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Abstract. To address the lack of 3D space information in the digital radiography of a patient femur, a pose estimation meth-
od based on 2D–3D rigid registration is proposed in this study. The method uses two digital radiography images to realize the 
preoperative 3D visualization of a fractured femur. Compared with the pure Digital Radiography or Computed Tomography 
imaging diagnostic methods, the proposed method has the advantages of low cost, high precision, and minimal harmful radia-
tion. First, stable matching point pairs in the frontal and lateral images of the patient femur and the universal femur are ob-
tained by using the Scale Invariant Feature Transform method. Then, the 3D pose estimation registration parameters of the 
femur are calculated by using the Iterative Closest Point (ICP) algorithm. Finally, based on the deviation between the six 
degrees freedom parameter calculated by the proposed method, preset posture parameters are calculated to evaluate registra-
tion accuracy. After registration, the rotation error is less than l.5°, and the translation error is less than 1.2 mm, which indi-
cate that the proposed method has high precision and robustness. The proposed method provides 3D image information for 
effective preoperative orthopedic diagnosis and surgery planning. 
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1. Introduction 

Robotics, computer technology, and image processing technology are combined with clinical surgi-
cal operation in a new field of study called computer integrated surgical systems and technology (CIS) 
[1]. CIS aims at combing computed tomography (CT) or magnetic resonance imaging (MRI�
information with a 3D positioning system to achieve the preoperative display, preoperative planning, 
and intraoperative positioning of the human anatomy. Medical robotics and computers are used to aid 
in surgery. Surgical operation is gradually separated from the work of the hospital surgeon and is 
transferred to an engineering system that involves engineering technicians and medical rehabilitation 
personnel [2]. 

A 3D pose estimation system based on 2D images significantly affects computer-aided diagnosis 
and virtual operation [3]. This effect can mainly be attributed to the fact that 3D imaging techniques, 
such as CT, have harmful radiation effects on patients, entail high medical cost, and require complex 
equipment operation [4]. Therefore, these approaches are unsuitable for use as routine diagnostic 
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methods for orthopedic diseases. Simply using 2D images for fracture pose estimation cannot satisfy 
the requirement of accuracy because of the lack of 3D spatial information. For example, Caponetti [5] 
used B-spline interpolation to complete a 3D reconstruction of the femoral shaft on the basis of tradi-
tional radiographs. Dumas [6] used two orthogonal digital radiograph images to reconstruct a 3D pose 
of the femoral shaft. As a result of limited information, this method only roughly recovers the model 
framework and has low accuracy. Jerbi [7] presented a well-adapted method to estimate the motion of 
the bone using a new acquisition technique, the EOS system. The method allows the acquisition of 
data in weight-bearing positions. It also benefits from this technique by reducing the rate of exposure 
to X-ray during acquisitions. 

In studies of femur surgical replacement, doctors have found that introducing a universal femur 3D 
model into the process of orthopedic surgery can reduce the misalignment problems of fracture break 
end reset attributed to positioning error. Therefore, the universal femur 3D model has an important 
contribution to the development of 2D image navigation surgery and minimally invasive operations  
For example, Gamage [8] used a femoral 3D model that reconstructs preoperative rectification with 
two or more X radiographs captured during surgery, thus completing the robot visual navigation for 
fracture repair surgery. However, the method has unsatisfactory robustness. The proposed method is a 
2D–3D registration system that uses the frontal and lateral digital radiography (DR) images of the pa-
tient femur and a universal femoral model to achieve 3D femoral model preoperative visualization. A 
2D registration method that uses the scale invariant feature transform (SIFT) algorithm can solve prob-
lems associated with image rotation, translation, and other issues in medical image registration. 
Matching feature points are stable and can well reflect the characteristics of 2D images. The transla-
tion vector and rotation matrix are calculated by using the iterative closest point (ICP) algorithm.  

