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Abstract. This study investigated the characteristics of dynamic postural responses when subjects attempted to maintain an 
upright standing position on a support plate during continuous sinusoidal perturbation in the anterior-posterior direction. Fif-
teen healthy young subjects participated in the experiment. Body movement patterns during the perturbation were captured 
and analyzed using a 3D motion analysis system (APAS 3D motion analysis, Ariel Dynamics Inc.). Seven markers were at-
tached on the subject’s body to measure and analyze the motion patterns. The markers were positioned at the head, chest, hip, 
right knee, left knee, right ankle, and left ankle. Five different frequencies of motion were applied to the support surface: 0.1, 
0.5, 1.0, 1.5, and 2.0 Hz with a 4-cm path of motion at the base. The experiments measured dynamic postural responses in a 
condition were subjects had their eyes open. The results showed that the median frequency of the knee and ankle increased in 
all frequency bands. Following an increase in the frequency of the perturbation, the postural control strategy was changed 
from the ankle strategy to a combined strategy. These experimental results could be applied to the dynamic postural training 
for the elderly and to rehabilitation training for patients to improve their ability for postural control. 
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1. Introduction 

Postural balance is the ability to maintain the center of gravity of the human body within the ground 

support area with minimal sway, and it is an important response that allows individuals to perform 

various daily activities [1,2]. Posture control to maintain balance requires the ability to correctly pre-

dict, detect, and encode perturbations [1]. A number of strategies are employed by the body in both 

static and dynamic conditions to keep the center of gravity (COG) within the base of support (BOS) to 

successfully maintain balance. Movements at the ankle joint (ankle strategy) are utilized in response to 

smaller, low-frequency perturbations; movements at the hip (hip strategy) are utilized in response to 

larger, high-frequency perturbations; and a stepping strategy is utilized to rapidly change the dimen-

sions of the BOS in relation to the COG [1,3]. 
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Balance control is necessary for postural safety and self-reliance, and the central nervous system 

(CNS) coordinates the position and movement of the body relative to external objects and environ-

ments based on neural information from the vestibular system, the somatosensory system, and the vis-

ual system [4]. The visual system senses external objects and environments; the vestibular system is 

involved in processing the spatial information of the head relative to gravity; and the somatosensory 

system senses the position and movements relative to the support surface and transfers these to the 

CNS [5,6]. Also, the somatosensory system is involved in processing the input information of the en-

tire body from muscle receptors, joint receptors, and skin receptors on the skin and joints [7]. Muscle 

receptors provide compensatory information of muscle conditions and joint receptors and muscle re-

ceptors are involved in controlling the movement of the body together.  

Recently, strategies that the body employs for to restore balance when falling have been studied, 

such as the ankle, hip, a combined strategy. The ankle strategy allows motion around the ankle joint 

without hip extension, and the hip strategy moves the hip forward and backward. Generally, these two 

strategies are combined to keep the balance of the body [8]. Nashner et al. reported that the ankle 

strategy mainly works by balancing the body while in a standing posture, and the combined strategy 

becomes involved in a case where rapid perturbations of the support area occur [5]. Winter described 

how the centers of mass of the head and body move in the same direction to compensate for perturba-

tions in the ankle strategy, and the hip strategy is only involved in cases where balancing the body 

could not be completely restored through the ankle strategy [3]. 

Research regarding postural balance has been mainly conducted by limiting the input to certain 

sensing systems or by applying external perturbations using a force plate and then measuring the dis-

placement, center of pressure (COP), and muscle activities necessary for the subject to keep the post-

ure. Horak et al. reported that measurement of perturbations of the body on a fixed support area might 

not be sufficient for quantitative and qualitative evaluation of postural balance [8]. Therefore, Allum et 

al. and Commissaris et al. evaluated postural balance while perturbing the support area in the antero-

posterior (AP) and mediolateral (ML) directions [9,10]. Müller et al. compared COP and muscle acti-

vation patterns to the perturbation of the support area in the AP direction [11]. Recently, research has 

been performed to understand postural balance and strategies by perturbing the support area, but the 

relationship between postural balance and strategies to dynamic perturbations of the support surface 

has not been investigated [12–14]. Therefore, the goal of this study is to investigate the characteristics 

of dynamic postural responses such as postural balance and strategies to balance the body with respect 

to the frequency of a perturbation of the support area. To this end, joint movements and body reactive 

characteristics were measured with respect to dynamic perturbations. 

2. Experimental methods 

2.1. Motion base 

The experimental device was developed to investigate the postural balance as shown in Figure 1. 

