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Abstract. The discrete-time fractional Gaussian noise (DFGN) has been proven to be a regular process. Therefore, an auto-
regressive (AR) model of an infinite order can describe DFGN based on Wold and Kolmogorov theorems. A fast estimation 
algorithm on the Hurst exponent of DFGN or discrete-time fractional Brownian motion (DFBM) has been proposed, but the 
algorithm did not consider the order selection of AR model. Recently, a Hurst exponent estimator based on an AR model 
with six existing methods of order selection has been proposed to raise the accuracy of estimating the Hurst exponent. Alt-
hough the estimation accuracy has been confirmed to be better than the one without order selection, the estimator still re-
quires computing all parameter sets through the Levinson algorithm. In order to lower computational cost, this paper propos-
es an efficient method of order selection, simply called data induction, which uses simulation data to induce an appropriate 
threshold of terminating the Levinson algorithm before computing all parameter sets. Experimental results show that the pro-
posed data-induction method has a competitive advantage over six existing methods of order selection in terms of lowering 
computational cost and raising the accuracy. 
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1. Introduction 

Signals of nature and biology usually exhibit a strong long-term correlation [1–7]. These signals can 
be differentiated by only one indicator, fractal dimension or Hurst exponent, and thus an increasing 
number of researchers in statistical signal processing and biomedical engineering are attracted to these 
areas [8–31]. For example, Lundahl et al. [8] proposed a maximum likelihood estimator to estimate the 
Hurst exponent of fractional Brownian motion (FBM) and further applied it to the texture of the X-ray 
images of bones. Jennane et al. studied the fractal analysis of bone X-ray tomographic microscopy 
projections [17]. Peréz et al. used the estimation of Hurst parameter and fractal dimension to analyze 
the hemogram components [18]. Esgiar et al. used the fractal dimension to separate the normal images 
from the cancerous [19]. Chang et al. applied the fractal dimension to analyze the dynamics and syn-
chronization of rhythms urodynamics of female Wistar rats [21]. Lee et al. used the fractal dimension 
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of a skeletonized cerebral surface to analyze the hemispheric asymmetry [22]. Huang and Lee pro-
posed two feature extraction methods to analyze variations of intensity and texture complexity in re-
gions of interest based on fractal dimension [28]. Lin et al. proposed a set of fractal features to auto-
matically distinguish malignant nodules from benign ones based on the fractional Brownian motion 
model [29]. 

In order to tell the difference among signals, a simple and meaningful indicator of features is essen-
tial, such as Hurst exponent. It is often an effective and efficient way for researchers to model these 
signals in order to estimate the indicator. Of all models suitable for description, FBM [4,5] is best 
known and has been adopted by engineers in the field of statistical signal processing. FBM only con-
tains one parameter, called the Hurst exponent; its value is finite between 0 and 1; most importantly, it 
can characterize a wide range of biomedical and natural signals. Another model is called fractional 
Gaussian noise (FGN), which is simply an increment process of FBM, or we can say FBM is simply 
an accumulation process of FGN. 

For practical applications, data are often acquired by sampling continuous signals. The sampled 
FBM is referred to as discrete-time FBM (DFBM), and the sampled FGN as discrete-time FGN 
(DFGN). The existing methods for estimating the Hurst exponent of DFBM or DFGN include the var-
iance method [1,8,30], box-counting method [10–13], maximum likelihood estimator (MLE) [8], mov-
ing-average (MA) method [15], and autoregressive (AR) method [20].  

The variance method is usually not reliable unless the order of linear regression for estimating the 
Hurst exponent is considered. In order to improve the accuracy and efficiency of the variance method, 
Chang et al. used the autocorrelation function (ACF) to estimate the Hurst exponent and demonstrated 
that 4-point linear regression is almost the best in most cases [30].  

