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Feature extraction from a novel ECG model
for arrhythmia diagnosis
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Abstract. Feature extraction is a crucial aspect of computer-aided arrhythmia diagnosis using an electrocardiogram (ECG). A
location, width and magnitude (LWM) model is proposed for extracting each wave’s features in the ECG. The model is a
stream of Gaussian function in which three parameters (the expected value, variance and amplitude) are applied to approx-
imate the P wave, QRS wave and T wave. Moreover, the features such as the P-Q intervals, S-T intervals, and so on are easi-
ly obtained. Then, a mixed approach is presented for estimating the parameters of a real ECG signal. To illustrate this mod-
el’s associated advantages, the extracted parameters combined with R-R intervals are fed to three classifiers for arrhythmia
diagnoses. Two kinds of arrhythmias, including the premature ventricular contraction (PVC) heartbeats and the atrial prema-
ture complexes (APC) heartbeats, are diagnosed from normal beats using the data from the MIT-BIH arrhythmia database.
The results in this study demonstrate that using these parameters results in more accurate and universal arrhythmia diagnoses.
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1. Introduction

Arrhythmia, also known as cardiac dysrhythmia or an irregular heartbeat, refers to a large and hete-
rogeneous group of conditions characterized by abnormal activities. Some types are life-threatening,
whereas others might not be as critical but still require attention and treatment. In this paper, these
non-fatal types are the research focus. In clinical situations, diagnosing arrhythmia is primarily based
on analyzing electrocardiogram (ECQG) signals, which are both economical and non-invasive [1]. Since
a beat-by-beat human-based examination can often be very time-consuming and tedious [2], automatic
ECG analysis has become an area of intense research in recent years.

Abnormal activities of different origin sites define different kinds of arrhythmias. For example,
when another region of the atria depolarizes before the sinoatrial node, atrial premature complexes
(APC), also called premature atrial contractions (PACs) or atrial premature beats (APB), occur. How-
ever, if the heartbeat is initiated by Purkinje fibers in the ventricle, the arrhythmia is classified as a
premature ventricular contraction (PVC). PVC can be diagnosed from normal heartbeats by checking
the spacing and time between the PVC and the preceding QRS wave. It can only be distinguished from
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APC by the compensatory pause. Therefore, determining how to diagnose different kinds of arrhyth-
mias is a challenging process.

In literature, diagnosing arrhythmias by the pattern recognition scheme is generally composed of
three blocks: the preprocessing of raw biological signals, the feature extraction procedure to highlight
some of the most important patterns, and finally, a classification stage in which different classes are
identified. Among these blocks, feature extraction is a crucial step because inaccurate features could
lead to errors. Over the past years, there has been extensive literature detailing the investigation of the
performance of features extracted in the time domain [3], frequency domain [4], time-frequency do-
main [5], and wavelet package decomposition [6]. The methods can be divided into three types: the
subspace analysis (such as the principal component analysis (PCA), independent component analysis
(ICA) and sparse representation), statistical methods (such as higher order spectral features) [8], and
key points. For subspace analysis, the time domain, frequency domain or wavelet details of the origi-
nal signal are projected into different subspaces, and the main components are usually taken as the
features. The main challenge associated with this method lies in the fact that ECG signals are nonli-
near, highly subjective and fuzzy [7]; therefore, the features extracted by these methods may contain
subjective, and thus highly misleading, information. For statistical methods, the signals’ mean value,
mean square deviation, peak-to-peak value, higher order statistics of the time domain, frequency do-
main or wavelet details are taken as the features. The main drawback of the statistical method is the
ability to miss nonlinear features. Even more so, features that perform well in some cases may be lost
in another situation. Later on, ECG signals were analyzed more and more by using advanced signal
processing techniques, such as recurrence quantification analysis [9], fractal theory [10] and so on.
Although these methods are excellent for mining nonlinear features, the medical sense of these fea-
tures is unclear. In this situation, the key point’s analysis is a good solution. However, the primary
challenge is extracting the key points. In this paper, we modeled the P wave, QRS wave and T wave as
well as extracted the parameters as features to be fed to classification.

