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Abstract. Shoulder instability is a major threat to people’s daily life. Many patients suffer from shoulder instability such as 
the loss of the glenoid and humeral head. In clinical practice, an accurate 3D structure estimation of damaged joints is 
necessary to diagnose and treat bone defects. This study quantifies osteoarticular defects through the modeling and 
visualization of osteoarticular structures. An improved algorithm to extract the 3D structure of the bones is proposed. The 
bone contour is then automatically extracted using prior shape and gray scale intensity distribution of joint CT images. Joint 
structures with mirror symmetry are matched using the Iterative Closest Point registration algorithm. Osteoarticular defects 
can be quantified on the basis of the symmetric information of the bones. Experimental results demonstrate that the proposed 
method can effectively segment the joint structures from the CT image. In addition, the proposed mirror symmetrical method 
can effectively estimate osteoarticular defects.  
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1. Introduction 

Daily exercise is closely related to the joints of the human body. Joint defects may seriously affect 
people’s daily activities. In osteoarthropathy, the anterior dislocation of the shoulder joint is a common 
orthopedic disease. Clinical statistics show that approximately 90% of anterior shoulder dislocation 
cases result from osseous tissue defects [1]. Joint replacement is an effective approach for joint defect 
treatment. However, different people usually have various bone shapes and sizes. Hence, prosthetic 
joints do not usually match the bones to resume their normal physiological functions. Personalized 
joint arthroplasty as a method to assist the diagnosis and treatment of joint defects has attracted 
considerable attention [2,3]. This method is used to design individualized artificial prosthesis based on 
the patient’s CT or MRI images. Hence, personalized prosthesis may, in the largest extent, match with 
the anatomical structure of the patient’s lesions. Quantifying bone defects from CT or MRI images is 
crucial for bone transplantation. 

Successful joint defect treatment is limited by the lack of a precise joint model and personalized 
treatment. However, modeling and visualization technologies based on medical imaging can provide 
                                                      

∗Corresponding author: Qin Li, School of Life Science, Beijing Institute of Technology, Beijing 100081, China. Tel.: 8610 
6891 5998; Fax: 8610 6891 5956; E-mail: liqin@bit.edu.cn. 

0959-2989/14/$27.50 © 2014 – IOS Press and the authors.

DOI 10.3233/BME-141172
IOS Press

Bio-Medical Materials and Engineering 24 (2014) 3471–3478

This article is published with Open Access and distributed under the terms of the Creative Commons Attribution and Non-Commercial License.

3471



 

physicians with the stereoscopic structure and quantified defecting parameters of the joints, from 
which physicians can diagnose and treat joint defects quickly and accurately. For such technology, 
accurate extraction and modeling of the joint structure are important to quantify joint defects from 
geometric parameters. Given its high individuation, image-guided bone joint quantification is valuable 
in clinical practice [4,5].  

Recent studies have extensively investigated the segmentation and modeling of joint structures. 
Chung et al. [4] used the adaptive threshold method to detect bone boundaries, which are then utilized 
to control the scope of the region growing method. For this method, the proposed adaptive region 
growing method has a strong anti-noise mechanism to achieve the accurate segmentation of bone 
structures. However, this approach is effective only when the gray level distributions are non-
uniformly connected with the extracting targets. For bone structures with weak boundaries, the method 
is prone to leaks and leads to adjacent soft tissues. Lee et al. [6,7] used the graph cut method to 
calculate the optimal value of the energy equation based on Markov’s model and then extracted the 
knee joint structure. However, this method is time consuming [8]. 

Basing on previous studies, this study proposes a novel method for the modeling and visualization 
of joints to address the problems mentioned above. Shape and intensity data are combined as the prior 
conditions for the level set calculation. Then, the mirror symmetrical feature of the joints of the left 
and right shoulders of the human body is utilized to estimate the defect of one side by the other side. 
The joints on the left and right shoulders are matched using the point cloud registration method. 
Thereafter, the segmented joint structure is utilized to quantify the osteoarticular defects. 

2. Method 

This study proposes a novel method to model and visualize osteoarticular defects. Basing on the 
level set energy function proposed by Li et al. [9], the prior shape information and intensity 
information are integrated for joint segmentation. After the bone structures of the left and right 
shoulders are extracted, the Iterative Closest Point (ICP) method is used to register the structures 
together. Hence, the geometric distribution of the defect structure can be effectively quantified. 

