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Abstract. Ultrasound elastography has been widely applied in clinical diagnosis. To produce high-quality elastograms, dis-
placement estimation is important to generate fine displacement map from the original ratio-frequency signals. Traditional dis-
placement estimation methods are based on the local information of signals pair, such as cross-correlation method, phase zero
estimation. However, the tissue movement is nonlocal during realistic elasticity process due to the compression coming from
the surface. Recently, regularized cost functions have been broadly used in ultrasound elastography. In this paper, we tested
the using of analytic minimization of adaptive regularized cost function, a combination of different regularized cost functions,
to correct the displacement estimation calculated by cross-correlation method directly or by lateral displacement guidance.
We have demonstrated that the proposed method exhibit obvious advantages in terms of imaging quality with higher level-
s of elastographic signal-to-noise ratio and elastographic contrast-to-noise ratio in the simulation and phantom experiments
respectively.
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1. Introduction

In ultrasound elastography, a minor force exerted by the probe is required. When pressed on human
tissues, the probe will generate small deformations on tissues. Accordingly, an accurate estimation of
displacement plays an essential role in strain computation to achieve a high-quality elastogram. Because
the digitalized ultrasound echo signals are sampled discretely, the displacement estimation based on
similarity matching technique are prone to producing errors. Due to the limited sampling intervals, some
proven techniques have been used to reduce these estimated errors. These techniques can be classified
into the following types: up-sampling from the original signals [1,2], curve- or parabola-fitting on the
original signals [3,4], and curve- or parabola-fitting on the cross-correlation functions [5–7].
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It should be noted that curve- or parabola-fitting on the cross-correlation function has already re-
placed the aforementioned two methods, and has been broadly applied in the sub-sample displacement
estimations. In ultrasound elastography, curve-fitting techniques are generally used for the estimation
of sub-sample displacement along one direction, such as the parabola-fitting [6], cosine-fitting [7], and
spline-fitting [2] under one-dimensional (1D) conditions , or for the multi-dimension polynomial fitting
displacement estimation [8]. In spite of its efficient computation and favorable precision, the calculated
sub-sample displacement by curve fitting is often the optimal solution of the function composed of sev-
eral cross-correlation coefficients. However, the displacement estimation results are not accurate under
several circumstances. For example, the noises mixed in the echo signals can affect the locally optimal
solution. Moreover, the forced movements of human tissues are often continuous, and this result in the
imprecise estimation by curve fitting. Based on the hypothesis of displacement continuity, Rivaz et al.
have introduced a real-time elastography technique using analytic minimization (AM) of regularized
cost functions [9]. The sample point displacement estimation was then converted to accurate sub-sample
displacement estimation, and the obtained displacement field was continuous and smooth. However, the
displacement field is more likely to be over-smoothed using AM of regularized cost functions, especially
in the boundary regions connecting different tissues. So the tissues boundaries cannot be distinguished
easily and accurately.
In this paper, we present a displacement correction method based on analytic minimization (AM)

of adaptive cost functions for reconstructing elastograms. This method gives precise sub-sample axial
displacements by providing flexible cost function choices (i.e., cost function is not fixed). Simulation and
experimental results are provided for quantitative validation.

2. Materials and method

2.1. Initial displacement calculations based on quality measurement

The displacement estimation methods based on cross-correlation analysis can be applied properly in
only one direction or the combination of the two. To ensure an accurate initial displacement estimation
of seed RF-line, the propagation of estimation errors to the adjacent points along RF-line should be
avoided whenever possible, and therefore the multi-directional guidance tracking method [10] is used.
Furthermore, lateral guidance is a common method for displacement initialization. In this paper, initial
displacements of non-seed RF-lines are assigned by using lateral guidance. Although the calculations
of the initial displacements of all non-seed lines can be omitted, the errors in the lateral displacement
calculations may be amplified, imposing some bad effects on the quality of image. Accordingly, multiple
seed RF-lines and quality measurement are both necessary. When performing the initial displacement
estimations on the sample points along the non-seed RF lines, the displacements of the adjacent locations
along RF-line are evaluated by the correlation-based quality indicator [11], since the lateral displacement
is a known quantity. Finally, the sample point whose displacement with the highest cross-correlation
coefficient is elected as the initial displacement of current point.
In order to reduce the computational complexity and to avoid worm noise of elastogram, the number

of windows to estimate the displacements should be limited. The size and overlapping ratio of the com-
parison window define the number of the cross-correlation windows in the calculations of RF-lines be-
fore and after compression. Accordingly, we cannot obtain the displacements of all sample points along
RF-lines. Aiming at matching to the following design of regularized cost function, some simple prepro-
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cessing should be made, thus, making each sample point in the RF-line matched to the displacement of
the corresponding cross-correlation window.