The motion base (DSMP606, Simulink Co.) which has six actuators was used and it provides the func-

tion of excitation in the three directions of the translational motions by controlling the frequency and 

displacement at 30 Hz of sampling rate. The dimension of support surface was 1.55 m by 1.35 m and 

the subject was supposed to position on the center of the support surface. 
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frequency, was used. The 3-D motion analysis from the markers on the head, chest, hip, both knees, 

and both ankles were analyzed, and the data of the two ankle parts were averaged. The median fre-

quency from the entire perturbation frequency range, the absolute path, the relative path, and the corre-

lation between the head and hip, chest and hip, knee and hip, ankle and hip, head and ankle, chest and 

ankle, and knee and ankle pairs were obtained by analyzing the movement of markers, as shown in 

Figure 1. The median frequency (fmedian) was formulated as mathematical expression (1), and (f) indi-

cated the power density spectrum of the EMG signal. 
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The median frequency was analyzed using a Fast Fourier Transform (FFT), and the relative path 

was obtained by calculating the distance between the path of the perturbation frequency on the support 

surface and the path of the corresponding markers. The coefficient of the correlation was obtained by 

calculating the correlation of each marker, where the coefficient (r) always satisfies -1 ≤ r ≤ 1. Positive, 

negative, and no correlations were expressed as r > 0, r < 0 and r = 0, respectively. Also, a coefficient 

close to 1 indicates a strong connection between two markers, and vice versa. 

3. Results and discussion 

3.1.1. Marker movements 

Figure 4 shows the movement of the markers with respect to time, and the ankle path showed an 

almost identical trend in all excitation frequencies. The knee and ankle paths were similar to the exci-

tation frequencies (1.5 Hz), but those of the head, chest, and hips were quite smaller than the path of 

the oscillation. As the frequency increased, the tendency for the head and the chest paths were harder 

to define. The median frequency was represented as a response of the dynamic postural balance (Fig-

ure 4) when the support surface was excited in the AP direction. As the frequency increased, the me-

dian frequency at the ankle and the knee also increased. This result indicates that the movement of the 

ankle and the knee correspond well to that of the support surface. The median frequency of the head, 

chest, and hips was not identical to that of the oscillation frequency in the cases where the frequency 

was higher than 0.5 Hz. 

3.1.2. Postural strategy 

The response of the dynamic postural balance is shown in Figure 5 as the absolute distance value of 

each marker when the support surface was excited in the AP direction. In the cases with 0.1 Hz and 

0.5 Hz perturbations, the absolute paths were similar for all frequencies except for the path of the an-

kle. This showed that the ankle strategy was primarily involved in compensating for the excitation of 

the plate and that it kept the body in balance. As the frequency of the perturbation increased, the abso-

lute distance of the path of each part started to increase, and the difference of the paths with respect to 

each other became considerable. From a frequency of 1.0 Hz, the absolute paths of the knee and the 

ankle were noticeably different from those of the other parts, and the head strategy also became in-

volved in keeping balance. Generally, one or two strategies were enough to restore and sustain balance 
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frequency of the perturbation increased, except for the knee and ankle joints. The correlation of the 

head-ankle and chest-ankle pairs sharply decreased in the cases where the frequency was higher than 

0.5 Hz. At a lower range of perturbation frequencies, the ankle strategy was mainly activated, but the 

head and chest were stabilized, and the hips and knees were involved in maintaining postural balance 

as the perturbation frequency increased. 

4. Conclusion 

In this study, the ability of the joints of the body to maintain dynamic postural balance was investi-

gated as a perturbation was applied to the support plate. The response of normal subjects in terms of 

an external perturbation was shown in this study. Therefore, these results can be used as a standard to 

analyze the response according to balance and posture of elderly individuals and those with a disabili-

ty. Also the experimental mechanism can be used as part of training and rehabilitation programs to 

restore the ability of dynamic postural balance. 
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Table 1 

Changes in correlation on the frequency of perturbation. Values in parentheses are standard deviation 

 
0.1Hz 0.5Hz 1Hz 1.5Hz 2Hz 

head/chest 0.92(0.10) 0.96(0.02) 0.93(0.04) 0.92(0.04) 0.89(0.06) 

head/hip 0.77(0.15) 0.75(0.08) 0.56(0.13) 0.45(0.18) 0.46(0.10) 

head/knee 0.64(0.17) 0.53(0.13) 0.26(0.13) 0.33(0.20) 0.30(0.08) 

head/ankle 0.56(0.18) 0.28(0.15) 0.01(0.07) 0.24(0.15) 0.18(0.05) 

chest/hip 0.89(0.06) 0.87(0.04) 0.72(0.08) 0.66(0.13) 0.65(0.08) 

chest/knee 0.77(0.09) 0.65(0.12) 0.36(0.11) 0.39(0.18) 0.32(0.09) 

chest/ankle 0.68(0.12) 0.41(0.15) 0.06(0.07) 0.18(0.16) 0.10(0.05) 

hip/knee 0.96(0.02) 0.88(0.07) 0.76(0.05) 0.71(0.08) 0.57(0.09) 

hip/ankle 0.9(0.05) 0.68(0.13) 0.42(0.08) 0.3(0.14) 0.12(0.10) 

knee/ankle 0.98(0.01) 0.89(0.06) 0.86(0.05) 0.8(0.06) 0.79(0.05) 
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