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Abstract. Magnetic detection electrical impedance tomography (MDEIT) is an imaging modality that aims to reconstruct the 
cross-sectional conductivity distribution of a volume from the magnetic flux density surrounding an object. The MDEIT in-
verse problem is inherently ill-posed, necessitating the use of regularization. The most commonly used L2 norm regulariza-
tions generate the minimum energy solution, which blurs the sharp variations of the reconstructed image. Consequently, this 
paper presents the total variation (TV) regularization to preserve discontinuities and piecewise constancy of the MDEIT re-
constructed image. The primal dual-interior point method (PD-IPM) is employed for minimizing the TV penalty in this pa-
per. The proposed method is validated by MDEIT simulated data. In comparison with the performance of L2 norm regulariza-
tion, the results show that TV regularized algorithm produces sharper images and has better robustness to noise. The TV re-
gularized algorithm preserves local smoothness and piecewise constancy, leading to improvements in the localization of the 
reconstructed conductivity images in MDEIT. 

Keywords: Magnetic detection electrical impedance tomography, inverse problem, regularization, total variation, primal 
dual-interior point method 

1. Introduction 

Magnetic detection electrical impedance tomography (MDEIT) is an experimental imaging tech-

nique that aims to compute the cross-sectional conductivity distribution of a volume from the magnetic 

flux density detected around the object. The conductivities of biological tissues contain the anatomic, 

physiological and pathological information [1]. The conductivity can provide the diagnostically valua-

ble information of the human body compared with CT and MRI. However, electrical impedance to-

mography (EIT) detects the surface voltage by electrodes on the surface, leading to more errors and 

less measurements. Since measurements of the magnetic flux density are contactless, MDEIT can 

record a greater number of measurements with precise detector positions. 
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The inverse problem of MDEIT is ill-posed. Consequently, the regularization algorithms have been 

applied to the image reconstruction [2,3]. However, these L
2
 norm regularization methods limit the 

capability of describing sharp variations in conductivity and tend to smooth out edges in images. The 

human images have clear organ boundaries that present sharp variations in conductivity. The ability of 

reconstructing sharp changes should lead to a better estimation of the boundaries and a better accuracy 

of the estimated values. The L2
 norm regularizations blur the boundaries and make it difficult to esti-

mate the size and the contrast value. The paper investigates a regularization method that preserves the 

edge information in the reconstructed conductivity image. 

The total variation (TV) minimizing function regularization preserves discontinuities in the recon-

structed profiles [4]. Therefore, the TV regularization is employed to reconstruct the images in 

MDEIT. The TV is defined as the L1
 norm of the differences between neighboring pixels. This particu-

lar form of the TV penalty enforces sparsity on pixel differences and consequently tends to generate 

images with piecewise constant regions and sharp boundaries. 

2. Magnetic detection electrical impedance tomography  

The MDEIT system consists of two aspects: forward problem and inverse problem. The forward 

problem computes the magnetic flux density B surrounding the object from the known conductivity 

distribution σ according to the boundary value problem and Biot-Savart law [5,6] 
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For the inverse problem of MDEIT, Ireland just constructed the current density image. The conduc-

tivity distribution reconstruction is remained to be solved [3]. In this paper, the reconstruction of the 

conductivity image is described. The inverse problem of MDEIT can be viewed as seeking a solution 

of the optimization problem. 
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where F(σ) is the forward operator. Regularization is a method that uses well-conditioned approxima-

tion including proper side constraints to generate stabilized solution. The well-known method is Tik-

honov regularization, in which the residual norm and the L
2
 norm penalty are combined with the cost 

function [7] 
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where λ is a positive regularization parameter, L is a regularization matrix. The optimization problem 

is solved iteratively based on the Gauss-Newton method, obtaining the updated equation as follows: 
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where k is the iteration number, Δσk is the conductivity update, and Ak is the Jacobian matrix.  

The conductivity of biological tissues changes violently for different tissues, physiological and pa-

thological states, corresponding to the sharp edges among different tissues. Therefore, the recon-

structed conductivity image should have the discontinuous profile. However, L2
 norm regularization 

stabilizes the inverse problem by blurring the sharp edges among blocky structures. The TV regulari-

zation can generate images with piecewise constant region and sharp boundary. 

