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Abstract. This paper presents a fluid-particle interaction algorithm using the distributed Lagrange multiplier based fictitious
domain method. The application of this method to the numerical investigation of motion and aggregation of red blood cells in
two-dimensional microvessels is discussed. The cells are modelled as rigid biconcave-shaped neutrally buoyant particles. The
aggregating force between two cells is derived from a Morse type potential function. The cell-cell interaction is coupled with
the fluid-cell interaction through a time splitting scheme. Simulation results of multiple red blood cells in Poiseuille flow are
presented. Because of its modular nature, this algorithm is applicable to a large class of problems involving the processes of
particle aggregation and fluid-particle interaction.
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1. Introduction

Fluid-particle interaction is an example of time-dependent problems which have application in biome-
chanics and biological systems, e.g., blood flow in the cardiovascular system. The aim of this study is
to simulate blood flow with blood cell aggregation in microvessels since aggregation of red blood cells
(RBCs) plays a crucial role in many physiological phenomena. It has been observed that healthy RBCs
disperse in the blood plasma. In some unhealthy blood or under some physiological conditions, rouleaux
are formed which decreases the surface area of RBCs and increases the apparent viscosity of the blood,
which severely reduces the amount of oxygen and nutrients that can be transported by RBCs. Because of
their large volume fraction in blood and their aggregability, RBCs are the most important determinant of
blood characteristics in microcirculation.
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Numerical simulations can be a very powerful tool in providing insight into systems that are difficult
to examine by in vivo or in vitro experiments, e.g., the aggregation of RBCs in microvessels [1–4].
In [2], the RBC aggregation kinetics is simulated using a particle method and the RBCs are modelled as
rigid spheres. In [3], aggregates formed by elliptic particles are studied under shear flow.

Among the numerical methods, the Arbitrary Lagrange Euler (ALE) [5] method and the distributed
Lagrange multiplier based fictitious domain method (FDM) [6–8] are presently the two most successful
approaches for the simulation of the interaction between the moving objects and the fluid flow. The
ALE-based finite element method has its advantages over the traditional Lagrange-based finite element
formulation (a prior fixed system in space) and the Eulerian-based finite element formulation (a system
attached to material). However, this moving grid method exhibits its disadvantages such as the distortion
of the mesh and the need for re-meshing. In contrast to the ALE, using the FDM, the solution of the
problem posed in such a complex-shaped and time-dependent domain is reduced to a problem of the
same nature in a rectangular domain which contains the former domain. The new computational domain
is fixed and time-independent. Thus fixed mesh can be used and for which high-performance solution
methods are available. The FDM has been widely used for the solution of the problems arising in the
biomechanical and biomedical field. For instance, this technique has been applied to heart valve modeling
[9,10].

In the present study, the simulation of the motion of multiple RBCs in a microvessel using the FDM
is discussed. The cells are modeled as solid neutrally buoyant (NB) particles with biconcave shapes. The
aggregability of the cells is described by a depletion interaction model [11]. Since biconcave particles
have not been simulated using this method, and the FDM has not been applied to the simulation of RBC
aggregation previously, the objectives in this study are (i) to construct an algorithm to simulate the flow of
particles at a low Reynolds number (Re) using the FDM, (ii) to apply the method to study the motion of
multiple non-aggregating and aggregating biconcave particles in a microchannel, and (iii) to demonstrate
its feasibility for simulating the fluid-particle interaction in blood flow.

2. Mathematical models

2.1. Blood flow model

Blood is viewed as a fluid-particle system in which blood plasma is assumed to be an incompressible
and Newtonian fluid and the blood cells are assumed to be NB particles. It is also assumed that the
lubrication forces are large enough to prevent RBCs from touching the fixed vessel walls and there exists
an interacting force between two cells. The domain occupied by the fluid and the particles are denoted as
Ωf and Ωp, respectively. Points in the domains are denoted by x = (x1, x2). For some time T > 0, the
equations of motion of the plasma are therefore

ρf

[
∂u

∂t
+ (u ·∇)u

]
= ρfg +∇ · σ in Ωf , t ∈ (0, T ), (1)

∇ · u = 0 in Ωf , t ∈ (0, T ), (2)

where u, ρf , and g are the flow velocity, density of the fluid, and gravity, respectively. For a fluid of
viscosity μf and pressure p, the stress tensor is expressed as σ=−pI+2μfD(u) with the identity matrix
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I and the deformation rate tensor D(u)=(∇u+ (∇u)T )/2. The motion for each particle is given by the
Euler-Newton’s equations, namely

v(x, t) = V(t) + ω(t)×−−−→G(t)x, (3)

dG

dt
= V, (4)

m
dV

dt
= mg + Fh + Fr, (5)

d(Ipω)

dt
= Th +

−−→
Gxr × Fr, (6)

where m, V, Ip, and ω are the mass, velocity of the center of mass, moment of inertia, and angular
velocity of the RBC particle, respectively. x is the position vector from the center of mass G to the
surface of the cell and

