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Abstract. Polyadenylation [poly(A)] of mRNA is a critical step during gene expression, which plays an important role in the 
termination of transcription. Prediction of poly(A) sites can help identify 3’ ends of genes and improve genome annotation. 
Due to the limited knowledge of poly(A) signals in plants, predictive modeling of poly(A) sites in agricultural crops remains 
challenging. Recent studies have uncovered widespread occurrences of alternative poly(A) (APA) sites in intron and coding 
sequence (CDS), whereas the study on the prediction of these APA sites is scarce. In this study, four feature representation 
methods, involving a position weight matrix, the k-gram frequency, core hexamers, and a transition matrix, were adopted to 
characterize poly(A) signals surrounding APA sites. The classification model was built to predict each group of APA sites. 
Experimental results showed that this model was effective in the identification of APA sites located in different genomic 
regions, with a compromise between sensitivity and specificity higher than 87%. Compared with previous model PASS rice, 
accuracies for the prediction of APA sites in 3’-UTR, intron and CDS were enhanced by 5%, 7%, and 27%, respectively. 
This model will contribute to genetic engineering by enabling researchers to control poly(A) site selection. 
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1. Introduction 

mRNA polyadenylation is a critical cellular process during gene expression which adds poly(A) 
tails to mature mRNAs [1]. Polyadenylation has been shown to be associated with several human dis-
eases such as breast cancer [2]. The poly(A) site marks the end of the mature mRNA, which can be 
used to identify genes and define gene boundaries. Therefore, prediction of poly(A) sites gives insights 
into gene structures and improve genome annotation. To date, a number of approaches have been pro-
posed for predicting poly(A) sites in yeast, human, etc. An early approach by Graber and coworkers 
used a hidden Markov model (HMM) to predict poly(A) sites in yeast [3]. Cheng et al. used a support 
vector machine (SVM) to predict human poly(A) sites [4]. Akhtar et al. developed POLYAR, which 
classified poly(A) sites into three groups containing different forms of poly(A) signal and predicted 
poly(A) sites in each group [5]. In addition, several attempts have also been made for the prediction of 
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poly(A) sites in plants. Ji et al. proposed the generalized HMM to prediction poly(A) sites in Arabi-
dopsis [6,7]. Classification models using Bayesian network and combined classifiers were also em-
ployed for poly(A) site prediction in Arabidopsis and Chlamydomonas reinhardtii, respectively [8–10]. 
The limited knowledge of poly(A) signals in plants makes it much more challenging for predicting 
plant poly(A) sites. Moreover, recent studies have uncovered widespread occurrences of alternative 
poly(A) (APA) sites in intron and coding sequence (CDS) [11,12]. Unfortunately, these types of APA 
sites were considered as control data for many identification methods [7,9,10], which would definitely 
affect the prediction accuracy. Till now, the study on the prediction of unconventional APA sites in 
intron and CDS is scarce.  

As a model plant, rice is one of the most important crops in the world. Genomic study of rice facili-
tates genomic researches of other grain crops. In this study, several feature representation methods, 
involving a position weight matrix (PWM), the k-gram frequency, core hexamers, and a transition ma-
trix, were employed to characterize represented poly(A) signals surrounding poly(A) sites in 3’-UTR, 
intron, and CDS. Then, the cost-sensitive meta subset evaluator and information gain method [13] 
were adopted to select a relative best feature space. Finally, the classification model integrating several 
classifiers was built to predict constitute poly(A) sites in 3’-UTR and alternative poly(A) sites in in-
tron and CDS. 

