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Abstract. Applications of neural machine interfaces have received increased attention during the last decades. It is crucial to 
realize the continuous control of prosthetic devices based on biological signals. In order to deal with the highly nonlinear 
relationship between the Electromyography (EMG) signals and motion, this study presents a novel decoding approach which 
employs multi-output support vector regression (M-SVR). The proposed M-SVR is compared with other popular regression 
techniques and the experimental results demonstrate the effectiveness of M-SVR in hand continuous movement trajectory 
reconstruction. 
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1. Introduction 

Neural machine interfaces (NMIs) have the potential to translate neural activity into control signals 
for the operation of prosthetic devices or computers, providing disabled people a better interaction 
with their surroundings. Most of the NMIs have focused on decoding the movement kinematics to 
reconstruct its trajectory [1]. Researchers have demonstrated that neural recordings in motor cortical 
areas and the posterior parietal cortex can provide plentiful signals to control the continuous 
movement of robotic arms [2-4] and computer cursors [5, 6]. Nevertheless, this signal source is 
practical for use in only a small number of patients due to its invasive nature [4]. Surface 
electromyography (EMG) contains rich information that can be used to control the prosthetic devices 
in a noninvasive manner. Previous studies have mainly focused on the realization of discrete 
myoelectric control with pattern recognition strategies, such as the classes of limb movement [7, 8] 
and the detection of grasp force and posture [9]. However, the number of classes is limited and the 
motion lacks smoothness [10]. It is an urgent task to decode hand movement trajectory from EMG to 
realize the continuous myoelectric control of prosthetic devices. 

The main challenge in EMG-based continuous control is how to deal with the highly nonlinear 
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relationship between the EMG signals and motion [11]. There have been some efforts devoted to 
mapping myoelectric activity to hand kinematic parameters, but the performance of the decoding 
algorithm remains limited. One approach is using recursive Bayesian estimation methods to predict the 
intended state from EMG signals, where the Kalman Filter (KF) has often been employed [12, 13]. 
Unfortunately, due to the linearity of the KF, it is restricted with regard to nonlinear problems. 
Another approach of decoding arm kinematic parameters is machine learning. Human hand movement 
trajectory has been reconstructed from EMG signals using an artificial neural network (ANN) [14], 
realizing single joint isometric motions only in the horizontal plane. 

Support vector regression (SVR) has shown a better performance than other methods, because its 
computational complexity does not depend on the dimensionality of the input space and it can avoid 
multiple local extreme values [15]. Despite its potential advantages, the conventional formulation of 
SVR only have one-dimensional output, which cannot deal with multidimensional regression 
estimation problem such as hand movement trajectory decoding. The usual approach treats the 
different outputs separately in the multi-output case [16], which ignores the cross relations among 
output parameters and increases the algorithm complexity and computing time. To enhance the 
performance of traditional SVR, Pérez-Cruz, et al. [17] proposed a multi-dimensional regression tool 
named M-SVR, capable of obtaining better predictions than using a SVR for each dimension. M-SVR 
has become a powerful tool for multiple-output nonlinear channel estimation [18] and biophysical 
parameter evaluation from remote sensing images [19]. 

The aim of this study was to investigate an effective method for mapping EMG activity to motion. 
Considering the outstanding ability of M-SVR in dealing with multi-dimensional regression, we 
studied the applicability of M-SVR in the context of continuous movement trajectory decoding and 
compared it with other machine learning methods including SVR and ANN.  

2. Materials and methods 

2.1. Data acquisition 

To validate the effectiveness of the proposed algorithm for decoding hand movement, we recorded 
EMG signals and hand kinematic parameters simultaneously. Two subjects voluntarily joined this 
study after being informed of the experimental purpose and procedure. They performed unconstrained 
3-D right hand movements with variable speed in a wide range of hand workspace, while comfortably 
seated and constrained with lap and shoulder straps. Each movement lasted 10 seconds. After each 
movement session, the subject rested for 20 seconds with the hand resting on his lap. A total of 100 
random movements were performed per subject, generating 200 results in total. EMG signals were 
recorded from the deltoid (anterior), deltoid (posterior), deltoid (middle), biceps brachii and triceps 
brachii. Hand movements were simultaneously tracked at 25 Hz using a data glove.  