3. Total variation regularization 

The TV regularization was first proposed for the image denoising [8]. This regularization method 

improves the ill-conditioned nature of the corresponding coefficient matrix, and recovers disconti-

nuous images. For the conductivity image σ, the TV is defined as 
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where▽σ is the step change of conductivity between the neighboring element pair, m(i) and n(i) are 

element indices of the ith neighboring element pair. The TV penalty cannot be straightforward mini-

mized because of its non-differentiability. To remove its non-differentiability, TV side constraint can 

be approximated as smoothed TV penalty 
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where δ is a constant with a small positive value, which enforces the differentiability of the TV penalty. 

Then the cost function of the inverse problem regularized by the approximate TV penalty is 
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Several different algorithms have been proposed for EIT with TV regularization, for example, 

steepest descent, Markov Chain Monte Carlo (MCMC), and Primal Dual-Interior Point Method (PD-

IPM) [9–11]. The PD-IPM does not require the control of the parameter δ, and results in a better ap-

proximation of the TV penalty [11]. PD-IPM is applied to MDEIT with TV regularization and the up-

dates of the primal and dual variables can be obtained. 
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4. Simulations and results 

In this section, the performance of the TV regularization algorithm was evaluated and compared 

with the L
2
 norm penalty. The evaluation was conducted on 2D and 3D simulated data. The 2D simu-

lated phantom is shown in Figure 1(a). The background conductivity was set at 1 S/m, and the small 

inclusions presented the same value of 2 S/m. The 10 mA current was injected by one pair of opposite 

electrodes shown in Figure 1(b). The total element number is 2160 for simulating the magnetic flux 

density data (forward model) and 540 for the image reconstruction (inverse model). Figure 1(c) shows 

the positions of the magnetic flux density measurement coils at 120 equally spaced angles along three 

equally spaced circles surrounding the circular imaging object, which results in 360 measurements. 

For 2D simulated phantom, only magnetic flux density Bz can be recorded by coils at these positions, 

so the orientations of coils are displayed as Figure 1(c). 

In order to validate the feasibility of the TV regularization for 3D MDEIT reconstruction, a simple 

3D cubic model with the size 20 × 20× 3 cm3
 was constructed to perform the simulation, which is 

shown in Figure 2(a). The 10 mA current was injected by the electrodes shown in Figure 2(a). The 

forward problem was calculated on the finer mesh with 7200 elements, while the conductivity images 

were reconstructed on the coarse mesh with 1200 elements of size 1 cm × 1 cm × 1 cm. The back-

ground conductivity of the model was 1mS/cm. The simulated phantom had two inclusions with dif-

ferent conductivities 2 mS/cm and 0.5 mS/cm in the top and bottom parts, respectively. Figure 2(b) 

shows the tomographic conductivity map of the phantom. The “measured” magnetic flux density data 

By were obtained by calculating the forward problem. The positions of the magnetic flux density mea-

surement points are displayed in Figure 2(c). All the measurement points located in the six planes sur-

rounding the imaging object were marked. Distance between the planes and the 3D phantom was 1 cm, 

and spacing between the measurement points was also 1 cm. 
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(a)                                                 (b)                                          (c) 

Fig. 1. The 2D simulated phantom. (a) Conductivity map of the model, (b) the opposite electrodes covering 2 elements lo-

cated in the horizontal direction at the center, (c) the diagram displaying the positions of the coils. 

 

 

(a)                                                           (b)                                                          (c) 

Fig. 2. The 3D simulated model. (a) The model with the electrodes, (b) tomographic conductivity map of the model, (c) the 

diagram displaying the positions of measurement points surrounding the object. 

 

The numerical experiment for highlighting the convergence behaviour of the total variation regula-

rized algorithm was performed. In the paper, the conductivity image was reconstructed from the simu-

lated data with no noise, selecting 10-7
 as the regularization parameter for the noise free case. The con-

vergence behaviour of the TV regularized algorithm for the 2D phantom is illustrated in Figure 3. The 

total variation regularized algorithm shows steady decrease in the error norm over the first 5 iterations. 

