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Abstract. How to improve placement accuracy of needle insertion into liver tissue is of paramount interest to physicians. A 
robot-assisted system was developed to experimentally demonstrate its advantages in needle insertion surgeries. Experiments 
of needle insertion into porcine liver tissue were performed with conic tip needle (diameter 8 mm) and bevel tip needle 
(diameter 1.5 mm) in this study. Manual operation was designed to compare the performance of the presented robot-assisted 
system. The real-time force curves show outstanding advantages of robot-assisted operation in improving the controllability 
and stability of needle insertion process by comparing manual operation. The statistics of maximum force and average force 
further demonstrates robot-assisted operation causes less oscillation. The difference of liver deformation created by manual 
operation and robot-assisted operation is very low, 1 mm for average deformation and 2 mm for maximum deformation. To 
conclude, the presented robot-assisted system can improve placement accuracy of needle by stably control insertion process. 

Keywords: Robot-assisted system, needle insertion, manual operation, insertion force 

1. Introduction 

Liver is the most metabolically complex organ and performs an estimated 500 functions [1]. 
Currently, liver disease across the world is wide-spread because of parasitic and other diseases [2, 3]. 
Meanwhile, it is the most frequently injured abdominal organ due to injuries generally caused by 
motor vehicle accidents and falls from heights, which result in rapid decelerations [4, 5]. Therefore, 
many modern clinical procedures require insertion of needles into soft tissues. One of the main 
challenges related to needle insertion is the accurate placement of the needle within the lesion because 
the liver is subject to respiratory motion [6]. Therefore, needle insertion into liver requires advanced 
skills to make a plan for insertion position and angle taking into account of organ deformation [7].  

Mechanical characterization of liver tissue can be highly beneficial in the management of liver 
diseases and injuries [8, 9]. The experimental data of in vivo mechanical behavior of human liver 
allow a quantitative analysis of the relationship between mechanical response and modifications of 
tissues micro-structure [10]. Clinical research has shown that blunt liver injury is associated with  
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Fig. 2. Insertion force curves with bevel tip needle. Fig. 3. Insertion force curves with conic tip needle. 
 

sample. All tests were performed at room temperature, and the statistic data were taken based on ten 
tests with the same needle insertion operations. The sample was immersed in physiological saline to 
prevent drying before the experiment.  

3. Results 

3.1. Comparison of insertion process 

The liver insertion processes of manual and robot-assisted operation were compared by recording 
real-time force. Insertion force-time curves created with bevel tip needle and conic tip needle were 
given in Figures 2 and 3. With bevel tip needle, the maximum insertion force is 1.88 N for manual 
operation and 1.65 N for robot-assisted operation, it is 4.85 N and 4.22 N respectively with the conic 
tip needle. From the above force values, the robot-assisted operation did not affect the insertion 
process from the point of view of maximum force and average force, instead, it significantly smoothed 
the real-time force curves obtained with both bevel tip needle and conic tip needle. Moreover, once the 
insertion started, the insertion force rapidly increased before the liver was punctured through in 
manual and robot-assisted operation. The statistics shown in Figure 4 indicates the difference between 
maximum force and average force with conic tip needle is 1.1 N for robot-assisted operation and 1.9 N 
for manual operation, which further demonstrates robot-assisted operation causes less oscillation.  

 

 
Fig. 4. Statistics of liver insertion force. Fig. 5. Insertion force vs. depth under robot-assisted 

operation. 
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Fig. 6. Statistics of liver deformation. 
 
The insertion depth of robot-assisted operation was calculated to investigate the relation between 

insertion force and depth. In our study, the insertion operations were implemented with a depth of 
6.5±0.5 cm. In Figure 5, the force versus deformation reveals one primary puncture and subsequent 
internal punctures. Before the peak (Peak 1 and Peak 2) point, the main puncture event is designated 
by a peak in force after a steady rise, followed by a sharp decrease. 

3.2. Analysis of liver deformation 

The deformation of liver sample during needle insertion was investigated in this study. Statistics of 
liver deformation in manual operation (see Figure 6(a)) shows the maximum deformation is 18 mm for 
conic tip needle and 14.5 mm for bevel tip needle, and the average deformation is 13 mm for conic tip 
needle and 9 mm for bevel tip needle. The deformation created by conic tip needle is around 45% 
larger than bevel tip needle because of the larger diameter. Comparing Figure 6(a) with Figure 6(b), 
the difference of liver deformation created by manual operation and robot-assisted operation is very 
low, 1 mm for average deformation and 2 mm for maximum deformation.  

