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Abstract. Graph theory is also widely used as a representational form and characterization of brain connectivity network, as 
is machine learning for classifying groups depending on the features extracted from images. Many of these studies use differ-
ent techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform 
a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, 
building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and 
finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In 
order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this 
way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the clas-
sifier used. 
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1. Introduction 

Use of graph theory [1,2] marked a significant step forward in brain connectivity analysis. It has 

demonstrated that the brain is a complex network, similar to other large networks, and furthermore, 

that it is divided into interconnected sub-networks. The brain’s connectivity network can be shown 

through a graph G = (V,E) [3] where V is the graph nodes representing each brain region and E de-

notes the connections or edges between each node or region.  

Different characteristics can be extracted from the graph, which make it possible to analyse and 

conduct studies on pathologies, differences, etc.  

At the same time, a great deal of research has been done on resting state fMRI [4–6]. These studies 
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analyze brain activity while the subject is completely at rest but not asleep. Once the most common 

images are extracted, Principal Analysis Components (PCA) [7] or Independent Analysis Components 

(ICA) [8,9] analyses are run to extract the components that describe brain functions. In this case, the 

images from the resting state are used to apply graph theory. 

The importance of a good group classification for a pathology and the use of different methods to 

create, characterize and classify the graphs are two essential characteristics of these studies [10,11]. 

This article, therefore describes a tool capable of carrying out these functions for any pathology stu-

died, the images used or the regions of interest analyzed. The graph of the groups studied is obtained 

and the most commonly used supervised and unsupervised classifiers are compared to determine 

which one is more suitable. 

A group of 4D images from fMRI was used to analyze the proposed tool. The images were from a 

study on migraine with three groups of subjects: one healthy control group, a group with sporadic mi-

graines and a group suffering from migraine and medication abuse. 

Recent studies have shown recurrent errors when conducting fMRI studies [12]. On the one hand, 

problems arise when homogenizing different subjects’ graphs to carry out group analysis, which does 

not give very reliable results. The statistical analyses conducted [13,14] are also noted as erroneous or 

are modified to extract better results, known as double dipping. The tool proposed in this study pro-

vides a method and a set of independent classifiers which can be used to study any given pathology. 

Therefore, the purpose of this study is to provide a tool suitable for any pathological study so that 

the tool is expected to be one of the most widely used method currently. Furthermore, this tool offers 

users a set of results depending on the classification methods used. 

2. Material and methods 

2.1. Subjects 

This study was conducted with images and information collected in another study on migraine and 

prescription drug abuse. The subjects were all right-handed and divided into three groups: fifteen 

healthy migraine-free subjects (mean age 37, SD: 6.9 years, range 32 to 60, 1 man), twenty subjects 

with a sporadic migraine (mean age 47, SD: 7.7 years, range 30 to 59, 0 men, 2 ambidextrous) and 

nineteen subjects suffering from migraine and medication abuse (mean age 45, SD: 7.9 years, range 27 

to 55, 3 men). 

All of the subjects underwent an MRI session lasting approximately 8 minutes. One subject had to 

be excluded from the experiment due to claustrophobia. 

2.2. Image acquisition 

TFE T1 3D, T1 images with high resolution reconstructions of the patients’ anatomy, were used as 

the sequence for morphological evaluation. These images did not contain information on the active 

regions of the brain but were useful in locating the patients’ neural correlation areas once they were 

obtained. A T1 image was made for each patient. It consisted of 250 slices with a resolution of 

256x256 pixels, following the Philips format. Echo-Planar Imaging Blood Oxygen Level Dependent 

(EPI-BOLD) was the functional sequence used, with the following parameters: TR 2100; TE 29; 30 

slices with a thickness of 3 mm; in-plane resolution 3x3 mm; 214 dynamic measurements with a total 

sequence duration of 7 minutes and 39 seconds. 
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2.3. Brain atlas 

The tool has different digital atlases which can be used to know which regions of the brain should 

be analyzed. Two of the most well-known are Automated Anatomical Labeling (AAL) [15] and 

Brodmann [16]. It also includes the possibility of introducing user-created masks. When using AAL, 

the tool allows the user to decide how to use the 116 available regions of interests (ROIs) or 90 ROIs 

excluding the 16 cerebellum-related regions [10]. 

2.4. Preprocessing of fMRI sequences 

Previous preprocessing is required for analysis of the images. FMRIB’s Software Library (FSL 4.1) 

[17] and some of its tools such as MCFLIRT (Motion correction software), FLIRT or fslmeants can be 

used for this purpose. Other tools such as mricron have been used to analyze the atlases proposed. 

2.5. Graph analysis characteristics 

The method used to elaborate the graph for each subject is similar to that used in other studies [18] 

although the tool makes it possible to carry out two types of correlation between brain regions. By us-

ing a conventional correlation or synchronization likelihood (SL) [19], the correlation can be made by 

taking other aspects of the signal into account. 

Studies on graph theory often use different characteristics such as the number of nodes or node de-

gree. The proposed tool includes the three most widely used, fully described and contrasted characte-

ristics [10]. These characteristics are found in many similar studies, so they are quite relevant to cha-

racterizing the connections between different brain areas. When executing the tool, it automatically 

carries out a set of 50 permutations for each subject’s correlations and extracts the corresponding cha-

racteristics so that each subject’s results are standardized. 