In theory, the MLE is the most accurate, but it requires a large number of repeated matrix operations 
during estimation and thus its computational cost is particularly high. Therefore, the MLE is normally 
not recommended to systems that need quick responses. In order to improve the execution efficiency 
of the MLE, Liu and Chang [14] proposed the MA method for image texture classification, which uses 
the Wold decomposition theorem to decompose DFGN into two uncorrelated processes: a regular pro-
cess and a singular process [32–34]. After calculating the ACFs, the Levinson algorithm [35,36] is 
used to estimate the parameter sets of the AR model and then the algorithm based on the Wold de-
composition theorem [37,38] is utilized to estimate the parameter sets of the MA model.  

Chang and Chang discovered that if DFGN is a regular process, the procedure of transforming the 
AR model into the MA one will be redundant. Based on the fact that the ACFs of DFGN are asymptot-
ic to those of fractionally differenced Gaussian noise [39], Chang and Chang comparatively demon-
strated that the DFGN is indeed a regular process [20]. Thus, AR method, a more accurate and effi-
cient estimator than MA method, was further proposed.  

In theory, an AR model requires an infinite order to describe a regular process, but the given data 
are always finite. Even worse, much larger errors are produced by higher-order estimates of the ACFs. 
Therefore, taking order selection into consideration may be a potential solution to raising the accuracy 
of estimating the Hurst exponent. Based on this intuition, Chang et al. adopted six existing methods of 
order selection to estimate the Hurst exponent, and experimental results showed that the AR methods 
with order selection are more accurate than the ones without order selection [31], but it does not cut 
down computational cost. Therefore, the main objective of the paper is to raise execution efficiency 
while remaining or even raising the accuracy. Through some realizations of DFGN or DFBM, an ap-
propriate threshold for each chosen data size is induced to terminate the Levinson algorithm before 
computing all parameter sets. This efficient method of order selection is simply called data induction. 
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The rest of this paper is organized as follows: Section 2 briefly describes mathematical preliminaries; 
Section 3 introduces the novel idea of data induction for order selection; then Section 4 discusses ex-
perimental results; and finally, Section 5 concludes the paper with some facts. 

2. Mathematical preliminaries 

This section will introduce some related terminologies and notations for the rest of the paper. Be-
cause the Levinson algorithm is important for implementation and comparison, its procedure is com-
pletely provided. The notation ( ){ }R∈ttx ,  is used to denote a continuous-time random process, and 

[ ]{ }Z∈nnx ,  a discrete-time process. 

2.1. FBM and its variants 

FBM is a generalized Brownian motion, first officially proposed by Mandelbrot and Van Ness [1] 
and denoted by random function ( )ω,tBH , where ω  belongs to a sample space Ω , simplified as 

( )tBH . It can be defined as follows: 
 

( ) 00 bBH = ,  
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where H  is the Hurst exponent with a value lying between 0 and 1. When H equals to 0.5, FBM will 
become an ordinary Brownian motion. Because FBM is not a stationary process, i.e., its spectrum is 
time-dependent, its increment process, called FGN and denoted by ( )tBH′ , is often considered. FGN is 
a stationary process, i.e., its spectrum is time-independent, which is expressed as follows: 
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In real applications, the discrete version of FBM, called DFBM, is considered and denoted by 
[ ] ( )sHH nTBnB = , where sT  denotes the sampling time. The discrete version of FGN, called DFGN, is 

denoted by [ ] [ ] [ ]1−−= nBnBnx HHH , whose ACF, [ ]krH , is described as follows: 
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where ( ) ( ) ππ HHHVH cos21−Γ=  [1,9]. The ACF possesses an asymptotical behavior of 
α−− = kk H 22 , ( )2,0∈α  [5]. Samorodnitsky and Taqqu [5] provided a complete introduction to related 

topics; Lundahl et al. [8] also summarized some characteristics. 

2.2. Levinson algorithm 

The Levinson algorithm [35], or Levinson-Durbin recursion [36], is an efficient way of solving the 
Yule-Walker equation or the Wiener-Hopf equation. The algorithm can compute the parameter sets for 
all lower-order AR models fitting to the ACFs. If the AR model is finite and free of noise, the correct 
model order and its parameter sets can be derived by this algorithm according to the minimum varia-
tion of the prediction error power. However, if the AR model order is infinite or the model is finite but 
contaminated by noise, the algorithm will usually need other tools to choose correct or appropriate 
order. Therefore, the data induction for order selection described in the following section is adopted. 