−→
Gx = (x − G). In Eq. (5), Fr = Fa + Fw where Fa is the interaction force

acting on the particle when two RBCs are close to each other and Fw is the short-range repulsive force
in the case of cell-boundary interaction [12]. Then a torque in Eq. (6) acts on the point xr where Fr

applies on the particle. The hydrodynamic force Fh exerted by the fluid on the particle is in the form
Fh = − ∫

γ σndγ, and the torque (about the center of the mass) exerted by the fluid on the particle

is Th = − ∫
γ

−→
Gx × σndγ, with n the unit normal vector pointing out of the particle. The boundary

conditions are such that at the inlet and outlet of the channel, periodic boundary conditions are applied; at
the vessel wall, Γw, the no-slip condition is assumed, i.e., u|Γw = 0, and the no-slip boundary conditions
for rigid boundaries are that the fluid at ∂Ωp must move with the prescribed boundary motions, namely
u|∂Ωp = (v + ω ×−→Gx)|∂Ωp .

2.2. RBC aggregation model

In two-dimensional (2D) simulations, the biconcave shape of the RBC is approximated by the charac-
teristic cross section in the plane that is parallel to the flow direction if the cell were in shear flow. In this
study, the cross section of the particle is assumed to have a uniform biconcave shape as described in [13]
by the scaled equation:

ȳ = 0.5(1− x̄2)1/2(a0 + a1x̄
2 + a2x̄

4), (7)

where x̄ = x/d, ȳ = y/d, d is the diameter of the cell and a0 = 0.207, a1 = 2.002, a2 = −1.122.
The interaction forces between two particles have been regarded as fundamental to the understanding
of aggregation of the RBCs. Until recently, the mechanism underlying the RBC aggregation process
remains unclear. In the present study, A Morse type potential function proposed in [11] for RBC adhesion
phenomena has been used to describe the intercellular energy between two cells due to its simplicity:

φ(r) = De[e
2β(r0−r) − 2eβ(r0−r)], (8)
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Fig. 1. Trajectory of the cell center of biconcave particles in a pressure-driven Poiseuille flow which shows the lateral migration
of the particles.

where r is the distance between two points considered, r0 and De are reference distance and surface
energy, respectively, and β is a scaling factor. The intercellular force is then f(r) = −∂φ/∂r. Employing
this potential function, the intercellular force is attractive at far distances and repulsive at near distances.
The behavior of the function qualitatively represents the characteristics of the interaction between the
RBCs, which shows that it is consistent with the depletion energy model. Because multiple cells were
included in the study, a cut-off circle was specified to identify the effective region of the intercellular
force. The interaction force acting on a cell is then the sum of the forces generated by the neighboring
cells in the effective domain.

3. Numerical simulation

3.1. Lateral migration

Prior to the numerical studies, the method was validated by considering the problem of lateral mi-
gration of the biconcave particles in a pressure-driven Poiseuille flow. At five different initial vertical
position and/or tilted angles (about y-axis) of the long axis of the RBC, simulations were carried out in a
Newtonian fluid. In the validation, the parameters were in scaled form. The diameter of the particle was
chosen as d = 0.5. For simplicity, the fluid density was chosen to be ρ = 1.0 and the fluid viscosity
μ = 0.1. The computational domain was Ω = (0, 12) × (0, 2). The mesh size for the velocity field was
h = 1/64. Figure 1 shows that all the rigid particles of biconcave shape moved to the same equilibrium
position, which is about 0.6 in the y-direction and away from the central axis. At time t = 500, the
average particle speed was 1.6177; hence the particle Re was 8.139. The results qualitatively agree well
with the lateral migration of the NB circular particles reported in [7].

3.2. Simulation of four cells

Two cases for the motion of four RBCs in Poiseuille flow were studied, reflecting different initial
configurations of the RBCs. The results of four cells without aggregating force to that of the same cells
with aggregating force are compared in each case.