2. Materials and methods 

2.1. Datasets 

The rice poly(A) site dataset was from the previous study [12]. Poly(A) sites were divided into three 
groups (3’-UTR, intron, and CDS ) based on their locations. 500, 200, and 100 sequences were ran-
domly selected from group 3’-UTR, intron, and CDS as positive training datasets, respectively. The 
same numbers of sequences were randomly selected from the rest of data to construct the test positive 
dataset. These sequences are all of length 180 nt, with poly(A) site at the 150th position [12,14]. The 
control dataset was from three types of sequences without poly(A) sites, including 5’-UTR, intergenic, 
and randomly generated sequences using the Markov chain (MC) [7]. The control training dataset for 
group 3’-UTR includes 100 5’-UTR, 200 intergenic, and 200 MC sequences. The control training da-
taset for group intron includes 40 5’-UTR, 80 intergenic, and 80 MC sequences. The control training 
dataset for group CDS includes 20 5’-UTR, 40 intergenic, and 40 MC sequences. The control test da-
taset has the same number of sequences as the control training dataset. 

2.2. Representation of sequence features in poly(A) signal regions 

To identify poly(A) sites, it is required to characterize sequence features surrounding poly(A) sites. 
Several poly(A) signal regions have been reported in previous study, including FUE (Far Upstream 
Element, -150~-35 nt from the poly(A) site), NUE (Near Upstream Element, -35~-10 nt from the 
poly(A) site), and CE (Cleavage Element, -15~10 nt around the poly(A) site) [12,14]. The widely used 
motif recognition tool MEME [15] was used to search motifs with length 4 to 8 nt. Identified motifs 
were then visualized as sequence logos (Figure 1). Next, various feature representation methods, in-
cluding a PWM [15], the k-gram frequency, core hexamers, and a transition matrix, were adopted to 
convert these sequence features into numeric vectors (Figure 1). 
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Fig. 1. Motifs discovered and feature representation methods of different groups of poly(A) sites. CS: cleavage site. 

2.3. Position weight matrix 

Each identified motif (Figure 1) can be denoted by a PWM. In this matrix, rows correspond to the 
four nucleotide bases (A, T, C, and G) and columns correspond to the positions of the motif. The value 
of each item in the matrix is the observed frequency (probability) of each possible nucleotide. Given a 
study region, a PWM value can be calculated for each motif in this region. Given a region with length 

 nt and a motif with length  nt, the PWM value at the  position is: 
 

 (1) 

 
where b indexes the bases and is the PWM value of the base at the  position. 

2.4. K-gram frequency 

K-gram is a short oligomer with length k nt. 1, 2 and 3-grams (mononucleotide, dinucleotide, and 
trinucleotide) were considered as candidate patterns. For regions of FUE, NUE, and CE, frequencies 
of 4 mononucleotides, 16 dinucleotides, and 64 trinucleotides were calculated, respectively. The initial 
feature space contains 252 k-grams (k=1, 2, and 3). Attribute selection methods were used to further 
select effective feature subset. The cost-sensitive meta subset evaluator [13] was first employed to se-
lect a candidate subset. Next, each candidate attribute in this subset was measured by information gain 
[13]. Candidate attributes with information gain higher than 0.1 were remained. Finally, 5, 7, and 7 k-
grams were obtained for groups of 3’-UTR, intron, and CDS, respectively.

2.5. Core hexamers 

In plants, NUE is much conserved than other regions, where AATAAA is the most dominant signal 
in this region [14]. Therefore, core hexamers with a high number of occurrences in NUE region were 
selected for more comprehensive characterization of this signal region. Given an NUE region,  hex-
amers appearing in this region were obtained first. Next, corresponding frequencies were calculated. 
Then these frequencies were normalized as values between 0 and 1 Eq. (2). The higher the value is, 
the higher the probability of the occurrence of this hexamer in NUE region is.  

 

 (2) 
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Here,  is the value of the  hexamer, and  denotes values of  hexamers. Finally, hexamers 
with values higher than 0.25 were selected as core hexamers. 