For later needs for notation, comparison and implementation, the Levinson algorithm is summarized 
as follows. The Levinson algorithm recursively computes the parameter sets [ ]{ }11 ,1 ρa , 

[ ] [ ]{ }222 ,2,1 ρaa , …, [ ] [ ] [ ]{ }pppp paaa ρ,,,2,1 � . The final set at order p  is the desired solution of the 

Yule-Walker equations. If [ ]nx  is an AR of order p , then [ ] [ ]iaiap =   for pi ,,2,1 �=  and 2σρ =p , 

where 2σ  is the excitation noise variance. The algorithm is first initialized by 
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and 
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where xxr  is the ACF of [ ]nx , and then the following parameter sets are computed by 
 

[ ]
[ ] [ ] [ ]

1

1

1
1

−

−

=
−� −+

−=
k

k

l
xxkxx

k

lkrlakr
ka

ρ
, (6) 

[ ] [ ] [ ] [ ]ikakaiaia kkkk −+= −− 11 , 1,,2,1 −= ki � , (7) 

 
and 
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for pk ,,3,2 �= . 

3. Data induction for order selection and its potential application 

Since AR method was shown to be superior to MA method in accuracy and efficiency [20], the or-
der of AR model has been always chosen as the maximum possible order, i.e., the data size minus one. 
Theoretically, the higher the model order is, the closer to a regular process it is. Practically, larger er-
rors are prone to occur at higher-order estimates because the Hurst exponent estimation through an AR 
model highly depends on estimated ACFs that are less accurate at higher orders. As a consequence, an 
AR model of higher order does not improve estimation accuracy; instead, it easily exerts adverse ef-
fects on the autoregressive power spectrum estimation and finally leads to worse estimates of the 
Hurst exponent. The trade-off between theoretical principles and practical limitations is usually intri-
cate. In order to effectively handle the dilemma, a Hurst exponent estimator based on AR power spec-
trum estimation with order selection has been proposed [31]. Although the existing methods of order 
selection can work well, they still need to compute all the parameter sets by using the Levinson algo-
rithm in order to find out the best. In order to efficiently select an appropriate order of an AR model, a 
novel method induced by simulation data, simply called data induction, will be studied  

The logic of the data induction for order selection is simple. First, it needs to select a standard curve 
relatively suitable for different data sizes, where the ordinate of the standard curve is the Hurst expo-
nent and the abscissa is the slope of power spectral densities versus frequencies in a logarithmically 
scaled way. Second, it needs to find out appropriate thresholds for different data sizes to terminate the 
Levinson algorithm during the execution.  

In this paper, standard curves were obtained by using the true ACFs, and thus the higher the model 
order is, the closer to a true model it is. Unfortunately, an infinite order cannot be modeled in a finite 
time-space. Therefore, a standard curve was established in the previous work [31] based on a data size 
of 1000, 99 points of Hurst exponents beginning from 0.01 to 0.99 with increment 0.01, and a curve-
fitting polynomial of degree 4. Through experimental testing, a standard curve based on a data size of 
500, 99 points of Hurst exponents, and a curve-fitting polynomial of degree 3 is relatively suitable for 
different data sizes. It can be expressed by the following equation  
 

0
1

1
2

2
3

3 ˆˆˆˆ cscscscH +++= , (9) 

 
where 0.49900 =c , -0.43551 =c , 0.04412 =c , and 0.02363 =c .  