2.2. Features extraction 

Generally, EMG signals are characterized by time domain or frequency domain features. As 
features in the frequency domain are mainly used to study motor unit recruitment and muscle fatigue 
[20], only time domain features are analyzed in this paper. To evaluate the performance of the 
decoding model, the combination of an autoregressive (AR) model coefficient and the root mean 
square (RMS) amplitude were prepared as a feature set. These features have been shown to be an 
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effective signal representation of EMG signals [21]. 
Autoregressive (AR) model is a prediction model that characterizes EMG signals as a linear 

autoregressive time series. It is basically defined as: 
 

                                                                   (1) 
 
where  is the autoregressive coefficients,  represents the order of the AR model,  is the residual 
white noise error term. 

Root mean square (RMS) is one of the most popular features in the analysis of EMG signals. It is 
modeled as an amplitude modulated Gaussian random process which relates to constant force and non-
fatiguing contraction. The RMS can be expressed as: 

 

                                                                       (2) 

 
where  denotes the ith sample, N is the number of samples. 

Based on the analysis above, a four-order AR model combined with RMS was used as a feature set 
for EMG decoding. The feature set was 26 dimensional vectors. We extracted the EMG features from 
a 160 ms analysis window, with the analysis window incremented by 40 ms. 

2.3. M-SVR 

To decode the hand movement from EMG signals, we established a support vector regression model. 
Considering the output kinematic parameters are multidimensional, the M-SVR was applied here. 
Generally, given a set of independent samples denoted as , where  is input vector with 
dimensionality ,  is observable output with dimensionality . M-SVR solves the multi-dimensional 
regression estimation problem by finding the mapping between  and . In our case, the input vector 
was the 26 dimensional EMG feature vector and the output vector was the 3 dimensional hand 
movement parameters. M-SVR is formulated as minimization of the following function: 

 
                                                          (3) 

 
where 
 

 
 

 

 
 
The function  represents the nonlinear mapping from the primal space to high dimension feature 

space, C is a positive real regularized parameter which determines the trade-off between the 
regularization and the error reduction term. The ε-insensitive quadratic loss function  is defined 
as: 

P. Tian et al. / Application of multi-output support vector regression on EMGs to decode hand continuous movement trajectory S577



                                                               (4) 

 
As Eq. (1) cannot be solved straightforward, Sanchez-Fernandez, et al. [19] proposed an iterative 

reweighted least squares (IRWLS) procedure to obtain the desired solution. By using a first-order 
Taylor expansion of lost function , the objective of Eq. (1) will be approximated by the following 
equation [20]: 

 
                                               (5) 

 
where 
 

                                                              (6) 

 
The constant term (CT) does not depend on W and b, the superscript k denotes the number of 

iterations. The best solution of minimization of Eq. (3) in feature space can be expressed as 
, so the target of M-SVR is transformed into finding the best  and b. The IRWLS 

procedure can be summarized in the following steps. 
1) Initialization: set , ,  and compute  and . 
2) Compute the solution  and  according to the following equation: 
 

,                                                      (7) 

 
where , , and K is the kernel matrix. Define the corresponding 
descending direction: 
 

                                                                    (8) 

 
3) Use a backtracking algorithm to compute  and , and further obtain  and . Go 

back to Step 2 until convergence. 

3. Results 

To evaluate the performance of M-SVR on decoding hand movement trajectory, we examined and 
compared a series of regression techniques, including M-SVR model, SVR with Radial basic function 
(RBF) kernel and Dynamic Neural Network (DNN) with twenty hidden neurons. As described in 
Section 2.1, we performed 200 unconstrained movement trails in total. Here we took the first 150 trials 
as the training data to construct the decoding model. This was followed by the decoding of EMG 
signals to estimate the hand movement trajectory with the remaining testing part. All the results were 
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smoothed by a Savitzky-Golay filter with the span of 0.1, because the motion of hand is smooth. The 
decoding experiments are implemented on a PC platform with Intel Core i5-3550 3.30 GHz CPU, 8 
GB RAM, Windows 7 and Matlab development environment. 

3.1. Evaluation criteria 

This paper utilized two criteria to evaluate the accuracy of the estimated hand movement trajectory, 
including the correlation coefficient (CC) and the root-mean-square error (RMSE). The correlation 
coefficient represents essentially the similarity between the reconstructed and the actual trajectory. If 
the estimated and true trajectory matches perfectly, CC = 1. The root mean square error describes the 
deviation between the actual and the predicted values. We also studied the algorithm efficiency by 
comparing the computing time. The definitions of these criteria for decoding performance evaluation 
are described as: 

 
                                                              (9) 

                                                              (10) 
 
where  and  denote the mean values of the observations  and the estimations   respectively and  
is the sample size. 