4. Discussion 

The force data collected is a summation of stiffness, friction, and cutting forces. The stiffness force 
occurs before puncture of the capsule, and the friction and cutting forces occur after this main 
puncture. Cutting forces include the plastic deformation from the act of cutting as well as the force 
resulting from tissue stiffness at the tip of the needle. Likewise, friction force is also a function of the 
internal stiffness of the tissue [14]. From Figures 2 and 3, the steady rise of insertion force is mainly 
caused by stiffness, after the point Peak 1 and peak 2 appear, the insertion force mainly come from 
friction and cutting. Meanwhile, the insertion force varies with the needle diameter, and the bigger 
diameter causes the increase of insertion force. As the needle diameter increases, the more liver tissue 
is displaced and compressed in the vicinity of the needle. This increases the forces normal to the 
surface of the needle, leading to higher friction forces.  

Comparing the force curves shown in Figures 2 and 3, the insertion process of robot-assisted 
operation is much more stable than manual operation as the force oscillation from robot-assisted 
operation is much smaller than manual operation. The force oscillation may cause deformation of soft 
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tissue and displacement of insertion site. Therefore, it can explain the reason that robot-assisted system 
significantly improves the controllability and stability of needle during insertion into liver. Moreover, 
combining image guide technology with robotic operation, it can greatly reduce the cost and time 
spent on training surgeons due to the requirements of high-level operation skills. The force oscillation 
may cause deformation of soft tissue and displacement of insertion site, especially when the insertion 
speed is low, which were observed in manual experiments. To avoid this situation, a relative high 
speed was defined in robot-assisted system. Due to the liver functions to filter and process blood, it 
contains a substantial number of arteries and veins, which could explain the peaks following peak 1 
and 2 shown in Figure 5. The main puncture event is designated by a peak in force after a steady rise, 
followed by a sharp decrease. Subsequent variations in force are due to friction, cutting forces, and 
internal stiffness, as well as collisions with and puncture of interior structures [14].  

The bending of bevel tip needle was investigated in our experiments. Allison M. Okamura [14] 
verified the bending by the X-Ray images and found that the bevel tip needles lead to more needle 
bending. From their results, increasing needle diameter generally increases the insertion forces but 
reduces needle bending. From the observation in our experiments, the bending of bevel tip needle 
shows strict accordance with the state of the arts. By discussing the deformation of liver tissue, it was 
found that conic tip needle created 45% larger deformation than bevel tip needle. Although the shape 
of needle may cause difference of soft tissue deformation [15], in this paper, it was not considered 
compared with the influence from the needle diameter. Quantitative evaluations of 5 MRI and 5 CT 
image pairs show that the liver moves rigidly 7.2 (±4.2) mm on average, while the remaining non-rigid 
deformations range from 1.4–3 mm [16]. Compared with the deformation presented in the literatures, 
estimated deformation given in Figure 6 is reasonable and acceptable. The difference of liver 
deformation caused by manual operation and robot-assisted operation is under 2 mm in our tests. 
Therefore, the manual operation mainly affects the insertion process on insertion force but not on liver 
deformation.  

5. Conclusion 

A robot-assisted system was developed to improve placement accuracy of needle insertion. 
Experiments of needle insertion into liver tissue were performed with two kinds of needles, conic tip 
needle (diameter 8 mm) and bevel tip needle (diameter 1.5 mm). Manual operation was designed to 
compare the performance of the presented system. The recorded insertion force varies with the needle 
diameter, and the bigger diameter causes the increase of insertion force. Either the maximum or 
average deformation of liver tissue did not show much difference under manual or robot-assisted 
operation. To conclude, the presented robot-assisted system shows outstanding advantages in 
improving the controllability and stability during needle insertion into liver by comparing manual 
operation. In liver surgeries, the skills and experience are critical for surgeons to choose the correct 
site and control insertion force. The robot-assisted system can greatly reduce the cost and time spent 
on training surgeons. This study provides comparative demonstration of the advantages to develop 
robot-assisted needle insertion system. 
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