For appropriate thresholds for different data sizes, three hundred realizations of white Gaussian 
noise for six data sizes, i.e., 50=N , 100, 200, 400, 800, 1600, were generated. Then, the algorithm 
proposed by Lundahl et al. [8] over 1.0=H , 0.2, ..., 0.9 was used for generating 300 realizations of 
DFGN. The principle is as follows. Let [ ]{ }nz  be a white Gaussian noise process with zero mean and 
unit variance, and  [ ] [ ] [ ][ ]TNzzz �21=z be a realization of white Gaussian noise. The covariance ma-
trix of DFGN is defined as [ ]TE xxR =  or [ ] [ ]jirHij −=R . Since the covariance matrix is positive 

definite, it can be decomposed as TLLR =  using Cholesky decomposition, in which L  is a lower 
triangular matrix. Then, Lzx =  is a realization of DFGN, where [ ] [ ] [ ][ ]THHH Nxxx �21=x . 
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Next, twenty-one potential thresholds kk ρρε ˆˆ 1 −= −  were provided, where kρ̂  is the estimate of the 
white noise variance (prediction error power) for order k  via the Levinson algorithm, and then their 
21 corresponding orders were calculated. These 21 thresholds were chosen as 01.0=ε , 1201.0 , ..., 

20201.0 , and their 21 corresponding positions were numbered as 21,,2,1 � respectively.  

Procedure 1: Calculating positions or thresholds of six data sizes 

1. Begin with the first data size ( 50=N ). 
2. Begin with the first Hurst exponent ( 1.0=H ). 
3. Begin with the first realization of white Gaussian noise, z . 
4. Calculate the true ACFs from (3); produce the covariance matrix, R ; compute the lower triangu-

lar matrix, L ; generate the realization of DFGN through the formula Lzx = . 
5. Modify each realization into zero mean, i.e., x  was subtracted by its sample mean. 
6. Estimate the biased ACFs for 1,,1,0 −= Nk �  of the following form 

 

�
+=

−=
N

kn
HH knxnx

N
kr

1
][][1][ˆ . (10) 

 
7. Begin with the first potential threshold ( 01.0=ε ). 
8. Estimate the parameter sets by using estimated ACFs via the Levinson algorithm until the termi-

nating condition is satisfied, and record its corresponding order and position. 
9. Use Eqs. (11) and (12) in the following to calculate the slope of ( )( ){ }ifŜlog  versus ( ){ }iflog  

over { }MM fffF ,,, 21 �= , where Mf 5.01 = , Mff ii 5.01 =− −  for Mi ,,3,2 �=  with M  
being selected as 63: 

 

( ) ( ) 2

ˆ |ˆ|ˆˆ fAfS pρ= ,  (11) 

 
where p̂ρ̂  is the estimate of the white noise variance (prediction error power) and 
 

( ) [ ] { } [ ] { }pfjpafjafA ˆ2expˆˆ2exp1ˆ1ˆ ππ −++−+= � . (12) 

 

where p̂  is the estimated order of the AR model. 

10. Estimate the H  through the standard curve, represented by Eq. (9). 
11. If the final potential threshold (totally, twenty-one thresholds) was reached, then go to next, else 

execute the next threshold. 
12. If the final realization (totally, three hundred realizations) was reached, then go to next, else ex-

ecute the next realization. 
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Table 1 

Positions and thresholds of 6 data sizes 

N = 50  N = 100 N = 200 N = 400 N = 800 N = 1600 
Position 1 5 9 11 12 14 
Threshold 0.01 6.25E-04 3.91E-05 9.77E-06 4.88E-06 1.22E-06 

 
13. If the final Hurst exponent (totally, nine Hurst exponents) was reached, then go to next, else ex-

ecute the next H . 
14. Calculate the averages of mean-squared errors between the estimated H  and true H  over 300 

realizations and nine Hurst exponents. 
15. Find out the minimum of 21 thresholds and record the position or its corresponding threshold. 
16. If the final data size (totally, six data sizes) was reached, then terminate, else execute the next 

N . 
After finishing Procedure 1, the positions or thresholds of six data sizes were derived and listed in 

Table 1. Obviously, these thresholds seem to be reasonable because they follow the logic that a lower 
data size terminates quicker than a higher data size. 

After determining thresholds of six data sizes, the thresholds of data sizes lying between 50 and 
1600 can be determined by Algorithm 1, described as follows. 