2.2. Analytic minimization (AM) of adaptive regularized cost functions

The elastogram of phantoms exhibit a noisy appearance, especially in boundary region between in-
clusion and background if the medium contains complex structure. At least two factors contribute to the
strong noise in boundary region. First, while the elasticity phantom we have used is compressible and lo-
cally heterogeneous in boundary region, some complicated local variability may occur. Second, displace-
ment is estimated by classical 1-D time delay estimation, because biological tissues do not move in only
one dimension when compressed, and displacement estimation is easy to be effected by decorrelation
errors. Adjacent RF-lines are usually processed independently in displacement calculation.
In the AM of single regularized cost functions, displacement of all samples along a RF-line can be

regularized in the same way. However, over or less smoothness may appear in the boundary region, lead-
ing to an ambiguous boundary in elastogram. To reduce the noise in boundary region, we will perform
corrections to the displacements of difference regions with corresponding regularized cost functions. The
regularized cost functions proposed in this study meets two criteria: 1) smoothing on the displacement
is reduced or unchanged in the boundary region, and 2) smoothing on the displacement is enhanced in
inclusion and background areas. The regularized cost functions proposed by Rivaz, et al. [9,12] can meet
the first criterion, and the elastogram should be further improved by enhancing displacement smooth.
(1) Regularized cost functions for displacement smoothness (also called as the standard 1D regularized

cost functions): with regard to the displacement consistency constraint, we should consider the displace-
ment consistency of the current sample with adjacent samples along the axial direction and the lateral
direction, with the expression described as:

Ec(Δa1, ...Δam) =

m∑
i=1

{α(ai +Δai − ai−1 −Δai−1)
2 + β(ai +Δai − di,j−1)

2}. (1)

(2) Regularized cost functions for enhancing the displacement smoothness (also called as the smoothed
1D regularized cost function): to improve the smoothing effects, we should consider the displacement
consistency of the sample point with two adjacent samples along the axial direction and one sample along
the lateral direction, with the expression described as:

Ec(Δa1, ...Δam) =

m∑
i=1

{α[(ai +Δai − ai−1 −Δai−1)
2 + (ai +Δai − ai−2 −Δai−2)

2]

+ β(ai +Δai − di,j−1)
2} (2)

in which Δa1, ...Δam all denote the required offsets of displacement; ai is the initial displacement cal-
culated by cross-correlation algorithm; di,j−1 = ai,j−1+Δai,j−1 denotes the displacements of the sam-
ples in the left location, α and β are the adjustable constraint factors for axial and lateral displacements,
respectively. According to the first-order Taylor formula, the expansion of I2(i+ai+Δai, j) with regard
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to ai can be approximately written as:

Cj(Δa1, ...Δam) =

m∑
i=1

{[I1(i, j) − I2(i+ ai +Δai, j)− I′2
2
(i+ ai, j)Δai]

2

+ α[(ai +Δai − ai−1 −Δai−1)
2 + (ai +Δai − ai−2 −Δai−2)

2]

+ β(ai +Δai − di,j−1)
2} (3)

in which I′2 is the derivative of the I′22(i+ai, j) in the axial direction. The optimumΔai can be obtained
when the partial derivation of Cj with respect toΔai is zero, i.e., and the problem ∂Cj/∂Δai = 0 in Eq.
(3) can be changed to solving system of linear equations,

(I′2
2
+ αD2 + βÎ)Δaj = I′2e− (D2 + βÎ)aj + βaj−1

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1−1 0 0 0 · · · 0
−1 3 −1−1 0 0 · · · 0
−1−1 4 −1−1 0 · · · 0

0 −1−1 4 −1−1
. . . 0

0
. . . . . . . . . . . . . . . . . . 0

0 0 0 −1−1 4 −1−1
... . . . . . . 0 −1−1 3 −1
0 · · · 0 0 0 −1−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The formula in AM of the standard 1D regularized cost functions is similar with Eq. (4), in which

D1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
... . . .
0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ . (5)