2. Material and methods
2.1. Material and Pre-processing method

All the data is from the MIT-BIH arrhythmia database [11], which contains over 109,000 labeled
ventricular beats from 15 different heartbeat types including the PVC and APC. These beats are con-
tained in 48 recordings, each of which has a 30 minute duration and includes two leads: the modified
limb leads II and one of the modified leads V1, V2, V4 or V5. Additionally, the sampling frequency is
360 Hz. The data had already been filtered by a band-pass filter at 0.1-100 Hz, and the resolution is
200 samples per mV. We used beats that are contained in recording 100, 101, 102, 103, 104, 105, 107,
109, 112, 113, 114, 115, 116, 117, 119, 121, 122, 200, 201, 205, 207, 208, 212, 220, 222, 223, 228,
232, 233, and 234 and extracted a total of 18,234 normal beats, 1987 APC beats, 3369 PVC beats, and
additional beats with typical beats.

In most literature, a certain fraction of each recording is used to train the dataset, and another frac-
tion of the heartbeats is used for the testing. However, since ECG signals are highly subjective, the
classifier trained by the mentioned kinds of features may perform well for a given database while si-
multaneously failing to predict a new person’s ECG signals. Therefore, in this paper, heartbeats ex-
tracted from some persons (recordings 103, 104, 105, 107, 109, 111, and 112) were used for training
while the other persons’ were used to test the results.
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In this paper, wavelet filtering was used to denoise the original signal. The basic wave is DB4 from
the Daubechies wavelet family since it is more similar to the QRS wave in shape than the other basic
waves.

The Pan Tompkins algorithm [12] was used to detect the QRS complex on the denoised ECG signal,
and then the ECG data was segmented so that each segment consisted of 99 samples before the QRS
mid-point and 200 samples after the QRS mid-point. Finally, each beat was normalized.

2.2. Features extraction

2.2.1. A new ECG model

ECG reflects a procedure of biological electrical changes which is inspired by a consequential ex-
citement of a pacemaker, atrium and ventricles. In a clinical situation, a single heartbeat is interpreted
as the sum of five pluses, which are called the P wave, Q wave, R wave, S wave and T wave, where a
P wave represents atrial depolarization; a Q wave is any downward deflection after the P wave; an R
wave follows as an upward deflection; the S wave is any downward deflection after the R wave; and a
T wave follows the S wave. The present feature extraction method is based on the idea of parameteriz-
ing each of these waves with a determined shape.

Since the Q, R and S waves reflect a single event, they are taken as a union and are investigated
from the viewpoints of both the time-domain and frequency-domain. In the time domain, QRS lasts
0.06-0.1s for adults, whereas kids may just last 0.04-0.08s. Moreover, many clinical results reveal that
a QRS complex will differ from another by the R-amplitudes, Q-amplitudes and S-amplitudes. There-
fore, a model with three parameters (the Locations, Widths and Magnitudes, and LWM model) may be
enough to describe a QRS complex. Figure 1 illustrates a QRS complex from the MIT-BIH arrhyth-
mia database from both the time and frequency-domain view. In the low frequency section, the rela-
tionship existing between the frequency and log-magnitude resembles a quadratic curve. Therefore, a
profile following a Gaussian distribution is a suitable shape to start with:

s

3
ZQRS(I) = dee (’% (1)
K=1

where d* refers to a magnitude, 7% represents the locations and O denotes a single wave’s width. A
synthesized QRS complex is shown in Figure 2.
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Fig. 1. Typical QRS complex from the MIT-BIH arrhythmia database.
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Fig. 2. A synthesized QRS complex (red line) consisting of a Q wave (ZQ), R wave (ZR) and S wave (ZS) using the LWM
model.

Note that the relationship between the locations of the three waves is mostly fixed; therefore, the
model in Eq. (1) can be simplified as:

_[t *tkz‘*'a(rrk]*rrkz)]z _(t _tk2)2 _[t _tszb(crkl‘rakz)]z
ZQRS(t) = dk]e O'%I —J’_dkze 0%2 + dk3€ 0%3 (2)

where aand b are constant and can be obtained from a statistical analysis.

The P wave is yet another important part of a heartbeat. A normal P wave lasts 0.05s-0.1s, although
some abnormal beats may have a P wave that lasts more than 0.11s. Additionally, the amplitudes vary
among the 0.05mV to 0.25mV range. For consistency with the QRS complex model, using a LWM to
describe the P wave is the best choice. Again, we analyze the P waves from both a time-domain view
and a frequency-domain field.