Algorithm 1: Determining the threshold of a data size between 50 and 1600 

1. Give any data size or number, N . 
2. If N  equals to 50, then choose 01.0=ε  and stop, else execute the next step. 
3. Find out all the numbers (N) larger than the set of 50, 100, 200, 400, 800, and 1600, and then se-

lect the largest number, denoted as lN . Suppose the corresponding threshold and position are 
denoted as lT  and lP respectively, the next number is denoted as 1+lN , and its corresponding 
threshold and position are denoted as 1+lT  and 1+lP , respectively. 

4. Calculate the ratio, ( ) ll NNNr −= , where 10 ≤< r . 
5. Calculate the threshold as ( ) rPP

l
llT ×−+= 12ε . 

For examples, if 100=N , then 50=lN , 01.0=lT , 1=lP , 4
1 201.0=+lT , 51 =+lP , 1=r , and 

4201.0=ε ; if 150=N , then 100=lN , 4201.0=lT , 5=lP , 8
1 201.0=+lT , 91 =+lP , 5.0=r , and 

6201.0=ε .  
When the data size is smaller than 50 or larger than 1600, the established thresholds can be extended 

to determine the corresponding threshold. According to the thresholding trend of Table 1, the thresh-
old is chosen to multiply by the ratio of 50 to the data size (the ratio is larger than 1) when the data 
size is smaller than 50; relatively, the threshold is chosen to multiply by the ratio of 1600 to the data 
size (the ratio is smaller than 1) when the data size is larger than 1600. Algorithm 2 described as fol-
lows is recommended for the cases of 50<N  and 1600>N : 

Algorithm 2: Determining the threshold of a data size smaller than 50 or larger than 1600 

1. If 50<N , then Nr 50=  and 01.0×= rε .  
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2. If 1600>N , then  Nr 1600=  and  13201.0×= rε . 
For examples, if 25=N , then 2=r  and 01.02 ×=ε ; if 3200=N , then 5.0=r , and 

13201.05.0 ×=ε . For practical applications, a complete procedure for estimating the Hurst exponent 
is presented as follows: 

Procedure 2: Applying the proposed estimator to a practical signal 

1. Give any data size or number, N . 
2. Determine the threshold according to Algorithm 1 or 2. 
3. Extract a section of size N  from a practical signal, [ ]nxH , of interest. 
4. Modify [ ]nxH  into zero mean. 
5. Estimate ACFs for 1,,1,0 −= Nk �  by using (10). 
6. Estimate the parameter sets by using estimated ACFs via the Levinson algorithm or from (4)–(8) 

until the threshold is satisfied or the corresponding order, p̂ , is found out. 
7. Estimate the Hurst exponent, H , by using Steps 9 and 10 of Procedure 1. 
8. If necessary, calculate the fractal dimension via HD −= 2  [4]. 

4. Results and discussion 

In order to verify the efficiency of the proposed method, a wider range of Hurst exponents and data 
sizes were considered, including 01.0=H , 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 
0.99 (totally, thirteen Hurst exponents) as well as 128=N , 256, 512, 1024, 2048, 4096, 8096, and 
16384 (totally, eight data sizes). For each data size, one hundred realizations of white Gaussian noise, 
called Set 1, were generated by a Gaussian random generator.  

On the other hand, in order to show the advantage of the proposed method, simply called data in-
duction (DI), six existing order selection methods, that is, the final prediction error (FPE) [31,35,36, 
40,41], Akaike information criterion (AIC) [31,35,36,40,41], criterion autoregressive transfer function 
(CAT) [31,35,40,41], minimum description length (MDL) criterion [31,35,40,41], residual variance 
(RV) [31,40,41], and Hannan and Quinn (HQ) [40,41], were adopted for comparison. Tables 2-4 show 
the experimental results performed on Set 1. Table 2 provides the mean mean-squared errors for eight 
data sizes and seven methods over 13 Hurst exponents and 100 realizations on Set 1. Table 3 lists the 
mean orders selected by eight data sizes and seven methods over 13 Hurst exponents and 100 realiza-
tions on Set 1. Table 4 indicates the mean standard deviations of orders selected by eight data sizes 
and seven methods over 13 Hurst exponents and 100 realizations on Set 1.  