Furthermore, in this case, simple symbol substitutions are performed for Eq. (4),y =I′2e − (D2 +

βÎ)aj + βaj−1 ,M = I′2
2 + αD2 + βÎ ,x = Δaj where x and y are column vectors,M is a matrix. In

the case of a discrete linear inverse problem in describing a linear system, the problem can be written as:

x=M−1y (6)

y =Mx. (7)

The objective of an inverse problem is to find the best model x (i.e. the optimalΔai values). Accordingly,
the forward problem relates the optimalΔai values to the data that we obtained from original RF signals
and initial integer displacement.
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In the calculations of sub-sample displacement, the coefficient matrixM is important for seeking the
optimal x. This is because the regularization weight α and β are tunable parameters. The two weights
penalize the difference of axial displacement between the each sample and its neighbor samples. Usually,
they are positive, large weights are applied for prevent regions with high local decorrelation but makes
the share of the data term in the cost function very small and causes over-smoothing in axial direction
or lateral direction. Due to the limit to α and β, the coefficient matrixM is strictly diagonally dominant
(i.e. |Mii| >

∑
j �=i |Mij | for all i where Mij is the i, jth element of M , whatever single cost function

or the combination of them we used ), symmetric and all diagonal entries are positive. Therefore, it is
positive definite, which means that setting the gradient of C to zero results in the global minimum of C
. The 1D AM results presented in this work are obtained with one iteration of the above equation.

2.3. Selection of adaptive regularized cost functions

The elastogram can reflect the texture and structure of human tissues. On the basis of the rough strain
information estimated from initial displacement, it is easy to make a judgement on whether the existing
estimation point locates in the boundary region, or in the inclusion and background region.
Suppose the initial axial displacement of the current sample is ai,j , the corresponding initial axial

displacements of the neighbouring samples are ai−1,j and ai+1,j , respectively; then the corrections to
displacement estimation can be achieved by performing adaptive calculations with different regularized
cost functions. The regularized cost function can be selected according to the roughly strain information
of the current sample si,j and its neighbor samples si−1,j and si+1,j .
The regularized cost function can be selected according to the roughly estimated strain of the cur-

rent sample. Then the corrections to displacement estimation can be achieved by performing adaptive
calculations with different regularized cost functions. The expression is similar as Eq. (4), written as:

(I′2
2
+ αD + βÎ)Δaj = I ′2e− (D + βÎ)aj + βaj−1. (8)

The matrix D is adaptive according to the following description:

D(i, :) =

{
D2(i, :) si ∈ background||si ∈ inclusion

D1(i, :) others
(9)

in which the threshold value is related to the strain in the inclusion and background regions. Moreover,
in accordance with the practical requirements in calculations, the local strain estimation region center-
ing on the current sample, can be expanded upward and downward to improve the accuracy of adaptive
calculations.

3. Simulations and experiments

3.1. Simulation methods

The ultrasonic echo data are simulated by a simple linear system method [13,14]. In echo simulations,
the center frequency of the probe was set as 5 MHz, with the fractional order of 75%. The sampling
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frequency was 40 MHz, and the velocity of sound speed was a constant, 1540 m/s. A two-dimensional
uniform elastic tissue model (40 * 40 mm) was adopted. To calculate the axial strain, we used a 1D axial
strain model (with the assumption of dx = 0), in which each frame was composed of 300 RF-lines, each
with 550 sample points. Different amounts of strain were applied on the model, specifically, 0.1%, 0.5%,
1%, 2%, 3% and 5%. Two models were adopted in the simulations: a uniform model and a non-uniform
model. Mainly for performing simulations on a uniform human tissue without any gelosis or cyst, the
former model can be used to study the elastographic signal-to-noise ratio (SNRe) [15] for elastography
algorithms. The second model is chiefly adopted in the simulations on a non-uniform human tissue
containing a tumor or a soft cyst, which can be used to study the elastographic contrast-to-noise ratio
(CNRe) [16] for elastography algorithms.

3.2. Phantom experiments

The ultrasound imaging system in this study is a iMago C21 ultrasound machine (Saset healthcare
Inc., Chengdu, China), and the adopted probe is a linear array probe with 128 arrays, whose center
frequency and fractional bandwidth are 5 MHz and 75%, respectively. The phantom experiments were
performed on a customized elasticity phantom CIRS Model 049 (CIRS Inc., Norfolk, Virginia, USA),
and the imaging object was a hard inclusion of 10-mm diameter, with the elasticity modulus of 63 kPa.
The RF sampling frequency was 40 MHz. During the data-acquiring process, the probe was pressed
or released manually in the axial direction at a constant speed without any additional control device.
100 frames of echo sequences were collected in the compression. The phantom experiments were then
conducted by scanning RF echo signals in real time.