2. An overview of the proposed algorithm 

2.1. Main steps of femoral model 3D pose estimation 

The objects of femoral 2D–3D image registration are the CT volume data of the universal femur and 
the patient frontal and lateral DR images. The main steps of femoral 2D–3D image registration are 
shown in Figure 1. 

(1) Calibration of DR imaging system. By using the method proposed in the literature [9], calibrate 
the DR imaging system. The relevant parameters of the imaging system are obtained. These parame-
ters describe the relationships between 2D images and 3D space.  

 

 

Fig. 1. Main steps of the proposed algorithm. 
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(2) Obtaining femoral image data. Frontal and lateral DR images of the patient femur are obtained. 
Meanwhile, a universal femur is scanned by using CT to acquire universal femoral CT volume data. 

(3) Generation of digitally reconstructed radiographs. The calibration parameters are used to simu-
late a digital radiography system, project the universal femoral CT volume data to a 2D image plane, 
and obtain digitally reconstructed radiograph (DRR) images. The initial image registration of 2D digi-
tal radiography with 3D CT volume data is transformed into 2D DR image and 2D simulation DRR 
image registration. 

(4) 2D–2D image registration and 2D-3D pose estimation. The objects that need to be matched are 
the frontal and lateral DR images of patient femur and DRR images of the universal femur. The im-
proved SIFT algorithm is used to detect the matching feature points of these 2D images. The corre-
sponding registration parameters are obtained by using the ICP algorithm. The registration parameters 
are employed to adjust the 3D universal femoral model and then determine the 3D pose of the patient 
femur model that has to be reconstructed. 

2.2. Reconstruction of the universal femur model and DDR generation 

The 3D reconstruction of a universal femoral model has laid an important foundation for the realiza-
tion of femoral 2D–3D image registration. The 3D universal femur model can serve as a reference 
model for the subsequent 3D pose estimation. In view of the reconstruction technology, the CT scan is 
relatively mature and can achieve high accuracy in 3D reconstruction [10]. Therefore, we can establish 
a 3D universal femur model with the aid of CT. The construction of the model mainly involves several 
steps. First, we conduct CT scan and data preprocessing. On the basis of the characteristics of patient 
femur, doctors select a piece of femur from the femoral sample as a universal femur. Then it is using 
CT equipment to accomplish the tomography of universal femur. After a preliminary image processing, 
universal femur tomography images are imported, and the marching cube algorithm is used to recon-
struct the 3D model of universal femur. Second, we obtain the frontal and lateral projection images of 
the universal femoral 3D model by using the digitally reconstructed radiograph technology. The DRR 
images are shown in Figures 2(b) and 2(c). 

 

 
(a) Universal femur image                  (b) Frontal DRR image                 (c) Lateral DRR image 

Fig. 2. Universal femur and its projection images. 
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3. 2D–2D registration of projection image based on SIFT algorithm 

3.1. Introduction of the SIFT algorithm 

The steps of the SIFT algorithm [11] are as follows: 
1) Finding the local extrema in scale-space. To detect the stabilized keypoints in scale-space effec-

tively, the differential Gaussian scale-space (DOG scale-space) is proposed by using the different 
scales of the Gaussian kernel convolved with the image. 

 
( , , ) ( ( , , ) ( , , )) ( , ) ( , , ) ( , , )D x y G x y k G x y I x y L x y k L x yσ σ σ σ σ= − ∗ = −  (1) 

 
To detect the local maxima and minima of ( , , )D x y σ , each point is compared with the pixels of all 

its 26 neighbors. If this value is the minimum or maximum, then this point is an extremum. 
2) Locating the extreme accurately. The SIFT algorithm determines the location and dimension of 

the extreme value point through the second-order Taylor expansion of the DOG function. The second-
order Taylor expansion of feature points 0 0 0 0(x , y , )X σ= is given by 
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3) Keypoint orientation invariance. To ensure that the descriptor possesses orientation invariance, 

we specify the direction parameters by using the gradient direction distribution characteristic of key-
point neighborhood pixels. 