 
Table 2 

Comparison of methods for the averages of mean-squared errors on Set 1 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 2.77E-03 1.21E-03 7.17E-04 4.06E-04 1.90E-04 1.08E-04 6.25E-05 3.31E-05 
FPE 3.49E-03 1.34E-03 8.22E-04 4.34E-04 2.13E-04 1.28E-04 6.46E-05 3.57E-05 
AIC 3.49E-03 1.34E-03 8.22E-04 4.34E-04 2.13E-04 1.28E-04 6.46E-05 3.57E-05 
MDL 7.05E-03 3.18E-03 2.01E-03 9.98E-04 5.84E-04 3.69E-04 2.01E-04 9.46E-05 
CAT 3.50E-03 1.35E-03 8.24E-04 4.36E-04 2.14E-04 1.28E-04 6.45E-05 3.57E-05 
RV 2.76E-03 1.18E-03 6.31E-04 3.63E-04 1.82E-04 1.44E-04 9.50E-05 7.84E-05 
HQ 4.83E-03 2.11E-03 1.25E-03 6.28E-04 3.18E-04 2.11E-04 1.01E-04 5.25E-05 
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Table 3 

Comparison of methods for means of orders selected on Set 1 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 8.48  16.31  21.95  25.94  35.36  38.53  44.43  53.58  
FPE 3.02  4.51  6.64  9.36  12.57  17.69  25.75  36.29  
AIC 3.03  4.52  6.64  9.36  12.57  17.69  25.75  36.29  
MDL 1.38  1.87  2.69  3.78  5.00  6.93  9.48  12.86  
CAT 2.98  4.43  6.54  9.26  12.51  17.67  25.68  36.20  
RV 6.42  10.74  17.28  29.72  55.73  74.40  138.30  205.29  
HQ 1.90  2.70  3.81  5.48  7.33  10.01  14.09  19.50  

 

Table 4 

Comparison of methods for standard deviations of orders selected on Set 1 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 4.59  10.58  14.43  16.34  23.24  22.97  23.07  25.89  
FPE 2.22  2.60  3.49  4.39  4.98  6.08  8.65  10.53  
AIC 2.22  2.61  3.49  4.39  4.98  6.08  8.65  10.53  
MDL 0.66  0.78  1.00  1.11  1.15  1.47  1.81  2.11  
CAT 2.17  2.53  3.38  4.30  4.95  6.08  8.61  10.40  
RV 4.65  7.13  10.51  20.36  35.31  45.65  87.33  123.38  
HQ 1.00  1.34  1.50  1.90  2.06  2.50  3.12  3.89  
 
Chang et al. has shown that the AR methods considering six existing order selection methods are 

more accurate than the original one without considering order selection [31]. Table 2 further shows 
that the proposed order selection method, denoted as DI, always performs better than these existing 
methods except for the RV method. Although the RV method is slightly superior to the proposed 
method at data sizes of 128, 256, 512, 1024, and 2048, it is much worse than the proposed method at 
data sizes of 4096, 8192, and 16384, even worse than the FPE, AIC, and CAT methods, which might 
imply that the RV method will work worse as the data size increases. Thus, the proposed method is 
more reliable in accuracy than the RV method. 

All these six existing methods involve the use of the white noise variance, whereas the proposed 
method is concerned with the difference of the two successive white noise variances. Table 3 shows 
that the MDL method tends to select lower orders, leading to larger errors; the second is the HQ meth-
od. The FPE, AIC, and CAT are similar to one another. These results are consistent with the formulas 
summarized by Chang et al. [31] and comments proposed by Kay [35] and Haykin [36]. In addition, 
the proposed and RV methods are more moderate for data sizes smaller than or equal to 2048, but the 
RV method for data sizes larger than 2048 tends to select a higher order, leading to less accuracy. 

On the surface, all the methods with order selection, on average, only use less than 7 percent of each 
data size to compute the parameter sets as compared to the original one [20]. Indeed, all but the pro-
posed method need to compute the parameter sets of all orders before determining an appropriate or-
der. Thus, no computation cost is saved in the six order selection methods.  