2.1. Prior information of shape 

The target of bone segmentation is to extract the outline of the bone structures. Generally, the 
intensity distributions of the cortex and marrow are different, and the intensity distribution of the 
marrow is very close to that of the background. Therefore, this study proposes to use the level set 
method for joint segmentation. Initial contour larger than the cortex of the joint is delineated manually 
in a selected cross-section [10], which is formulated by a symbolic distance function. The internal and 
external points for this function are negative and positive, respectively. Then, the level set algorithm is 
used for curve evolution in the cross-section, and the results are set as the initial contour for the lower 
and upper cross-sections. The difference between the contours of the two adjacent cross-sections is 
small; hence, the obtained initial contour is accurate enough to enclose the bone structures in the 
cross-section.  

Moreover, the gray-scale distributions inside the bone structures are considerably uneven while the 
distributions for the adjacent bone structures are highly similar because of the different absorption 
rates of the cortex and the marrow. Hence, the shape information of the bones in the predefined cross-
section can be utilized as a reference to determine the adjacent boundaries. Furthermore, the reference 
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shape can be utilized as the stop function of the level set algorithm. For the level set function φ , the 
gradient ( , )x yφ∇  of a point ( , )x y  in the image can be defined as follows:  
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The gradient vectors of the level set function are illustrated in Figure 1. Results show that the 

boundaries are rested at the edges with different directions of level set gradient and image gradient. 
Hence, the stop function g can be defined as follows: 
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where I∇  represents the gradient of image and K is a constant with a value greater than one. When the 
directions of the level set function and the image gradient are opposite each other, the inner boundary 
should be captured (Figure 1(a)). In such cases, the stop function of the level set must be changed in 
such a way that the iteration can proceed and reach the true outer boundary. By contrast, when the 
directions of the level set function and image gradient are identical, the target boundary should be 
captured (Figure 1(b)). 

Generally, the image gradient is comparatively small for pixels inside the target. We have I K∇ < , 
and the value of g is large. For such cases, the level set iteration will continue. By contrast, for pixels 
near the boundary, the absolute value of the gradient is greater than K, the value of g is small, and the 
iteration will slow down and finally approach the boundary of the target. Furthermore, greater K 
means fewer boundary details can be obtained. Hence, the detected edges with large gradient values 
will be regarded as the boundary, whereas the edges with small gradient values will be classified as the 
background. 

 

Fig. 1. Schematic diagram of gradient calculation. (a) The direction vectors of gradient for image with inner boundary. 
(b) The direction vectors of the gradient for the level set function. 
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2.2. Prior information of intensity 

For image areas with weak boundaries, accurately segmenting the boundaries by merely calculating 
the image gradient is difficult. Hence, this study introduces the image difference between adjacent 
cross-sections for accurate boundary extraction. Let ( ( , ))TP I x y  and ( ( , ))BP I x y  represent the 
probabilities of a pixel ( , )x y  belonging to segmenting target and background, and let ( , )I x y  represent 
the pixel intensity. Therefore, the energy equation can be defined as follows: 
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where ( )H ⋅  is the unit step function, ( )δ ⋅  is the Dirac function, 21( ) (| | 1)

2
p dxdyφ φ

Ω
= ∇ −� .While μ , λ  

and ν  are the weighting coefficients. The first and second terms in Eq. (3) are similar to the terms 
defined by Li [9], whereas the third term is defined to utilize the prior information of intensity 
distribution. BP  and TP  are calculated by the segmentation results of the adjacent cross-sections. The 
difference between BP  and TP  clearly decides the evolution direction of the initialized contour. 
Moreover, a small difference between BP  and TP  indicates that the segmentation results will be 
similar to that of the former cross-section; hence, the evolution direction of the contour will follow the 
principle of the former cross-section. If BP  is greater than TP , then the value of 0( )f I  is positive. This 
condition indicates that the contour is in the image background. By contrast, if TP  is greater than BP , 
then the value of 0( )f I  is negative. This condition indicates that the contour is in the foreground region 
of the image. The prior information of the former cross-section defines the initial contour of the 
current cross-section, and the defined prior gray information determines the contour contracting. To 
minimize the above defined energy function, the evolution of the level set can be calculated as 
follows:  
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where ( )div ⋅  is the divergence function.  

