by Eq. (4): 
 

 � � � ���
 � �                                                          (4) 
 
In Eq. (4), � is a weight coefficients matrix. Nonlinear function ���
 can map the input X into a 

high dimensional space. c is a threshold vector. 
The quadratic programming optimization process is used to find optimal � . If {(��� �� ), …, 

(���� ��),…, (���� ��)} is the training dataset, the optimization problem can be written by Eq. (5): 
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In Eq. (5), C is the penalty parameter, ε is the approximation accuracy, iξ and *

iξ  are the slack 
variables. 

The Lagrange function can be formed as Eq. (6): 
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where 1

iλ , 2
iλ , 3

iλ and 4
iλ are the Lagrange multipliers. 

The final SVM form can be calculated and written as Eq. (7): 
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2.3. BPNN 

The BPNN model has an input layer, an output layer and several hidden layers. The hidden layers 
are used to connect the input and output layers. The hidden layers are usually Sigmoid-type function 
and the number of hidden layers is decided by the characteristics of experimental data and expert 
knowledge. In this study, the field potentials in different high glucose concentrations made up the 
input layer. The high glucose actuation durations made up the output layer. The number of the hidden 
layers was 5. 

2.4. Fuzzy linguistic prediction model 

The rules of the proposed method use the IF-THEN linguistic statement for describing the 
knowledge. The model has an input matrix ���� ��� � ��� and a fuzzy set ���� ��� � �� . m is the 
linguistic terms number. A rule of the model can be expressed by Eq. (8): 
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where ib  and i
jk  are the corresponding parameters respect to the output Y of the model’s  i-th rule. 

The membership function can be expressed by the Gaussian function. The '�, which is the i-th rule’s 
firing strength, can be written and calculated by Eq. (9): 
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In Eq. (9), (�) is the standard deviation, ��) is the expectation. * # {1, 2, …, N}, + # {1, 2, …, n}. 
The parameters can be estimated by Eq. (10): 
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For a new input 1 2[ ', ',..., ']nx x x , the prediction output can be written and calculated by Eq. (11): 
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3. Materials and experimental design 

3.1. Animals 

Male C57/BL6J mice which were fed standard diets and water were chosen for the experiments. The 
mice were 8-12 weeks old and weighed 20-25g. The ambient temperature was 21°C±2°C. The 
experimental protocols were approved by the Animal Experimentation Ethics Committee (AEEC) and 
were performed according to the Animal Experimentation Guidelines (AEG) of the Xi’an Jiaotong 
University. 

3.2. Introduction of the recording instruments 

The multi-electrode device 64 (MED64) recording and analysis system (Alpha Med Science, 
Panasonic, Japan) was used to record and analyze the experimental data. The system comprised an 
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MED64 amplifier, an MED64 connector, an MED64 controller, a data processing computer, an 
inverted microscope, a perfusion cap, a peristaltic pump and a measuring electrode. The electrode had 
64 recording channels with the square 8,8 arrangement. The electrode spacing was 300�-m. Each 
electrode was square and the length of a side was 50�-m. 

3.3. Design of experiments 

The Langendorff system [14] and Tyrode’s solution [15] was used for the mouse heart in vitro 
perfusion. The sinoatrial node is located on the right atrium [16, 17]. Tissue from this area of the heart 
was cut off using a vibration cutting machine (Vibratome 1000 Plus, Vibratome Company, USA). The 
thickness of the section was set as 1mm. The sample was then directly put into the MEA electrode for 
recording. During the entire recording process, Tyrode’s solution with 5% carbon dioxide and 95% 
oxygen was provided continuously with a flowing rate of 5 ml/min. The biotic sample size of each 
group was 8. First, we recorded the field potentials of the control sample. After that, high glucose 
solutions (experimental group) and mannitol solutions (isotonic control group) were fed into the 
sample at 0th minute. The concentrations were 30 mM, 40 mM and 50 mM respectively and the 
duration was 60 minutes.  

Data were recorded every five minutes beginning from the 0th minute. The sampling frequency was 
20 kHz. Each recording was taken for 30 seconds. The results showed that the field potential was not 
sensitive to high osmotic pressure. 