On the contrary, the proposed method can determine the threshold for each data size beforehand and 
the order accordingly, so it only computes the parameter sets until the threshold or the corresponding 
order is reached. Since the computational cost of a complete Levinson algorithm for order N  is ( )2NO , 
at least 99.51 percent of computational cost is saved, i.e., the proposed method only needs 

( )20049.0 NO  at most. Furthermore, the amount of saving is normally raised as the data size increases.  
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Table 5 

Comparison of methods for the averages of mean-squared errors on Set 2 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 3.53E-03 1.64E-03 8.66E-04 3.85E-04 2.03E-04 1.31E-04 6.04E-05 4.03E-05 
FPE 4.16E-03 1.82E-03 9.46E-04 3.98E-04 2.23E-04 1.32E-04 6.37E-05 4.24E-05 
AIC 4.15E-03 1.82E-03 9.46E-04 3.98E-04 2.22E-04 1.32E-04 6.37E-05 4.24E-05 
MDL 7.47E-03 3.95E-03 2.07E-03 9.29E-04 5.83E-04 3.69E-04 1.87E-04 9.93E-05 
CAT 4.14E-03 1.83E-03 9.46E-04 3.99E-04 2.24E-04 1.32E-04 6.37E-05 4.24E-05 
RV 3.50E-03 1.61E-03 8.14E-04 3.37E-04 1.69E-04 1.56E-04 1.26E-04 7.51E-05 
HQ 5.24E-03 2.68E-03 1.27E-03 5.62E-04 3.42E-04 2.18E-04 9.80E-05 5.67E-05 

 
Table 6 

Comparison of methods for means of orders selected on Set 2 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 8.71  16.75  22.13  25.27  33.32  39.00  46.22  53.98  
FPE 3.33  4.67  6.44  9.09  12.53  18.76  25.41  36.18  
AIC 3.34  4.69  6.44  9.10  12.54  18.76  25.41  36.18  
MDL 1.38  1.89  2.72  3.71  5.06  6.81  9.44  12.84  
CAT 3.26  4.55  6.41  9.00  12.47  18.64  25.38  36.15  
RV 6.35  11.11  17.01  28.89  48.17  89.84  133.18  200.22  
HQ 1.88  2.69  3.85  5.31  7.34  10.13  14.19  19.23  

 

Table 7 

Comparison of methods for standard deviations of orders selected on Set 2 

Methods N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096 N = 8192 N = 16384 
DI 4.79  11.10  14.41  15.66  21.40  23.93  24.75  26.48  
FPE 2.98  3.07  3.17  4.34  5.12  7.12  7.81  9.99  
AIC 2.98  3.12  3.17  4.35  5.13  7.12  7.81  9.99  
MDL 0.64  0.82  1.05  1.08  1.20  1.49  1.68  2.14  
CAT 2.83  2.79  3.14  4.25  5.06  7.05  7.80  9.97  
RV 4.55  7.64  10.85  19.56  32.60  55.81  82.77  121.18  
HQ 1.01  1.27  1.60  1.84  2.05  2.58  3.08  3.73  

 
At data sizes of 4096, 8192, and 16384, the proposed method can save more than 99.99 percent of 

computational cost of implementing the Levinson algorithm. 
In order to confirm that the proposed method is not successful by chance, another set of realizations, 

called Set 2, were generated. Their results are listed in Tables 5-7. Obviously, the results are consistent 
with the ones of Set 1. 

5. Conclusion 

In this paper, a novel method of order selection, called data induction, is proposed to choose an ap-
propriate model order. The data-induction method, on average, can save more than 99 percent of com-
putational cost compared to the original AR method as well as six existing order selection methods. 
Experimental results show that the proposed data-induction method is more reliable than six existing 
order selection methods. Taking accuracy and efficiency into consideration, the proposed estimator is 
more promising and attractive for estimating the Hurst exponent through an AR model. For readers 
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simply focusing on how to differentiate between biomedical or other signals that can be modeled by 
DFGN or DFBM, an easy-to-use procedure has been summarized; for readers who want to develop 
other useful tools for some fields, where a mathematical analysis of a closed-form expression is diffi-
cult to achieve, the concept of data induction will be a feasible approach. 
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