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Abstract. Diffusion tensor imaging (DTI) is a tractography algorithm that provides the only means of mapping white matter 
fibers. Furthermore, because of its wealth of applications, diffusion MRI tractography is gaining importance in clinical and 
neuroscience research. This paper presents a novel brain white matter fiber reconstruction method based on the snake model 
by minimizing the energy function, which is composed of both external energy and internal energy. Internal energy 
represents the assembly of the interaction potential between connected segments, whereas external energy represents the 
differences between predicted DTI signals and measured DTI signals. Through comparing the proposed method with other 
tractography algorithms in the Fiber Cup test, the present method was shown to perform superiorly to the majority of the 
other methods. In fact, the proposed test performed the third best out of the ten available methods, which demonstrates that 
present method can accurately formulate the brain white matter fiber reconstruction. 
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1. Introduction 

The unique ability of diffusion weighted MRI (DW-MRI)- based fiber tractography to map, in vivo, 
the architecture of white matter pathways has ignited strong interest in clinical and neuroscience 
research [1]. This strong interest stems from its various applications, such as an improved assessment 
of a range of neurological and psychiatric disorders [2] as well as characterization of anatomical 
connections [3]. Accordingly, the potential of tractography to help map these anatomical connections 
has played a significant role in motivating an ambitious project to map the human “connectome” [1]. 

A large number of tractography algorithms have been developed to map fibers throughout the entire 
brain. Of which, the most frequently used is the diffusion tensor (DT) model [4], which estimates 
fibers from diffusion tensor imaging (DTI). The DT model’s popularity stems from the simplicity of 
both it as well as its imaging acquisition, which requires as few as six diffusion weighted images 
(DWI) and is compatible with clinical conditions. However, the largest disadvantage associated with 
the DT model is that only one fiber can be tracked per voxel, which means that the model performs 
poorly when dealing with the crossing or kissing fibers in one voxel where at least two fibers are 
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expected. To overcome this limitation, various other methods were proposed as alternatives, and all of 
which can be divided into two distinct groups: either local or global methods. Local methods construct 
fibers independently path-by-path; in this case, the fibers do not influence each other [5]. The 
reconstruction of long neuronal pathways is performed in small successive steps, either deterministic 
[6,7] or probabilistic[8,9] by following the local distribution of fiber directions. Conversely, global 
methods attempt to reconstruct the fibers simultaneously, in stark contrast to the local method process. 
Each fiber is assigned a probability measure that takes into account both the likelihood with the 
measured diffusion-weighted signal and a priori anatomical knowledge [5].  

When directly compared to one another, the global methods perform much better than the local 
methods [1,5]. The primary reasons behind the global method’s superiority are that a minor 
imperfection in the rule of performing local steps can accumulate and thus, significantly affect the 
final result, and additionally, global methods give the reconstruction a larger field of view when an 
ambiguous area has to be resolved. This comparison can be offered more specifically in the Fiber Cup 
held in London in 2009 during the Medical Image Computing and Computer Assisted Intervention 
(MICCAI 2009) [1].  

However, in terms of time cost, local methods proceed much faster than global methods. For 
instance, global methods’ biggest disadvantage is the high computational cost that is associated with 
that type of method, which consequently prohibits it from clinical practical application [10]. To solve 
this problem, a novel, snake model-based brain white matter fiber tractography algorithm is presented 
in this study. In the snake model, external energy and internal energy were used to represent the local 
fiber tracking procedure and the global optimum procedure, respectively, which improved the 
traditional global methods by using local methods to approach and accelerate the global optimization. 