Figure 2 shows the snapshots of four non-aggregating cells moving downstream in the Poiseuille flow.
The cells were initially positioned vertically in the fluid with center-to-center distance 3μm. Since the
center of mass of the particles were initially located at the centerline, where shear force is almost negligi-
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t = 0 t = 20ms t = 80ms t = 100ms

Fig. 2. Snapshots of motion of four biconcave NB particles without attractive force, maximum fluid velocity at t = 100ms is
v = 0.09cm/s, Re = 0.01.

t = 0 t = 20ms t = 80ms t = 100ms

Fig. 3. Snapshots of motion of four biconcave NB particles with attractive force, De = 1 × 10−5μJ/μm2, β = 3/μm,
r0 = 1μm, maximum fluid velocity at t = 100ms is v = 0.09cm/s, Re = 0.01.

t = 0 t = 20ms t= 80ms t = 100ms

Fig. 4. Snapshots of motion of four biconcave NB particles without attractive force, maximum fluid velocity at t = 100ms is
v = 0.09cm/s, Re = 0.01.

ble, the cells moved downstream without noticeable rotation and the distance between particles remained
almost unchanged. However, unlike the case for non-aggregating RBCs, the attractive force between the
cells increased the speed of the upstream cells and decreased the downstream cells. As a result, the up-
stream cells caught up with the downstream cells. When the cells were close enough, the intercellular
force came into effect. Figure 3 shows that due to the attractive force and repulsive force cells moved
slightly off the centerline of the channel. However, in this case, the cells did not attaining an equilibrium
configuration. The position of each cell in the rouleaux changed with time as they were moving together
in the fluid.

As a second case, the motion of four cells, which were initially placed horizontally with center-to-
center 3μm was computed. When the cells were non-aggregating, the RBCs moved separately in the flow
(Figure 4). The cells away from the centerline of the domain moved slower than the cells close to the
centerline because the velocity profile of the fluid is nearly parabolic. When the cells were aggregating,
the cells approached each other because of the attractive force as shown in Figure 5. Due to the balance
of the hydrodynamic force and the cell-cell interaction, the two middle cells moved a little faster than
the two outside cells, finally attaining an equilibrium position and moving together as a single compact
aggregate.

3.3. Simulation of thirty cells

To achieve a RBC concentration close to the hematocrit of human blood (around 40-45%), 30 RBCs
were put in a fluid domain of size (0, 40) × (0, 16)μm2, corresponding to a hematocrit around 37.6%.
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t = 0 t = 20ms t = 80ms t = 100ms

Fig. 5. Snapshots of motion of four biconcave NB particles with attractive force, De = 1 × 10−5μJ/μm2, β = 3/μm,
r0 = 1μm, maximum fluid velocity at t = 100ms is v = 0.09cm/s, Re = 0.01.

t = 0 t = 10ms

t = 20ms t = 30ms

Fig. 6. Snapshots of motion of 30 biconcave NB particles without aggregating force, maximum fluid velocity at t = 30ms is
v = 3cm/s, Re = 0.201.

          t = 0     t = 10ms

t = 30ms t = 50ms

Fig. 7. Snapshots of motion of 30 biconcave NB particles with aggregating force, De = 1 × 10−5μJ/μm2, β = 3/μm,
r0 = 1μm, diameter d = 6μm, maximum fluid velocity at t = 50ms is v = 3cm/s, Re = 0.267.

The initial configuration of these 30 RBCs was such that two files of the cells were placed vertically in
the channel with equal spacing. The snapshots of simulations for non-aggregating RBCs and aggregating
RBCs are shown in Figures 6 and 7, respectively. As can be seen in these figures, the non-aggregating
cells were dispersed by the hydrodynamic forces exerted by the flow. As time elapsed, the concentration
of the cell at the centerline became higher than the cell concentration close to the wall. On the other hand,
for the aggregating cells, the attractive force would keep them together and form rouleaux as they were
moving in the flow. For the parameters used in this study, this force was strong enough to bind the cells
together for sufficient long simulation time. The vector fields of the flow are also presented in Figures 6
and 7.
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4. Conclusion

It has been recognized that numerical investigations of RBC aggregation at the cellular level is of phys-
iological and clinical significance. In this study, the application of distributed Lagrange multiplier based
fictitious domain method for fluid-particle interaction for a particulate flow was presented. The motion
and aggregation of multiple RBCs in a microchannel at periodic boundary conditions at the inlet and the
outlet was investigated. The method has been validated for lateral migration of the biconcave particles
in plane Poiseuille flow. A comparison of the results for multiple cells without and with aggregation is
presented. It is clear that when there is aggregating force, the motion of the cells depends on more than
the flow field around them. Apparently, the motion and configuration of the RBC aggregates is a balance
of the hydrodynamic force and intercellular force and is associated with the initial position of the cells.
From the visualization of the vector fields and the motion and aggregation of RBCs, it can be concluded
that DLM in an effective and important numerical tool for the simulation of the fluid-particle interactions
without assuming the motion of the particles in advance. It is shown that the multiple complex geometries
are easily treated with fixed uniform mesh using the fictitious domain method. Moreover, the algorithm
has the modular nature so that it can be applied to a large class of problems involving the processes of cell
aggregation and fluid-cell interaction. In future study, the flow domain can be more complex than merely
a straight channel, including curved and bifurcating vessels. In addition, the simulation presented here
is two-dimensional, and the methodology has the potential to be further extended to three-dimensional
studies.
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