3.3. Implementation of the methods

The following three methods were performed for comparisons in Matlab platform. The initial dis-
placement of seed RF-line was calculated using cross-correlation method based on axial guidance, and
the initial displacement of non-seed RF-line was calculated by lateral guidance. The displacements of
RF-lines were then corrected by AM of standard 1D regularized cost functions proposed by Rivaz,et al.
[12], denoted as CCM_AM.
The initial displacement of seed RF-line was calculated using cross-correlation method based on multi-

directional guidance, and the initial displacement of non-seed RF-line was calculated by lateral guidance
combined with quality measurement (QM). The displacements of RF-lines were then corrected by AM
of standard 1D regularized cost functions, denoted as CCM_QM_AM.
Compared with CCM_QM_AM, the third method corrected the intital displacements by the proposed

1D adaptive regularized cost function, denoted as CCM_QM_SA_AM.
In these implementations, the cross-correlation window for motion tracking included 40 sample points,

and the interval was 10 samples with the overlapping ratio of 75%. The size of SG-I differential filter,
which is used for strain estimation, was 11. The axial and lateral constraint factors α and β for displace-
ment constraint was 0.5 and 0.005, respectively.

4. Experiment and results

4.1. Simulation experiment and results

Figure 1 shows the displacements and corresponding representative elastograms calculated by the
three methods. In the simulations, the stain of tissues was 1%, and Gaussian noises were added into the

B. Peng et al. / Corrections to the displacement estimation based on AM of adaptive regularized cost functions2806



(a) (b) (c)

(d) (e) (f)

Fig. 1. Displacement estimation and elastogram quality using the different methods. Displacement map by CCM_AM
(a), CCM_QM_AM (b), CCM_QM_SA_AM (c); (d), (e) and (f) represent the elastograms of (a) (CNRe=22.3637),
(b)(CNRe=24.8355), and (c) (CNRe=30.2673).

(a) (b) (c)

Fig. 2. Comparisons of elastogram performances (a). CNRe, (b). SNRe, (c). Effects of axial constraint factor on CNRe in
elastograms.

specific RF-lines. As shown in Figure 1(a), using the first method, the wrong displacement information
was spreaded in both axial and lateral directions and the noises were amplified in strain estimation. In
contrast, no displacement estimation is improperly amplified with the use of quality measurement based
on guidance displacement, and also no obvious wrong displacement is estimated, as show in Figures 1(b)
and 1(c).
Comparison of the CNRe in calculations of elasticity imaging by the different methods is shown in

Figure 2(a), with a varying strain from 0.01% to 5%. As stated previously, the phantom in the simulations
included a hard circular inclusion. As shown in Figure 2(a), when the strain is below 0.5%, the CNRes
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calculated by the different methods are of tiny difference. As the strain increased to between 1% and
5%, the CNRe calculated by CCM_QM_SA_AMmethod is obviously higher than CNRes calculated by
other methods. The CNRes by CCM_QM_AM method is the second highest, which is superior to the
results obtained by the method without quality measurement on guidance displacement. The comparison
results indicate that quality measurement is essential when displacement is initialized by lateral guidance,
because quality measurement is conductive to the removal of wrong guidance displacement. As shown
in Figure 1(d), the circular region was selected as the inclusion region while the regions between the
circular and rectangular regions were the background region.
A uniform phantom was used for the SNRe calculations. To obtain more representative and accurate

results, the quantitative results were the average values by five separate simulations. The SNRe of each
frame of data was 20 dB with the addition of white Gaussian noises. As shown in Figure 2(b), the calcu-
lated SNRes by the different methods are close to each other when the strain varies from 0.1% to 1%. As
the strain increased to be 2%-5%, the SNRe calculated by the proposed CCM_QM_SA_AM is apparent-
ly higher than the results from other methods. Moreover, the calculated SNRe by CCM_QM_SA_AM
presents an increase while the results calculated by the other methods decrease, with the increasing strain
from 3% to 5%. On the whole, using quality measurement strategy, the accuracy of displacement tracking
can be enhanced. Most remarkably, the quality of elastogram can be most significantly improved by AM
of adaptive regularized cost functions. The region for the calculation of SNRe was the whole elastogram.
The effects of axial constrain factor on the CNRe in elastograms, calculated by these three methods,