2. Fiber tracking method 

2.1. Fiber segment simulation 

Fiber segment simulation builds upon the model that was proposed by Marco Reisert and colleagues 
[5]. Suppose that the whole brain white matter fibers are composed of many fiber segments, and each 
fiber segment is a vector in the voxel, as shown in Figure 1. The vector’s length is 2l, its direction is 
d=(d1,d2), di R, and its middle point is used to describe the vector’s spatial position p=(p1,p2,p3), 
pi R. Therefore, the positions of the vector’s two endpoints are p+ld and p-ld, respectively, and the 
vector can be mathematically represented by a tuple X=( p, d), p R3, d R2. To describe the vector’s 
endpoints, we refer to X+ for the endpoint associated with +n, and X- for the opposite endpoint 
associated with n.  
 

 
Fig. 1. Schematic diagram of the fiber segment simulation. The black bold line represents the fiber, the arrow represents the 
direction of the fiber that is d, p represents the fiber’s middle point, 2l represents the fiber’s length, and the two balls 
represent the fiber’s endpoints. 
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The connection of two fiber segments can be transformed into the connection of two vectors, which 
is ),( 21

αα XXC , Xi X, α {-,+}. By using α, we can know which endpoint is connected with the 
other fiber segment.  

2.2. Global fiber tracking based on snake model 

Kass Witkin and Terzopoulos first presented the snake model in 1988, and it was used to track the 
movement of a human’s mouth [11]. The traditional snake model was used to segment image edges 
based on the minimization of the curve’s energy, which was composed of both internal energy and 
external energy. The internal energy is related to the image’s characters and is created by an image 
stress field, which can move the curve to the image edges. The external energy expresses the contour’s 
geometric shape and restricts the contour’s smoothness. Minimizing the energy is also a procedure of 
global optimization, which is similar to the underlying principle of the global brain white matter fiber 
tracking methods. Therefore, the present method further modifies and improves the traditional snake 
model in order to reconstruct brain white matter fibers. 

In the present design, the traditional formulation of the snake model remains, as shown in Eq. (1): 
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where }{X=Ψ  represents the ensemble of fiber segments, Einternal represents the internal energy, 
Eexternal represents the external energy, and � and � are constants.  

The definition of external energy is based upon work conducted by Marco Reisert and colleagues[5], 
which refers to the fiber tracking cost in the whole brain, as shown in Eq. (2): 
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where �={C} represents the ensemble of fiber connections, U represents the interaction potential 
between two connected segments X1 and X2, X1=(p1,d1) X2=(p2,d2), and �i�{+,-}. Therefore, U is 
defined as:  
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where p  represents the middle point of the line connecting p1 and p2.  

Internal energy refers to the squared difference between the measured signal and the predicted 
signal: 
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where p�R3 represents the fiber’s position, d�R2 represents the fiber’s direction, and p and d create a 

scalar, which is RRR �23 ×  
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The predicted signal is calculated based on the diffusion tensor two-compartment model. In this 
model, it is an assumption that all fibers pass through a voxel in the same direction. Assuming there is 
no diffusion�diffusion exchange, a simple two-compartment partial volume model is generated. The 
first compartment can model diffusion in and around the axons, with diffusion only in the fiber 
direction. However, the second models the diffusion of free water in the voxel as isotropic [12]. 

Therefore, the predicted signal is: 
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where d represents the diffusivity, bi represents the b-value, ri represents the gradient direction 
associated with the ith acquisition, f and RART represent the fraction of signal contributed by, and 
anisotropic diffusion tensor along, (�, �) represents the fiber’s direction. Additionally, A is fixed as: 
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In addition, R rotates A to (�, �). 
Based on Bayes's theorem, each of these parameters (S0, d, f, �, and �) is subject to a prior 

distribution: 
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The Markov Chain Monte Carlo (MCMC) estimation is performed for the diffusion tensor 
two-compartment model. Parameters are initialized with a least-square's diffusion tensor fit. The 
Markov Chains are then jumped 500 times without sampling as a “burn-in,” followed by 2000 times 
and then sampling every second jump to give 1000 samples. Samples are drawn from the Metropolis 
Hastings samples for all parameters [12]. 