Fast Fourier Transform (FFT) was used to convert the field potential signals from the time domain 
to the frequency domain. The most power of the frequency domain signals focused at 0-50 Hz. Data 
from this section were selected as the experimental data. The predict duration was from the 15th 
minute to the 45minute since the sinoatrial node field potential evidently changed in this range. The 
three concentrations correspond to three dataset. Each dataset contained 426 samples. The shutter 
grouping strategy was used to divide every dataset into two sets. One was calibration set and the other 
was validation set [18]. Every two elements of the datasets were selected into the two sets respectively. 
The calibration set was used for setting up the prediction model. The validation set was used for 
estimating the predictive abilities of the models. 

4. Results and discussion 

In this research, PLS, SVM, BPNN and the proposed method FLPM were used for predicting the 
actuation duration of high glucose in the three different concentrations. Table 1 showed the predictive 
abilities of the four methods in 30mM high glucose environment. RMSEP and RMSECV of the 
proposed method were lower than that of the others. .!

�, ./
� and ./0

�  of the proposed method were 
higher than those of the others. It showed that the FLPM had the highest predictive ability and the 
lowest discrete degree. Table 2 showed the predictive abilities of the four methods in 40 mM high 
glucose environment. In the same way, the predictive result of the proposed method was the best. 
Table 3 showed the predictive abilities of the four methods in 50 mM high glucose environment. The 
RMSECV of the proposed method was slightly higher than the one of SVM and BPNN, and the .!

�, 
./

�  and ./0
�  of the proposed method was slightly lower than those of the SVM and BPNN. 

Nevertheless, the RMSEP of the proposed method was the lowest. 
In summary, the results in the tables verified that the fuzzy linguistic prediction model could be 

adopted for predicting the actuation duration of high glucose to the sinoatrial node field potential. The 
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method had higher prediction accuracy. 

5. Conclusion 

In this paper, a fuzzy linguistic prediction model was used for predicting the actuation duration of 
high glucose to the sinoatrial node field potential. The linguistic rules of the method were human-
readable and realized the actuation duration prediction successfully. Compared with classical PLS, 
SVM and BPNN, the proposed method had higher prediction accuracy and lower discrete degree. 

 
Table 1 

The predictive results for the actuation duration in 30 mM high glucose environment 

 RMSEP RMSECV .!
� ./

� ./0
�  

PLS 5.3543 3.4171 0.4837 0.7021 0.4567 
SVM 3.6961 3.0067 0.5993 0.8932 0.9662 
BPNN 3.5751 5.4177 0.7147 0.8455 0.7278 
FLPM 2.4302 1.5810 0.8207 0.9195 0.9899 

Note: RMSEP: root-mean-squared error of prediction. 
RMSECV: root-mean-square error of cross validation. 

          12
� : squared correlation coefficient of prediction. 

          13
�: squared correlation coefficient of calibration. 

             134
� : squared correlation coefficient of cross validation. 

 
Table 2 

The predictive results for the actuation duration in 40 mM high glucose environment 

 RMSEP RMSECV .!
� ./

� ./0
�  

PLS 7.5069 7.9670 0.0292 0.0121 0.0063 
SVM 4.9835 3.0381 0.2163 0.8797 0.6097 
BPNN 5.4656 3.1364 0.2664 0.6913 0.4879 
FLPM 2.5291 1.5678 0.8026 0.9183 0.9894 

Note: RMSEP: root-mean-squared error of prediction. 
RMSECV: root-mean-square error of cross validation. 

          .!
�: squared correlation coefficient of prediction. 

          ./
�: squared correlation coefficient of calibration. 

                         ./0
� : squared correlation coefficient of cross validation. 

 
Table 3 

The predictive results for the actuation duration in 50 mM high glucose environment 

 RMSEP RMSECV .!
� ./

� ./0
�  

PLS 6.6942 5.9300 0.6570 0.7143 0.6480 
SVM 5.4741 3.0498 0.9000 0.9028 0.7838 
BPNN 3.9859 3.0328 0.8447 0.9598 0.8040 
FLPM 3.9596 3.2346 0.8422 0.8962 0.7081 

Note: RMSEP: root-mean-squared error of prediction. 
RMSECV: root-mean-square error of cross validation. 

          .!
�: squared correlation coefficient of prediction. 

          ./
�: squared correlation coefficient of calibration. 

                         ./0
� : squared correlation coefficient of cross validation. 
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