− Clustering (C): This measures the grouping of the different nodes that form the graph. A high 

clustering value indicates that the close connections between brain regions function correctly but 

it may indicate a connectivity problem with distant regions. 
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− Path Length (L): This examines the distant connections of the graph nodes from the greatest dis-

tances between the nodes found. A high path length value indicates that connections between dis-

tant regions work properly but that a problem may exist between regions where nodes are near 

each other. 
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Table 1 

Graph theory results. Features extracted with graph theory. The number of areas used, typical correlation or SL, mean and 
standard deviation for each group for each feature are shown. 

Charact. Areas CON MIG ABU 

  M(N/SL) SD(N/SL) M(N/SL) SD(N/SL) M(N/SL) SD(N/SL) 

C 
90 1.075/1.069 0.024/0.028 1.08/1.069 0.012/0.026 1.076/1.057 0.013/0.02 

116 1.065/1.084 0.02/0.027 1.07/1.09 0.012/0.02 1.066/1.074 0.011/0.021 

L 
90 1.007/1.044 0.001/0.008 1.007/1.048 0.001/0.007 1.007/1.045 0.001/0.007 

116 1.004/1.03 0.001/0.005 1.004/1.032 0.001/0.005 1.004/1.031 0.001/0.004 

W 
90 0.995/0.807 0.007/0.018 0.997/0.804 0.001/0.017 0.995/0.8 0.002/0.017 

116 0.996/0.834 0.004/0.016 0.997/0.828 0.001/0.015 0.9962/0.822 0.002/0.016 

 
Table 2 

Classifiers. Results of the classifiers examined by the tool. For each classifier, type of correlation (Normal/SL), the number of 
areas, the percentage of correct answers, percentage of each group, the sensitivity and specificity are indicated. 

Classifier Corr. %Success %CON %AB Sens. Spec. 

LDA 
90 50/64.29 66.67/77.78 20/40 0.45/0.56 0.38/0.64 

116 21.43/64.29 11.11/66.67 40/60 0.16/0.63 0.31/0.64 

SVM 
90 79.92/87.18 33.33/77.78 40/40 0.36/0.56 0.38/0.64 

116 76.93/87.18 33.33/66.67 40/60 0.36/0.63 0.38/0.64 

NN (1 layer) 
90 71.43/71.43 100/77.78 20/40 0.56/0.56 1/0.64 

116 71.43/64.29 66.67/44.44 100/100 1/1 0.75/0.64 

NN (2 layers) 
90 78.57/78.57 77.78/100 80/40 0.8/0.63 0.78/1 

116 92.86/78.57 88.89/100 100/40 1/0.63 0.9/1 

NN (3 layers) 
90 85.71/71.43 100/100 60/20 0.71/0.56 1/1 

116 85.71/78.57 100/88.89 60/60 0.71/0.69 1/0.84 

K -means 
90 57.14/57.14 88.89/44.44 0/80 0.47/0.69 0/0.59 

116 57.14/64.29 88.89/44.44 0/100 0.47/1 0/0.64 

K – nearest 
90 50/64.29 33.33/88.89 80/20 0.63/0.53 0.55/0.64 

116 57.14/64.29 77.78/88.89 20/20 0.49/0.53 0.47/0.64 

AdaBoost 
90 64.29/57.14 55.56/66.67 80/40 0.74/6.53 0.64/0.55 

116 64.29/64.29 66.67/88.89 60/20.53 0.63/0.53 0.64/0.64 

 

From the data in Table 1, a classification with different classifiers, areas and correlations was car-

ried out. The results are shown in Table 2. Sensitivity and Specificity results are observed. The term 

Sensitivity relates to the classifier’s ability to identify disease in sick subjects, while Specificity indi-

cates the classifier’s ability to identify absence of disease. 
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5. Discussion and conclusion 

The tool proposed can perform the entire process, from taking fMRI images to providing final re-

sults which can be easily interpreted by doctors or specialists. This is an automated process, where the 

user only provides fMRI images and chooses the correlations and the best atlas to use. 

Studies with subjects suffering from migraine and drug abuse were conducted in order to validate 

this tool. The tool performs a complete analysis and proposes various classifiers, some of which pro-

vide 92.86% accuracy (NN), while others provide 87% (SVM). Other studies in other pathologies with 

similar machine learning algorithms [21–23] had success rates as between 75% and 87.9%, so the tool 

has demonstrated satisfactory results. 

The existing differences between classifiers’ results are due to several reasons such as their type 

(supervised, unsupervised, semi-supervised) or the difference between classifiers with the same data 

which might obtain global or local performance. Some classifiers such as NN can show different re-

sults because of the train’s random procedure. 

A more in-depth analysis could be achieved by increasing the number of subjects in each participant 

group. However, in the case of subjects with migraines, this task is complicated, because people with 

this pathology suffer from the noise generated by the MRI machine. 

Finally, regarding the current limitations of the study, the impossibility of combining automatic 

classifiers and the complete atlas or a personal correlation use, can be found. In the future, new atlases 

and new correlations should be added to improve the results by providing a greater number of va-

riables to enable specialists to analyze the pathologies. 
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