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Abstract. This paper reviewed the meaning of the statistic index and the properties of the complex network models and their 
physiological explanation. By analyzing existing problems and construction strategies, this paper attempted to construct 
complex brain networks from a different point of view: that of clustering first and constructing the brain network second. A 
clustering-guided (or led) construction strategy towards complex brain networks was proposed. The research focused on the 
discussion of the task-induced brain network. To discover different networks in a single run, a combined-clusters method was 
applied. Afterwards, a complex local brain network was formed with a complex network method on voxels. In a real test 
dataset, it was found that the network had small-world characteristics and had no significant scale-free properties. 
Meanwhile, some key bridge nodes and their characteristics were identified in the local network by calculating the 
betweenness centrality. 
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1. Introduction 

The human brain is considered to be one of the real world’s most complex systems. Understanding 

how to construct a network is a fundamental part of complex network analysis. Furthermore, the 

principles of brain organization are functional separation and integration, and both have features of 

complex networks [1]. In order to further research on the overall characteristics of brain function, one 

needs some other theoretical model, namely the complex network theory. The complex network exists 

in various fields of science, such as biology, physics, information science and social science. With the 

data obtained from neuroimaging, one can construct a complex network based upon graph theory, 

analyze its topology and dynamics principle, and then understand the working mechanism and 

characters inside the brain. Because of technical limitations, human brain networks are primarily built 

at a large-scale, based on voxel level or on a priori anatomical template of the brain region.  

In addition, more achievements have been made on brain functional network formation than on 

brain structural network construction. For example, Salvador and his colleagues [2] first created a 

brain functional network using resting state data. Functional magnetic resonance imaging (fMRI) 
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images were divided into 90 regions according to a priori anatomical template. Then the coefficients 

of partial correlation between these areas were computed, and the existence of connection was 

confirmed by counting. Finally, a functional network was obtained. By network analyzing, the small-

world properties of the brain network were determined. In the same year, Eguíluz [3] first built an 

entire brain functional network with data acquired when the brain was on task. He also found that 

brain functional networks that were based on voxel level also had small-world properties, and he 

confirmed that the brain functional network nodes exhibited scale-free power-law distributions. 

Moreover, when constructing brain networks, one main method is to select some brain areas as the 

seed of a region of interest (ROI) in advance, and then compute its correlation between other areas. 

Another method is to evaluate the correlation of all brain voxels.  

Different methods were proposed in this paper. First, the relevant local brain network, like the 

default network or task-related activity network, was determined by the proposed clustering method. 

Then, the complex network characteristics and the relationship between each local network were 

analyzed. From which, a more detailed understanding of the brain function characters of local 

networks was obtained. Hence, the ignorance of some aspects caused by the above overall calculation 

method was overcome. 

In this article, a new clustering-guided construction approach towards complex brain networks is 

provided. We begin by a non-technical introduction to the important conceptual issues associated with 

complex networks’ statistical properties, and then, the proposed method is described, and a detailed 

case study is presented. Finally, some of the issues associated with traditional methods are discussed, 

and concluding remarks are given. 

2. Statistical properties of complex network 

When studying a complex network, four types of topology are considered: regular network, random 

graph, small-world network and scale-free network. A small-world network is a type of network with 

a relatively shorter average path length and a relatively higher clustering coefficient. To quantitatively 

judge a network’s small-world property, one needs to use a random network as reference and then 

compare them at the same scale. If the network tested has a relatively higher clustering coefficient and 

approximately the shortest path length in comparison with the random network (that is to say, 

γ=C/Crand>>1,λ=L/Lrand~1), then one can say that this network is a small-world network. In the 

aforementioned equation, Crand stands for the clustering coefficient of a random network, C stands for 

the clustering coefficient of the network being tested, L stands for the average length of the network 

being tested, and Lrand stands for the average path length of a random network. One can also combine 

the two indexes into a scalar s=γ/λ to measure the small-worldness; for example, when s>1, the 

network has small-world property, and the larger s is, the more intense its small-world property [4–8]. 