Although most P waves are quite smooth and symmetric, there are other existing kinds of profiles,
such as dual-peaks waves and bidirectional waves. Therefore, a single Gaussian function is not enough
to describe P waves. A combination of two Gaussian functions may cover:

4 p? Ut tyteorl
Z(t)=dune & Tdie < ®)
where @k refers to a magnitude, Tk represents the location, 9% denotes a single wave’s width and ¢
is a constant. In this paper, c=0.45 is experimentally set. Synthesized P waves for each type are

shown in Fig. 3.
T waves usually last 0.05-0.25s and are morphologically very similar to P waves. Therefore, the
same expression is used to describe T waves. Thus, the model is then given as:

Z(t) :ZP(Z‘)+ZQRS(ZL)+ZT(ZL) (@)

where Z:(t)has the same expression as Z»(¢). Then, determining how to extract the parameters be-

comes the core problem.
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Fig. 3. Synthesized P waves for a smooth P wave with a single peak (a), a dual-peak wave (b) and a bidirectional P wave (c).

2.2.2. Parameters recovery method
From a statistical view, to obtain unknown parameters is to infer the parame-

9:{dl,"'d%tl"'t}sO‘la”'O-S}

ters , given the knowledge of the noisy discrete ECG signal, y. In

order to find the best set of 0 = {d,t,c} , we define the error as in Eq.(5).

e=ly—7 )

Ideally, the goal would be to directly minimize & as defined in (5); however, this does not seem to
be suitable as the dependence of z(7) on 0 is highly nonlinear. During the experiments, we used a

greedy algorithm in an attempt to find a global, optimal solution. Even though the global optimal algo-
rithm generates quite a low error, time-domain aliasing was the primary issue encountered. In other
words, the estimated parameters did not clearly reveal medical features as was expected. Thus, deter-
mining a local, optimal solution would address the problem.

To find a local solution, a heartbeat must be further segmented. The order of each wave was fixed,
and it was already known that the R-peak is the 100" sample; therefore, in fitting the QRS, the P and T
wave in a local region becomes possible. In this paper, the trust-region method, a simple yet powerful
tool for optimization, was used. Then, the process of parameter estimations was improved and was
segmented into two phases, as shown in Figure 4.

For i=1:Kb
,,,,,,,,,,,,, Phase 1:QRS parameters update , Phase 2: P, T wave parameters update
Randoml Using trust-region Randoml Using trust-region ||
Y method to estimate ECG signals Y method to estimate || |
> generate — generate e
G andd c.and d segment t 6andd t O-.andd
in (2) in(3)

Fig. 4. Flowchart of the parameters extraction method.
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Fig. 5. The fitting result for the APC beat (left) and PVC beat (right). The red lines refer to the original signals, and the black
ones refer to the synthesized signals.

Because ¢, =100 was already known, we only needed to estimate ¢ and d in Phase 1. In Phase 2,
in order to cut the computational load, we took a segment from the first sample to (100 —rg)th (not
a sample for P wave extraction) and another segment from (100+7 g z+1)th to the last sample for the

T wave segment with the fact that the order of waves are fixed. A final estimation result can be seen in
Figure 5.

2.3. Classifiers

2.3.1. SVM Classifiers

A support vector machine is a non-linear network based upon statistical learning principles. In par-
ticular, it has the ability to classify unseen patterns with a small set of data as the training material and,
therefore, is widely used in the pattern recognition scheme. The SVM finds the hyper-plane that max-
imizes the separation margin between the two different classes while also minimizing the structure risk.
Samples are seen as points, and if the patterns are not linear, these points would be mapped into a
higher dimension space. This transformation is carried out by kernel function. Literature has incorpo-
rated the use of many kinds of kernel functions, such as the Sigmoidal function and the Polynomial
and Radial Basis Function kernels. In this paper, a Least Square SVM (presented by Suykens and
Vandewalle) [1] was used as was the case in [2].

2.3.2. Neural network classifier

The neural network is famous for its robustness, memory capacity, nonlinear mapping ability and
strong self-learning ability. In this paper, two kinds of neural networks are used. One is a common
three-layer feed-forward neural network (MLP), and the other is an adaptive three-layer feed-forward
neural network, which we called A-MLP. The only distinguishing factor between the two is the activa-
tion function. For MLP, we used an S-function as its activation function, but for A-MLP, we used:

a
e ©

where o and S are parameters that are decided during the training process. The input layer con-

tains 16 nodes because 16 features are selected from the high dimension feature space. The output
layer contains 4 neurons that correspond to the four classes that were used. For MLP, we chose 10
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Table 1
Result for training set