 

2 2( , ) ( (x 1, ) (x 1, )) ( (x, 1) (x, 1))m x y L y L y L y L y= + − − + + − −  (3) 
( , ) tan 2(((L(x, y 1) L(x, y 1)) / (L(x 1, y) L(x 1, y)))x yθ α= + − − + − −  (4) 

 
For each image sample L( , )x y  at this scale, the gradient magnitude ( , )m x y  and orientation 
( , )x yθ  are pre-computed by using pixel differences. 
4) Generation of feature descriptor. To achieve orientation invariance, the coordinates of the de-

scriptor and the gradient orientations are rotated relative to the keypoint orientation. A keypoint de-
scriptor is created by first computing the gradient magnitude and orientation at each image sample 
point in a region around the keypoint location (16×16 neighborhood pixels). These samples are then 
accumulated in orientation histograms that summarize the contents over 4×4 subregions, with the 
length of each arrow corresponding to the sum of the gradient magnitudes near that direction within 
the region. As a result, a 4×4×8 = 128 element feature vector is generated for each keypoint. 
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3.2. Feature point matching 

For image matching, SIFT features are first extracted from a set of reference images and then stored 
in a database. A new image is matched by comparing each feature individually between the new image 
and the previous database and finding candidate matching features on the basis of the Euclidean dis-
tance of their feature vectors.  

 

2 2
1 2 1 2(x ) (y )dis x y= − + −  (5) 

 
The best candidate match for each keypoint is determined by identifying its nearest neighbor in the 

database of keypoints from training images. The probability that a match is correct can be determined 
by taking the ratio of distance from the closest neighbor to the distance of the second closest neighbor. 
We only need the stabilized matching feature point. Thus, we reject all matches with a distance ratio 
greater than 0.7, which eliminates 94% of the false matches and discards less than 4% of the correct 
matches. 

3.3. Experiment on matching feature points  

Two experiments were performed to meet the requirements of image registration. First, the SIFT 
feature detection algorithm was applied to a frontal DRR image of the universal femur 3D model and 
the patient frontal femur DR image. Second, feature matching was performed between a lateral DRR 
image of the universal femur 3D model and the patient lateral femur DR image. Experimental results 
are shown in Figures 3(a) and 3(b). The average correct match rate (correct matched points/total 
matched points) is approximately 93% and satisfactory matching results were achieved in distal fe-
murs. Theoretically, the rotation and translation of the 2D image are required only to identify two 
matching points for the number of matching feature points detected by the SIFT algorithm to meet the 
experiment requirements. This number can also ensure the accuracy of registration. 

 

  
 (a) SIFT matching result of frontal image  (b) SIFT matching result of lateral image 

Fig. 3. SIFT matching results of 2D femur images. 
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4. Femur model 3D pose estimation based on ICP algorithm 

Iterative Closest Point (ICP) is an algorithm employed to minimize the difference between two 
clouds of points. ICP is often used to reconstruct 2D or 3D surfaces from different scans [12]. Through 
the aforementioned preparatory work, we obtain the feature point sets { }iP p=  of the universal femur 

DRR image and feature point sets { }iQ q=  of the patient femur DR images. 1, 2i k= �  refers to the 
number of matching feature points. The transformation relationship of point sets P  and Q  can be ex-
pressed as 

 

i ip Rq T= +  (6) 

 
where R  is the rotation matrix, and T  is the translation vector. We first performed center position 
registration by calculating cp  and cq , which are the centers of point sets P  and Q , respectively. 
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We set `

i i cp p p= − � `
i i cq q q= − . Based on the least squares criterion [13], the objective function 

can be expressed as  
 

2` `

1
(R,T) (Rp )

n
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i

E q T
=

= − +�  (9) 

 
The core issue of 2D image registration is computing the rotation matrix and translation vector from 

point set P  to Q  and minimizing the objective function (Eq. 9). We adopted the method of the SVD 
matrix decomposition algorithm, which is easy to implement and produces accurate calculation results. 