2.3. Minimization 

The minimization of the traditional snake model is performed by making the expression’s derivative 
as zero to iteratively calculate the result. However, as the implementation of traditional minimization 
in global fiber tracking is too expensive to compute, the present method respectively minimizes both 
the internal energy and external energy. 

The external energy is composed of the squared distances from the segments’ endpoints to the 
midpoint of the line connecting p1 and p2, which is shown in Figure 2. Therefore, external energy is 
minimized by the following rules: the coordinates x1, x2 should be consistent with the internal direction  
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Fig. 2. External energy between two fiber segments. The dotted line is the target that should be minimized. 

 
d1 and d2, which means that the connecting line between x1 and x2 should not differ too much. In 
Figure 2, the dotted line is the target that should be minimized. 

Internal energy is defined as Eq. (4). This equation refers to the squared difference between the 
measured signal and the predicted signal, which are primarily related to the position and direction of 
fiber tracking in the voxel. Moreover, the fiber tracking’s position in each voxel is nearly identical, so 
direction becomes the predominant influence for the internal energy minimization. Then, Eq. (4) can 
be transformed into: 
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Where Fmeasured(p) is obtained from the diffusion tensor imaging data, and Fpredicted(p) is obtained by 

the diffusion tensor two-compartment model. Based on Eq. (7), the direction of the predicted signal (�, 
�) is subject to the prior distribution sin(�). Therefore, in each voxel, the direction that is closest to the 
measured direction can be chosen as the signal’s predicted direction. However, one more impact has to 
be considered: that is, the probability density of the chosen direction neighborhood cannot be too small, 
as shown in Eq. (9). Otherwise, the chosen direction value rarely occurs, and the accumulative effect 
may produce an unrealistic fiber tracking result. 
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where � represents the neighborhood of the chosen direction, and � represents the lower limit of the 
probability density, which in the present method is �=0.1.  

3. Experiments and results 

The experimental design in this study consisted of two parts: the phantom fiber tracking test and real 
brain white matter fiber tracking test. Firstly, the present method was used to reconstruct fiber tracking 
based on a phantom. Since the ground truth of the phantom's fiber tracking results was already known, 
the present method’s accuracy could be clearly obtained via comparison. Then, the present method 
was used to reconstruct fiber tracking based on real brain white matter data in order to demonstrate a 
practical clinic result. 
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Fig. 3. ADC image of the phantom 
dataset 

Fig. 4. Ground truth fiber tracking for the 
phantomDataset; there are seven most 
prominent bundles. 

3.1. Phantom fiber tracking test 

The phantom was from the Fiber Cup held in London in 2009 during the Medical Image Computing 
and Computer Assisted Intervention (MICCAI 2009) [1] and is publicly available on the following 
website: http://www.lnao.fr/spip.php?rubrique79. This phantom’s associated advantages are: (1) this 
phantom was elaborately manufactured (the whole procedure can be referred to from [1] and [13]); (2) 
this phantom contained various extreme conditions of fiber tracking: fiber crossing, fiber kissing, as 
well as bundles of different curvatures; (3) many famous fiber tracking methods [14–23] have already 
conducted testing on this phantom and have been given a score based on an evaluation system, so the 
present method can be quantitatively compared with the previous tracking methods. 

The parameters for the phantom acquisition were as follows: spatial resolution was 3 mm, field of 
view FOV=19.2 cm, matrix 64×64, slice thickness TH=3 mm, read bandwidth RBW=1775 Hz/pixel, 
partial Fourier factor 6/8, parallel reduction factor GRAPPA=2, repetition time TR=5 s, 2 repetitions, 
b-value=1500 s/mm2, diffusion sensitization corresponding to the echo times TE=94 ms, and SNR=2.6. 
An ADC image of the phantom is given in Figure 3, and the ground truth of the phantom is shown in 
Figure 4.  