were compared and presented in Figure 2(c). In these experiments, the axial constraint factor varied from
0.125 to 20, and the phantom in the simulations contained a hard circular inclusion, with a strain of
1%. As shown in Figure 2(c), using AM of adaptive regularized cost functions (CCM_QM_SA_AM),
an optimal CNRe can be obtained when the axial constraint factor is 2. With regard to the proposed
CCM_QM_SA_AM method, the CNRe of elastogram increases as the axial constraint factor ranges
from 0.125 to 0.25, and then decreases gradually. The CNRe calculated by CCM_QM_AM method
decreases when the axial constraint factor exceeds 2. Overall, the calculated CNRe by the three methods
all decrease when α varies from 2 to 20. The results indicate that the CNRe of elastogram cannot be
improved only by manipulating the axial constraint factor α. However, the CNRe of elastogram using
CCM_QM_SA_AM can significantly improve the visibility of the marginal area between inclusion and
background. This is because we should firstly identify the current estimation location and decide whether
it is in inclusion region, background region, or boundary region based on the prior knowledge. Especially
for a real-time monitoring treatment, this method exhibit distinct advantages in an accurate identification
of an organ’s boundary.

4.2. Phantom experiment and results

As shown in Figure 3, in the elastogram obtained by the proposed method, we can find a hard inclusion
in the scanned elasticity phantom. In the elastogram obtained by CCM_AM, we can also observe a
hard inclusion. Unfortunately, the image exhibit a poor quality and obvious noises. The cross-correlation
window for motion tracking in real phantom experiments was 100 sample points, and the interval was
20 points, with an overlapping ratio of 75%. The size of the SG-I differential filter was 31. The axial and
lateral constraint factors, α and β, were 10 and 0.005, respectively. In AM of adaptive regularized cost
functions, the thresholds for the background and inclusion were set as 0.004 and 0.002, respectively.
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(a) (b)

Fig. 3. Elastography of phantom calculated by CCM_AM (a) and by CCM_QM_SA_AM (b).

5. Discussion and Conclusion

A combination of multi-directional guidance tracking method with the quality measurement is applied
in the initial displacement of seed RF-line. Such method not only decreases the estimation error and
avoids error propagation, but also increase the accuracy for selection of adaptive regularized cost func-
tions. We have shown in Figure 1 that multi-directional guidance tracking is more robust to the signals
decorrelation while quality measurement is able to reduce errors in displacement propagation. Further-
more, the computation for more seed RF-lines will achieve more accurate initial displacement estima-
tion. The CNR and SNR results in Figures 2(a) and 2(b) seem to indicate that the adaptive cost function
provides a promising performance for elastograms. Especially in Figure 2(a), the proposed adaptive cost
function approach creates a smoother elastograms than standard single cost function while the contrast
is preserved. In Figure 2(b), the lateral regularized weight β, in Eq. (8) was kept constant at through-
out these experiments. The axial regularized weight was varied from 0.125 to 20. Figure 2(b) indicates
that the maximum CNRe of elastogram cannot be obtained correspondingly by only increasing the axial
regularized weight. In addition to that, adaptive cost function is effective to reduce the over-smoothing
effect and achieve the maximum CNRe in these experiments while varying the axial regularized weight.
In this study, we have proposed a displacement correction technique using AM of adaptive regularized

cost functions. The proposed method reduces the strong noise in boundary region and achieves more
accurate sub-sample displacement estimations by substituting adaptive regularized cost functions for solo
regularized cost function. The simulation and phantom results indicate that the proposed methods exhibit
obvious advantages in terms of imaging quality with higher SNRe and CNRe. Besides, the proposed
method does not over-smooth the boundary region between inclusion and background. By comparing
the calculated CNRe and SNRe, the superiority of adaptive regularized cost functions is proved. The
phantom imaging results indicate that the motion of scanned tissues can be estimated precisely with the
use of the proposed method, and the obtained elastography are of high SNR and CNR. Collectively,
the proposed method CCM_QM_SA_AM will be of great significances in the developments of real-
time elastography and their clinical applications, especially in real-time monitoring for thermal ablation
treatments. This new method will be tested on clinical ultrasound imaging and parameter optimizations
in the future.
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