The degree distribution of both a random network and a regular network presents a sort of 

homogeneous network. A scale-free network like the World Wide Web is different. Its node degree 

distribution follows power-law distribution, P(k) ~k
–α

, where k stands for the degree of nodes, and α is 

an exponent (which is usually assigned a value from 2 to 4). In double logarithmic coordinates, the 

plot of this kind of distribution is similar to a line. In a scale-free network, a few nodes have many 

connections to other nodes, and their degrees are very high; however, most nodes only have a few 

connections, with only tiny degrees. The scale-free network turns out to be robust when facing random 

attack, but it is fragile and sensitive when confronting the attempted attack [4–8]. 
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where {yn(k)} are the fMRI signals of the dataset, n denotes the time indexes, m(k) represents the 

average value of the signals of voxel k, and τ is known as the delay. 

3.2. Construction of local complex brain network 

After establishing the voxels of a local brain network, a connection is set up using Eguíluz’s method. 

The Pearson's correlation coefficients (cps) from all of the voxels in every Neti are calculated, and then, 

the cps constitute the correlation matrix. 
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where ri  and rj  are the time series of voxel i and j with means of  
i
r  and 

j
r , respectively. Given a 

threshold value r, according to the correlation coefficient of two voxels’ time series, it is determined 

whether there is a connection between the nodes in the network. If the correlation coefficient is bigger 

than r, there is an edge connecting the two voxels. With this method, a binarized matrix can be 

obtained by a different threshold. 

3.3. Analysis of complex network properties 

For the local complex network composed, the following is caluclated: the clustering coefficient, 

betweenness centrality, average path length and degree distribution. Furthermore, its small-world 

property and scale-free property are analyzed, and its pivotal nodes are found.  

4. Case study for constructing complex network 

To elucidate the aforementioned method on a representative dataset, a set of auditory data was 

chosen from the Wellcome Department of Imaging Neuroscience of the University College London 

(http://www.fil.ion.ucl.ac.uk/spm/data/). Participants were scanned on a 2.0 Tesla Siemens MRI 

scanner with the following parameters: repetition time=7s, matrix=64×64×64, and voxel size 

=3mmx3mmx3mm. FMRI data was obtained in one session using gradient echo planar imaging. T1 

anatomical scans were also collected with voxel size =1mmx1mmx1mm. The first twelve functional 

volumes were discarded to eliminate T1 effects. The other 84 functional volumes were preprocessed to 

analyze. The paradigm consisted of eight repeated periods of rest and auditory task, starting with a rest. 

During the task trials, bi-syllabic words were presented binaurally at a rate of 60 per minute.  

By the first step, three local brain functional networks were obtained, namely the default mode 

network (DMN, in blue), auditory task-induced network (in orange), and dorsal attention network (in 

green), as shown in Figure 2. The map is rendered by using xjView 

(http://www.alivelearn.net/xjview/). For the next step, a complex network for each local network was  
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Table 1 

 Small-world properties of the three brain functional networks 

 
threshold 

value 

average path 

length    

(random) 

average path 

length (tested) 

clustering 

coefficient 

(random) 

clustering 

coefficient  

(tested) 

S=γ/λ 

Default  

network  

0.7 2.30 3.16 0.23 0.71 2.25 

0.8 2.81 2.81 0.10 0.59 6.02 

0.9 4.12 2.74 0.02 0.25 18.84 

Attention  

Network  

0.7 1.86 2.00 0.39 0.67 1.60 

0.8 2.38 3.28 0.12 0.65 3.93 

0.9 3.48 5.12 0.04 0.49 9.30 

Auditory  

Network  

0.7 1.76 1.88 0.53 0.69 1.24 

0.8 2.10 3.09 0.36 0.63 1.19 

0.9 3.00 8.31 0.06 0.39 2.26 

 

The bigger a node’s betweenness centrality, the more important role it plays in information 

transmission and organization inside the network. The top 7 nodes of betweenness centrality for DMN 

add up to account for 33.5% of the summation in this network. Similarly, the top 5 nodes of betweenness 

centrality for the dorsal attention network add up to account for 33.7% of the summation in this network. 