The probabilities of the target and background are calculated in a narrow band of the image; hence, 
we only need to calculate the histogram distribution of the former cross-section in a narrow predefined 
area. In this manner, the calculation efficiency can be significantly improved. This study simplifies the 
probability calculation method proposed by Gao et al. [11] and allows the deforming contour to shrink 
or expand adaptively. The use of prior shape information can accurately provide an initial contour for 
the current cross-section, whereas the use of prior intensity information can estimate the evolving 
direction of the contour in a narrow band from the former cross-section. In addition, the deformation 
size is determined by the coefficient. In other relevant topological shape methods, a large shrinkage 
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coefficient is typically required. Therefore, a large expansion coefficient means the contour is likely to 
expand into the boundaries of the surrounding bones.  

2.3. Defect quantification 

By the above segmentation method, the joint structures of the left and right shoulders can be 
obtained. The bone structures of the left and right shoulders show mirror symmetry; hence, the bone 
structure of the shoulder without damage can be utilized as the base to quantify the degree of defect of 
the other shoulder. In this study, the defect ratio is utilized to quantify the defect degree of the 
osteoarticular joint. The defect ratio is defined as the volume of damaged bone structure in relation to 
the total volume of bone structure. The defect ratio of the osteoarticular joint is quantified by 
performing mirror transformation of the segmented model of the normal joints and then introducing 
the ICP registration method for the registration of the mirror-transformed bone structure to the 
damaged joints. The target of the point cloud registration is to find the best transformation between the 
source and target point clouds that leads to the minimum Euclidian distance between the closest points 
between the two point clouds. 

Let 3{ | 1,2, , }i iP P R i m∈ = �  and 3{ | 1,2, , }j jP P R j n∈ = �  represent the vertices of the segmented bone 
structure meshes of the normal and damaged bone joints, where m and n represent the number of 
vertices. The aim of the registration process is to minimize the following target function: 

 

2 2

1

( , ) min || (s ) ||
n

i ie R t Q R P t= − ⋅ ⋅ +
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where R and t represent the 3 3×  transformation matrix and 3 1×  translation vector, respectively, and s 
is the scaling factor between the normal and abnormal bone structures.  

The joint sizes are usually unequal when the point clouds of the left and right joints of the same 
person are registered. This finding is reasonable because the developments of the joints on the left and 
right sides of different people are determined by different factors, such as genes and habits. Therefore, 
the scaling ratio s of the normal and abnormal joints must be used to quantify the defect ratio of the 
damaged joints relative to the normal joints. Once the bone structures of the left and right shoulders 
are registered together and the scaling coefficient is determined, the difference between the structures 
can be effectively quantified. Furthermore, the defect ratio can be calculated as follows: 

 
s / (s )normal abnormal normalD V V V= ⋅ − ⋅  (7) 

 
where normalV  and abnormalV  represent the segmented volumes of normal and abnormal joints, respectively. 

3. Experiment 

To validate the performance of the proposed method, a series of experiments is designed using the 
CT images of the left and right shoulders. The data sets used for the experiments are obtained from the 
Peking University Third Hospital, Beijing. All data sets have the resolution size of 512 512 120× × , 
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and 20 groups of CT data are utilized for the experiments. The entire algorithm is implemented in the 
C++ programming language in the Linux platform, and the experiments are performed on a relatively 
low-cost desktop computer with an i7-2600 processor and 16 G memory. 

Figure 2 shows the segmentation results of the traditional level set method (a and c) and the 
proposed method (b and d). Results show that the traditional method is not efficient to segment bone 
structures in the CT image and that the segmentation may fail in the areas with closed boundaries or 
inhomogeneous density distribution. By contrast, the proposed method accurately segments the bone 
structures from the CT image, which shows that the contour accurately evolves toward the bone 
outline. Therefore, the proposed method clearly outperforms the traditional level set method.  