3.2. Assessment results 

In this section, we compared the decoding performance of three regression methods. First, Figure 1 
describes the -, -, and -axes movement trajectory on 10-s testing data achieved by multi-output 
support vector regression (M-SVR), dynamic neural network (DNN) and support vector regression 
(SVR). The actual movement trajectory was compared with these three estimated trajectories. Second, 
Figure 2 shows Root-mean-square error (RMSE) values within the corresponding 10-s experiment 
interval. The RMSE of the reconstructed hand movement was calculated every one second for the 10-s 
testing data to analyze the variation trend of accuracy with the passage of time. Finally, the values of 
correlation coefficient (CC) and root-mean-square error (RMSE) for 40 testing trials with the M-SVR, 
DNN and SVR were computed respectively. We also calculated the total time of the 150 training trials 
and 40 testing trials. Table 1 shows the average values of CC, RMSE for 40 testing trials and total 
time for 200 training and testing trials using M-SVR, DNN and SVR, where CCx, CCy and CCz is 

 

 
Fig. 1. Actual and estimated hand trajectory along the x-, y-, and z-axes for a 10-s period. 
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Fig. 2. Root-mean-square error (RMSE) values for the estimated hand position with respect to time using the three models. 
 

Table 1 

The average values of CC and RMSE for 40 testing trials and total time for 200 training and testing trials 

Decoding 
model 

CCx CCy CCz RMSEx RMSEy RMSEz Time (s) 

M-SVR 0.9388 0.9505 0.9297 0.0478 0.0838 0.0607 8.0357 
DNN 0.7892 0.6437 0.6444 0.0959 0.2202 0.1341 222.8571 
SVR 0.7983 0.6831 0.7249 0.0906 0.2900 0.1266 17.57 

 
the correlation coefficient along -, -, and -axes, RMSEx, RMSEy and RMSEz is the root-mean-
square error along -, -, and -axes. 

4. Discussion 

From Figure 1, we observed that M-SVR follows the dynamics more accurately and outperforms the 
other regression methods on estimating the hand trajectory. In contrast, both DNN and SVR predict 
the hand movement trajectory inaccurately. Specifically, DNN was easy to obtain partial optimal 
solutions and SVR was unsteady to decode the motion. Figure 2 shows the fluctuation of RMSE 
values with respect to time. As it can be seen, the RMSE values of M-SVR are less than the others for 
most of the time. The M-SVR model is able to estimate the user’s motion robustly, while the other two 
models fluctuate with respect to time 

Table 1 summarizes the decoding performance for all the training and testing trails. The average 
value of CC between M-SVR model and actual trajectory is close to 1, which means that the M-SVR 
model decodes hand movement from EMG robustly. Considering that the CC of M-SVR model is 
greater than other models and the RMSE value is less, M-SVR performs better than the other methods 
in accuracy on estimating hand motion. With regard to total time, DNN model requires a lot more 
training time than M-SVR and SVR. Furthermore, the M-SVR model only takes a small amount of 
run-time in comparison to the standard SVR approach, because M-SVR outputs the 3-axes movement 
parameters simultaneously while the standard SVR has to run three times to get these parameters. 
Thus M-SVR is the most efficient method.  

From the above analysis of the results, it can be concluded that the M-SVR model is better than the 
DNN and SVR for all performance measures. It outperforms the other methods in both accuracy and 
efficiency and is a promising technique for trajectory decoding of EMG signals. 

5. Conclusion 
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In this paper, M-SVR has been applied to decode hand continuous movement trajectory using EMG 
signals from the muscles of the upper limb. EMG signals from 5 muscles have been used to estimate 
the hand position during unconstrained motion in the 3-D space. The M-SVR turned out to be an 
accurate and efficient method and outperformed other popular algorithms. Different from traditional 
discrete myoelectric pattern recognition strategies, we realize the continuous trajectory decoding using 
only EMG signals. However, the method described in this paper is probably not directly usable for 
clinical application. The effectiveness of M-SVR for muscular-disorder people will be investigated in 
the future. Although this study focuses on the EMG signals decoding of normal people, it also has 
clinical implications. The realization of continuous trajectory decoding is an obligatory background 
for reconstructing movement function of disabled people. 
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