2.6. Transition matrix 

In plants, the composition of nucleotide base of cleavage site (CS) is YA dinucleotide (Y=C or T) 
[14]. To represent this dinucleotide structure in a more effective way, the CS dinucleotide (299-300 nt 
in a 400 nt sequence, or 149-150 in a 180 nt sequence) was represented using transition matrix. To this 
end, the first order Markov chain was employed to calculate the probability transition of CS dinucleo-
tide. The probability of the first base of CS dinucleotide was calculated as , and 
that of the dinucleotide was calculated as . For a given sequence, the tran-
sition probability of CS dinucleotide XY is  

2.7. Model training and testing 

A classification based model was built to predict poly(A) sites. For each group, the corresponding 
positive and control training datasets were used for training. A training model integrating eight clas-
sifiers was built to generate a model file for each group of poly(A) sites. The eight classifiers are Ran-
dom Forests, Bayes Network learning, Naive Bayes classifier, sequential minimal optimization algo-
rithm, AdaBoost M1 method, alternating decision tree, normalized Gaussian radial basis function net-
work, and logistic regression model [10,13]. For a training dataset, eight training models  
were generated using the eight classifiers. Then the respective test dataset was tested using all the 
training models. After testing, two values are generated for each input sequence in the test dataset for 
each training model, denoting the probabilities of the 150th position in this sequence being or not being 
a poly(A) site (true / false). The final true and false probabilities of an input sequence are: 

 

 (3) 

 
where  is the true probability of the  training model,  is the false probability. Then the final true 
probability is normalized between 0 and 1. 

3. Results 

Two widely used assessment criteria were employed to evaluate the prediction performance, sensi-
tivity (Sn) and specificity (Sp). Positive sequences with poly(A) sites were used to calculate Sn. Nega-
tive sequences without any poly(A) site were used to calculate Sp. Similar to previous study [9,10], a 
tolerance was allowed in the evaluation of Sn and Sp. For a given tolerance  nt, if at least one posi-
tion within  of the true poly(A) site is predicted as true, then it is a true positive prediction. If no 
position within  of the false poly(A) site is predicted as true, then it is a true negative prediction. 

Poly(A) sites in 3’-UTR, intron, and CDS were tested using the corresponding model, respectively. 
As shown in Figure 2A, all the three groups show overall high Sn (Sn>90%), indicating the selected 
features and the training models are effective in the prediction of positive sequences. Particularly, for 
CDS poly(A) sites which are lack of dominant AATAAA signal, the performance is still very high, 
suggesting the importance of combining features from multiple signal regions. When no margin is al 
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Fig. 2. Prediction results for each group of poly(A) sites. (A) Sn and Sp as a function of the margin; (B) ROC curves and 
AUC values; (C) average prediction probabilities of the test dataset. 
 
lowed ( ), the Sn of 3’-UTR group is the highest among the three groups, reflecting the location 
of poly(A) sites in 3’-UTR is the most precise. Although the 3’-UTR group shows relatively lower Sn 
profile ( ), Sp of 3’-UTR group is apparently higher than that of intron and CDS, demonstrating 
the effectiveness of features and models for distinguishing true 3’-UTR poly(A) site and the false one. 
With the increase of the margin, Sn values are increased and Sp values are decreased. The choice of a 
margin for assessing the predictions is a trade-off between Sn and Sp. For a margin of 5 or higher, Sn 
values approach 95%, however, Sp values drop below 80%. Therefore, at lower margin, the prediction 
becomes increasingly robust, as the possibility of random occurrences drops. 

ROC (Receiver Operating Characteristic) is a fundamental tool for diagnostic test evaluation. The 
area under the ROC curve (AUC) is a metric of how well a model can distinguish between two groups. 
Based on the Sn and Sp values of each group, the corresponding ROC curve was plotted (Figure 2B). 
Although Sn and Sp profiles among the three groups are distinct, their ROC curves show no difference 
with AUC values all above 0.90. In this study, sequences of length 400 nt with poly(A) site at the 300th 
position were also tested. For each positive and negative dataset of 400 nt sequences, probabilities of 
each positions of all sequences in each dataset were averaged. As shown in Figure 2C, probabilities of 
control datasets are all very small (less than 0.3) and the probability curves are very flat without any 
spike. In contrast, probabilities of positive datasets are much higher and a local spike was observed at 
the position of poly(A) site, indicating the classification model is capable of distinguishing between 
true and false poly(A) sites. The profiles of positive CDS and intron datasets are similar, which may 
due to that both poly(A) sites from CDS and intron are unconventional. Taking together, this result 
demonstrates that the sequence features defined in this study can highlight the poly(A) site region and 
significantly enhance the accuracy of the detection of poly(A) sites.  