Figure 3 shows the segmentation results of six cross-sections of the joints in the CT images using 
the proposed method. In this figure, (a), (b), and (c) are the 30th, 50th, and 70th cross-sections of a 
normal joint, whereas (d), (e), and (f) are the 20th, 60th, and 70th cross-sections of a damaged joint. The 

 

Fig. 2. Experiments of traditional level set and the proposed methods. (a) and (c) are the segmentation results of the level 
set method in two different cross-sections. (b) and (d) are the segmentation results of the proposed method corresponding 
to the cross-sections of (a) and (c), respectively. 

 

Fig. 3. Segmentation results of six cross-sections of the joint bone in the CT image by the proposed method. (a), (b) and 
(c) are 30th, 50th and 70th cross-sections of a normal joint; while (d), (e) and (f) are 20th, 60th and 70th cross-sections of a 
diseased joint. 
 

Table 1 

Quantification of the calculation results on three data sets 

 Vnormal (cm3) Vabnormal (cm3) Scaling Ratio Defect Ratio 
Data 1 546.19 553.86 1.05 3.8% 
Data 2 543.72 550.97 1.09 8.4% 
Data 3 406.08 552.81 1.12 6.4% 
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segmentation results show that the proposed method can accurately segment both normal and damaged 
bone structures from the CT images. The figures also show that parts of the bone structures are close 
to the neighboring bones in (a), (b), (c), and (d). Moreover, the proposed method can effectively 
delineate the boundaries of the interesting bone structures from the background and other bone 
structures. In addition, the marrow inside the bone structures takes large areas in (a) and (c), and its 
gray intensity is slightly inhomogeneous. Nevertheless, the proposed method can still accurately 
segment the outline of the bone structures. 

Table 1 demonstrates the defect quantification results of three randomly selected data sets. Data 1 
shows that the volumes of normal and abnormal joints are 546.19 and 553.86 cm3, respectively. The 
scaling ratio is 1.05, and the calculated defect ratio is 3.8%. Data 2 shows that the volumes of normal 
and abnormal joints are 543.72 and 550.97 cm3, respectively. The scaling ratio is 1.09, and the 
calculated defect ratio is 8.4%. Data 3 shows that the volumes of normal and abnormal joints are 
406.08 and 552.81 cm3, respectively. The scaling ratio is 1.12, and the calculated defect ratio is 6.4%. 
For all the three data sets, the sizes of the abnormal joints are greater than those of the normal joints. 
Despite this difference, the proposed method can effectively quantify the defect ratio of the abnormal 
joints. 

Figure 4 shows the registration results of the normal and abnormal joints in 3D space. In the figure, 
(a) shows the rendering result of the registered point clouds, and (b) shows the rendering of the 
registered meshes of the bone structures. In addition, the red points and mesh represent the data sets of 
the abnormal joints, and the green data sets are those of the normal joints. The two data sets are 
effectively registered together, and the difference between these two data sets can be visually 
compared.  

4. Conclusion 

This study proposes a novel method to quantify osteoarticular defects using CT images of the left 
and right shoulders of the patient. A novel level set based method is proposed to segment interesting 
joint structures. To improve the accuracy of segmentation, the prior data on the intensity distribution 
and shape of the bone structure of neighboring cross-sections of the CT image are combined into the 
level set framework. The outlines of the joint structures have already been delineated from the 
background; thus, the provided shape and intensity distributions in the neighboring cross-section can 

 
Fig. 4. Result of the point cloud registration. (a) and (b) are the  rendering of the registered point clouds and the  meshes 
of the bone structures. 
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effectively drive the deforming contour to approach the segmentation target. To quantify the defect 
structure of the joint, the ICP algorithm is introduced to register the normal and abnormal joint 
structures. The scaling factor between the normal and abnormal joint structures can also be estimated 
during registration. Thereafter, the defect ratio of the abnormal joints can be effectively quantified by 
calculating the topological difference between the two registered joint structures. Experimental results 
demonstrate that the proposed segmentation and registration techniques are effective to quantify the 
joint structures. 

The proposed method utilizes the mirror symmetry of the left and right joints to quantify the 
damaged structures of the abnormal joints. Hence, this method is not appropriate for people with 
abnormal joints on both left and right shoulders. Therefore, future research should focus on non-rigid 
registration techniques for quantifying largely deformed bone structures. 
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