The top 8 nodes of betweenness centrality for the auditory active network add up to account for 16.6% of 

the summation the betweenness centrality in this network. Interestingly, in the auditory active network, 

the points with the highest betweenness centrality are all located on the right superior temporal gyrus. 

This may reflect the lateralized interpretation of auditory cortex in some task stimulation [16]. 

5. Concluding remarks 

By analyzing the three local brain functional networks, it was discovered that all of them had small-

world properties. We also analyzed their degree distribution properties.   

This method was based on voxels level, quite different from the ‘seed’ choosing method (based on a 

priori anatomical knowledge). The strategy for building a brain network was different from the 

existing whole-brain strategy. The local brain functional network region was initially taken into 

consideration, and a better understanding was obtained concerning the relationship between whole and 

local brain networks.  

 

  

               (a)                                                                  (b) 

Fig. 3. (a) Degree distribution for auditory active network; (b) Degree cumulative distribution for auditory active network 

(r=0.85) 
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Table 2 

Scale-free properties of the three brain functional networks 

 threshold value Exponent α 
standard                 

deviations 
p-value 

number of 

nodes 

Default  

network  

0.7 2.4383 0.2033 0.00 190 

0.8 2.7069 0.5659 0.04 179 

0.85 2.6576 0.3601 0.01 170 

Attention  

Network  

0.7 3.446 0.1546 0.00 242 

0.8 3.4416 0.2388 0.00 234 

0.85 3.1500 0.3622 0.00 227 

Auditory  

Network  

0.7 3.5 0.000 0.00 1988 

0.8 2.6215 0.5992 0.00 1980 

0.85 1.6916 0.0236 0.00 1974 

 

After we had determined a brain functional network with assistance from TSCA, we chose a 

relatively higher threshold value(r>0.6) when constructing a binary network, primarily because of the 

high correlation coefficient in each network. Interestingly, though every network had a physical 

meaning, it displayed ‘small-world’ properties locally. This characteristic was robust to the threshold 

value r. The results from this analysis showed that degree distribution did not follow power-law 

distribution, and the distribution decayed exponentially at the tail of the graph. A key feature of this 

kind of distribution is that the probability for the occurrence of points in a higher degree is smaller 

than that of power-law distribution. This feature is of very practical significance. In practice, nodes 

with a very high degree can be isolated so that they do not have a connection with faraway nodes with 

a high degree. 

If one constructs a complex network with the method given by article [3], it will either lead to 

confusion or neglect problems because the process chooses a certain area and then conducts 

correlation tests with whole brain voxels. For example, if one chooses some auditory activated region, 

then voxels of the attention network may be recruited because the time series of the first several 

periods are similar to each other. Thus, in this method, the correlation coefficient will be high and will 

cause confusion. On the other hand, if one selects only positive activation, one may ignore the 

negative activation network. As a result, the approach could alleviate the problem by clustering first. 

This strategy was different from the commonly used strategy of constructing a complex brain network. 

It was based on the data-driven brain analysis method.  

This study focused on the construction of complex networks based on functional connectivity; 

however, it did not consider effective connectivity. Hence, calculation of the correlation coefficient is 

a common practice. Concerning this, literature [17] pointed out that the partial correlation is more 

related to effective connectivity analysis, and literature [18] chose multivariate mutual information as 

the measure to estimate functional connectivity. Both methods are based on specified ROIs. However, 

computing complicity needs to be considered for the voxel-wise situation in the study.   

We used partial correlation to examine the relationship among the three networks. The partial 

correlation coefficients (with p<0.005) between DMN and A-net, DMN and dorsal attention network, 

and A-net and dorsal attention network were -0.441, 0.322 and 0.879, respectively, which reflects the 

holistic correlation between any two networks conditioned on the remaining network. 

Despite having some advantages shown in the present study, the method is still in the developing 

stage with much more yet to be done. The experimental dataset is simple, so much more complex 
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brain networks are not concerned. Some other computing measurements need to be considered, such 

as mutual information and partial correlation [19]. Further systematic brain research [20] is therefore 

warranted. 
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