Normal beats APC PVC
Acc(%)  Spe(%) Sen(%)  Acc(%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%)
Train- MLP 97.49 96.27 98.62 96.13 94.34 97.15 96.83 96.34 96.18
ing set SVM 98.65 97.43 98.76 95.42 93.53 93.27 97.17 97.18 97.03
A-MLP  99.63 99.74 99.68 98.17 96.87 94.37 94.65 99.01 97.12
Testing MLP 87.37 82.17 81.27 90.39 92.03 90.22 88.51 92.02 87.25
set SVM 89.34 83.32 82.21 91.62 93.07 91.19 92.15 91.33 88.13
A-MLP  92.37 93.53 91.89 93.63 95.29 94.56 92.55 92.41 92.01

neurons for the hidden layer in order to obtain the highest accuracy, and for A-MLP, the hidden layer
consisted of 8 neurons by trail. The learning algorithm for the MLP used in this paper was the back
propagation. The error between the desired response and obtained response was calculated and then
used as a feedback for upgrading the network weights. The training process stops until the error reduc-
es to less than a threshold.

3. Results and discussion
3.1. Simulation result

In this section, the proposed method was tested for three types of heartbeats: normal beats, PVC
beats and APC beats. Firstly, for each heartbeat, 16 features were extracted (including Locations,
Widths and Magnitudes of each pulse and R-R intervals). The extracted parameters were further tested
by being fed to three classifiers. Three measures were taken to evaluate the results for both the training
set and testing set: the accuracy, sensitivity and specificity, the definitions of which can be found in
[17]. The classification results are shown in Table 1.

Table 1 shows the classification result for the training set. Although the leaning algorithm for A-
MLP is more complicated than the other two’s leaning algorithm, it achieves the highest accuracy for
both the training set and testing set. For the testing set, A-MLP obtains a maximum accuracy of
92.37%, 93.63%, and 92.55% for normal beats, APC and PVC, respectively, meaning that, when our
method is used for other people whose ECG signals are not concluded in the training set, we can also
obtain a high probability for an accurate diagnosis.

3.2. Comparison between other feature extraction methods

In this section, we present some popular feature extraction methods and then compare them with our
work. In paper [13], the Wavelet analysis was chosen as a feature extraction method; the wavelet coef-
ficients are fed to three dimensionality reduction techniques before being used as the input of the clas-
sifiers. They found that Daubechies 8 (Db8) yielded the highest accuracy (96.8%). In Amit and Shan-
tanu’s work [14], the local fractal dimension (LFD) at each sample point of the ECG waveform is tak-
en as the feature, and a nearest neighbor is used as a classifier. They finally generated a sensitivity of
93.15% for normal beats and 91.07% for V arrhythmia. In paper [15], both linear (such as normalized
low frequency power, normalized high frequency power, and so on) and nonlinear features (such as
approximate entropy, hurst exponent, and so on) are used. They yield accuracy as high as 84.6%. In
paper [16], the authors use higher order statistics (HOS) of the wavelet packet decomposition (WPD)
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Table 2

Comparative results of different feature selection methods

Authors Features/techniques Classifiers Arrhythmia Accuracy (%)
Donna Giri et. al Wavelet coefficients/ICA Neural network 2 beats types 98.6

Kim et. al linear and nonlinear feature ~ Different Classifiers 3 beats types 84.6

Amit and Shantanu  Local fractal dimension Nearest neighbor algorithm 6 beats types 93.15(Sen)
Kutlu and Kuntalp WPD coefficients’fHOS k-NN 5 beats types 90(Sen), 98(Spe)
In this work Parameters of LMW A-MLP 3 beats types 99.98

coefficients for the purpose of automatic heartbeat recognition. The classification accuracy of the pro-
posed system is measured by an average sensitivity of 90%, average selectivity of 92% and average
specificity of 98%.

As shown in Table 2, it is clear that, in comparison with other methods, the new methodology yields
the highest possible accuracy in classification.

4. Conclusion

In this paper, we addressed the problem of extracting features of ECG signals. We presented a novel
ECG model whose parameters have a clear medical sense. We introduced a local extract method to
find the locations, widths and magnitudes. Through comparing the synthetic and real ECG signals, we
observed that this approach performed well after having been improved. We also show that this medi-
cal information can be fed to classifiers for arrhythmia diagnosis. Perhaps the most important observa-
tion made is the following: this presented approach’s success does not depend on how similar they are
to normal heartbeats. Thus, it can be used for arrhythmia diagnosis. In the frequency-domain, the fit-
ting LMW low-frequency coefficients can coincide well with those of the originals. This suggests that
the LWM model could also be a potential method for ECG signal denoising or ECG compression.

However, there are some remaining constraints. The parameter extracted method is sensitive to prior
knowledge. For some types of arrhythmias that miss some waves, the parameters can just represent
noise information instead of real waves. Further work can also be conducted to improve the computa-
tional load of the parameters extracted method.
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