The phantom’s fiber tracking reconstruction results are shown in Figure 5, and there are seven most 
prominent bundles. Figure 5(A) and Figure 5(B) show the reconstruction result of the high curvature 
fibers; Figure 5(C) and Figure 5(D) show the reconstruction result of the crossing fibers; and finally, 
Figure 5(E), Figure 5(F), and Figure 5(G) show the reconstruction result of the kissing fibers. From 
the given results, it is clear that the present method can resolve all of these complicated fiber 
configurations in the phantom test.  

The evaluation system of phantom analysis also gives a score for the reconstruction results, which 
allows for quantitative comparisons between different methods. This evaluation system relies upon the 
point-based Root Mean Square Error (RMSE) between the construction results and the ground truth 
[1]. The other ten methods and their associated scores are the following (listed in decreasing score 
order): Global tractography [5] 116 score, FOD-SH with constrained spherical deconvolution and 
streamline tractography [16] 87 score, Combined 2-DT model estimation and streamline tractography 
[19] 31 score, ODF-SH with positivity and regularity constraints and streamline tractography [23] 19 
score, PAS-MRI and streamline tractography [20] 16 score, Adaptive 1 or 2-DT model and streamline 
tractography [15] 5 score, Single-DT and streamline tractography [21] 5 score, FOD-SH with 
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streamline tractography [22] 5 score, Single-DT with tensor deflection [18] 4 score, and Single-DT 
with streamline tractography and RK4 integration [4] 0 score. The present method obtained a score of 
78, placing it third in the previous list. Such a score means that, while the present method is superior to 
the majority of the other methods, there is still room for improvement. Notably, the global 
tractography method took two of the top-three places; however, streamline tractography (the method 
that represents the local tractography method) placed in the bottom five spots. 

3.2. Real brain white matter fiber tracking test 

The real brain DWI data was taken from a 17-year-old boy with a left-side motor seizure. The image 
acquisition parameters are as follows: 32 directions; six-channel sensitivity encoding; sensitivity 
encoding factor of two; b-value=600 sec/mm2; FOV, 22 ×220 mm; and section thickness=2.3 mm.  

 

 
Fig. 5. Phantom fiber tracking results; the seven most prominent bundles are shown. 

 

    
 

      (a) CCtoM1             (b) CG                 (c) IFO                 (d) CST 

Fig. 6. Diagram of several well-known fiber bundles: (a) callosal fibers coming from the left motor cortex (CCtoM1), (b) the 
cingulum (CG), (c) the inferior fronto-occipital fasciculus (IFO), and (d) corticospinal tracts to the left motor cortex (CST). 
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Our method’s computation time was compared with Jbabdi’s global tractography based on Bayesian 
framework [24]. Both methods ran on the same computer workstation to reconstruct the whole brain 
white matter fiber tracking. Our method’s computation time is about 50 minutes, whereas the other 
needs several hours because of the huge computational cost of MCMC calculation.  

As shown in Figure 6, several regions of interest (ROI) were selected to extract well-known fiber 
bundles: which are, callosal fibers coming from the left motor cortex (CCtoM1), the cingulum (CG), 
the inferior fronto-occipital fasciculus (IFO), and corticospinal tracts to the left motor cortex (CST). 
All these extracted bundles coincide with the brain’s anatomy and physiology. Therefore, the brain 
white matter fiber reconstruction result can be a source of both essential information and guidance for 
clinical and neuroscience research. 

4. Conclusion 

This paper presented a novel brain white matter fiber reconstruction method based upon the snake 
model, which is a means of globally tracking all the white matter fibers by minimizing the energy 
function. After conducting comparisons with other methods in the Fiber Cup test, the present method 
was determined to have a performance superior to the majority of other available methods. In fact, the 
proposed method performed the third best out of ten other methods, meaning the offered brain white 
matter fiber reconstruction method can accurately track the fibers as well as reasonably deal with the 
crossing, kissing, and high curvature fibers.  
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