For the femoral 2D–3D image registration and the 3D pose estimation, the core problem is identify-
ing the space freedom parameters for 3D pose estimation. The six degree-of-freedom registration pa-
rameters are obtained by using Euler angle representations, including rotation angle ( , , )α β γ  and the 
translation vector (t , t , t )x y z , along three axes. The core transformation formula is given by 
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where ` ` `(X ,Y , )p p pZ  is the 3D point coordinate of the universal femur model, (X , , Z )p p pY  is the 3D 

point coordinate of patient femur model, and 3 1 {t , t , t }x y zT × = is the translation vector. 3 3R ×  is the ro-
tation matrix and can be expressed as  
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After 2D–3D image registration, we obtain the registration parameter ( , , , t , t , t )x y zα β γ . 

5. Experimental results and analysis 

The frontal and lateral images of patient femur were captured by digital radiography. The SIFT al-
gorithm was then used to detect the matching feature points with DRR images of the universal femur 
model. To calculate the registration parameters ( , , , t , t , t )x y zα β γ  on the basis of the iterative closest 
point algorithm, we adjusted the CT volume data of universal femur and obtained the 3D model esti-
mation of the patient femur. Figure 4 shows the pose contrast of the femoral 3D model before and af-
ter registration. Figure 4(a) shows the original universal femur 3D model, whereas Figure 4(b) shows 
the 3D model of patient femur after pose estimation. After 2D–3D registration, the rotation and trans-
lation of patient femur pose estimation exhibited good recovery. 
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(a) 3D model of universal femur  (b) Patient femur 3D model after registration 

Fig. 4. 3D pose estimation result of patient femur. 
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Table 1 

Error estimate experiment results of Pose Estimation 

 Rotation Error ( ° ) Translation error (mm) Running time (s) 
Experiment 1 1.54 1.21 1.25 
Experiment 2 1.62 1.18 1.34 
Experiment 3 1.51 1.23 1.19 
Experiment 4 1.55 1.25 1.24 
Experiment 5 1.58 1.15 1.35 
Experiment 6 1.52 1.18 1.28 
Experiment 7 1.57 1.14 1.46 
Experiment 8 1.49 1.21 1.26 
Experiment 9 1.51 1.24 1.38 

 
In practical clinic applications, the parameters of the patient femur 3D pose are difficult to obtain. 

To verify the precision of the generated patient femur 3D pose estimation, we adopted a theoretical 
evaluation method by using artificial pre-set 3D pose parameters ( , , , t , t , t )x y zα β γ . The 3D model 
pose of the patient femur is then adjusted on the basis of this value. Subsequently, we applied the pro-
posed method to calculate the 2D–3D registration parameter 

1 1 11 1 1( , , , t , t , t )x y zα β γ  between universal 
femur model and patient femur model. The error between calculated and preset parameters is used to 
evaluate the registration results. Table 1 shows the results of the nine experiments. The average rota-
tional errors of the patient 3D femur pose estimation is approximately 1.5°, whereas the average trans-
lation error is less than 1.2 mm, and the runtime of femoral pose estimation is approximately 1.3 s. 

6. Conclusion 

This study proposed a method that uses two DR images to perform femur pose estimation on the ba-
sis of 2D–3D rigid registration, through which the preoperative visualization of the patient femur is 
achieved. We validated the accuracy and robustness of the proposed method through experiments. The 
angle rotation error of femoral model was within 1.5°, the translation error of femoral model was ap-
proximately 1.2 mm. The femoral pose estimation results show that the proposed method has high ac-
curacy and good robustness. In practical clinic application, the proposed method has the advantage of 
lower cost, faster imaging, lower harmful radiation, and higher precision than the traditional diagnostic 
method of DR or CT imaging. Furthermore, the proposed method can provide effective 3D imaging 
information for preoperative diagnosis and surgical plans for orthopedic surgery. 
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