Convergence is achieved by the 5
th
 iteration - there was no appreciable change in the error norm and 

total variation after the 5th
 iteration. 

In actual measurements, there will be some necessary noises. In order to test the noise robustness of 

the reconstruction algorithms, white Gaussian noises with different noise levels were added to the si-

mulated magnetic flux density data. The noise level was represented by signal-to-noise ratio (SNR) 

measured in dB. Figure 4 illustrates the noise performance of L
2
 norm and TV regularized algorithms 

for the 2D simulated phantom. For the quantitative evaluation of errors, the relative L
2
 error of the re-

constructed image is defined as follows, 

 

2 2
Re

r t t
= −σ σ σ

 (10) 

 

where σr is the reconstructed solution, σt is the true image. The relative errors of the above recon-

structed images are shown in Table 1. For the 3D simulated phantom, Figure 5 displays the recon-

structed conductivity images of the central slice using L2
 norm and TV regularized algorithms.  
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(a)                                                                          (b) 

Fig. 3. The convergence behaviour of the TV regularization for the 2D phantom. (a) Difference between the true image and 

reconstructed image against the iteration number, (b) total variation against the iteration number. 

Table 1  

The relative error of the reconstructed conductivity images for different SNR 

SNR 80 dB 70 dB 60 dB 50 dB 40 dB  

L
2 norm regularization 0.1158 0.1265 0.1447 0.1671 0.1714  

TV regularization 0.0078 0.0357 0.1176 0.1561 0.1649  

 

80 dB                             70 dB                             60 dB                             50 dB                            40 dB 

 
(a) 

 
(b) 

Fig. 4. Reconstructed conductivity images for 2D phantom. (a) The reconstructed results for L2 norm regularized algorithm, 

(b) the reconstructed results for the TV regularized algorithm. 

 

Even though noise was added to the simulated magnetic flux density, the conductivity can still be 

accurately reconstructed. It can be reconstructed with a satisfactory result when the SNR is superior to 

60 dB, while the results get worse when SNR is lower. Results show an exciting performance of ro-

bustness to the noise. The TV regularized algorithm produces the sharper images. Figure 6 shows the 

profile maps of the conductivity images produced by the L2
 norm regularized algorithm and the TV 

regularized algorithm along the horizontal lines through the two inclusions of the images. The TV re-

gularized algorithm is capable of showing a better separation between the different inclusions, while 

the L2
 norm regularized algorithm shows a smoother transition, offering a less clear separation be-

tween inclusions. 

 

 

L. Hao et al. / Magnetic detection electrical impedance tomography with total variation regularization2862



70 dB                                     60 dB                                    50 dB
 

 

(a) 

 

(b) 

Fig. 5. Reconstructed conductivity images from the magnetic field data with different noise levels for 3D phantom. (a) The 

reconstructed results for L2 norm regularized algorithm, (b) the reconstructed results for the TV regularized algorithm. 

 

(a)                                                    (b) 

Fig. 6. Profile plots of the conductivity images along the horizontal lines through the two inclusions of the images for 70 dB 

shown in Figure 5. (a) The profile plots along the top lines, (b) the profile plots along the bottom lines. 

5. Conclusion 

In this work, the TV regularization is applied to the inverse problem of MDEIT. The primal dual-

interior point method was employed for efficiently minimizing the TV penalty. Through the simula-

tions of 2D and 3D conductivity image reconstructions, it is shown that the TV regularized algorithm 

produces sharper images compared with the traditional L2
 norm regularization, and has better robust-

ness to noise.  

The TV regularization leads to improvements in localizing the inhomogeneities in MDEIT. Fur-

thermore, the sharp edges and piecewise constancy of the TV regularization may encourage the en-

hancements in clinical applications. For example, MDEIT may be useful in the detection of cancer that 

is the localized high impedance tissue. Additionally, MDEIT might improve current imaging tech-

niques in the dynamic continuous real-time monitoring of the imaging object such as the brain. But 

MDEIT still struggles to produce images with good resolution that are routine in CT and MRI because 

of the inherent ill-posedness of MDEIT inverse problem. A larger number of injections and an im-

proved set of coil positioning may lead to further improvements. 
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