PASS and PASS_rice based on GHMM were developed to predict poly(A) sites in Arabidopsis and 
rice in previous studies [6,7,12]. In this study, PASS_rice was adopted to predict the test datasets for 
comparison. It is noteworthy that PASS_rice aims at the prediction of poly(A) sites in 3’-UTR and 
may not be fully suitable for the prediction of poly(A) sites in intron and CDS. However, all the three 
groups of poly(A) sites were tested using PASS_rice for a more comprehensive comparison. As shown 
in Figure 3A, although Sn curves are similar among the three groups, the Sp of CDS is apparently 
lower than that of intron and 3’-UTR, reflecting that PASS_rice is not suitable to be directly applied 
on CDS poly(A) sites. AUC values from PASS_rice are much lower than those from our model (Fig-
ure 3B vs. Figure 2B). Especially for CDS group, the AUC value from PASS_rice is only 0.657, 
which is 36% lower than that from our model. Such a sharp difference of AUC values for CDS group 
between two models may due to that our model enables the specific feature selection, model training  
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Fig. 3. Results from PASS_rice and the comparison between two models. (A) Sn and Sp from PASS_rice method; (B) ROC 
curves and AUC values from PASS_rice; (C) comparison of cross values of Sn and Sp between PASS_rice and our model. 
 
and testing for CDS poly(A) sites, whereas parameters of PASS_rice were trained from 3’-UTR 
poly(A) sites. Cross values of Sn and Sp from these two models were also compared (Figure 3C). 
Compared to PASS_rice, prediction performances of our model for 3’-UTR, intron, and CDS poly(A) 
sites are enhanced by 5%, 6%, and 27%, respectively. Again, these results demonstrate the effective-
ness of our model in the prediction of alternative poly(A) sites from different genomic regions. 

4. Conclusion 

Poly(A) signals in plants are much less conserved than those in mammals, leading to the challenge 
in the prediction of plant poly(A) sites. As data accumulate, there is still no computational method for 
the prediction of APA sites located in intron and CDS. The classification based model developed in 
this study is the first attempt to predict alternative poly(A) sites in rice. Various feature representation 
methods could be employed for the characterization of different poly(A) signals. Different classifiers 
could be adopted for model training and testing. The prediction results demonstrated the efficacy of 
the proposed model. The average prediction performance was enhanced by 5% to 27% compared with 
the previous GHMM-based prediction tool PASS rice (Figure 3C). The flexibility of this model was 
also demonstrated by the high prediction performance of APA sites in intron and CDS.  

Because poly(A) sites define the ends of mature mRNA, the proposed model will be useful in ge-
nome annotation. This model will yield reliable poly(A) site candidates, providing important clues for 
relevant biological studies. In particular, it can be adopted to predict potential poly(A) sites for lowly 
expressed genes that are not normally found using EST experiments, or genes without known poly(A) 
sites. Additionally, this model can also be used to identify unconventional APA sites rather than con-
stitute poly(A) sites in 3'-UTR. APA contributes to the transcriptome diversity, generating isoforms 
with different 3’-ends or coding capacity. Our study of APA sites in rice will provide insights into 
regulatory mechanisms of mRNA polyadenylation and promote the potential use of APA manipulation 
to reduce crop disease. This model will also be useful in genetic engineering by enabling researchers 
to control poly(A) site selection in designing transgenes. 
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