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Abstract. A kind of shape memory alloy (SMA) hysteretic nonlinear model is developed, and the stochastic bifurcation char-
acteristics of SMA intravascular stents subjected to radial and axial excitations are studied in this paper. A new nonlinear  
differential item is introduced to interpret the hysteretic phenomena of SMA strain-stress curves, and the dynamic model of 
SMA intravascular stent subjected to radial and axial stochastic excitations is established. The conditions of the system’s 
stochastic stability are determined, and the probability density function of the system response is obtained. Finally, the sto-
chastic Hopf bifurcation characteristics of the system are analyzed. Theoretical analysis and numerical simulation show that 
the system stability varies with bifurcation parameters, and stochastic Hopf bifurcation occurs in the process; there are two 
limit cycles in the stationary probability density of the system response in some cases, which means that there are two vibra-
tion amplitudes whose probability are both very high; jumping phenomena between the two vibration amplitudes appears 
with the change of conditions, which may cause stent fracture or loss. The results of this paper are helpful for application of 
SMA intravascular stent in biomedical engineering fields.  
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1. Introduction 

Shape Memory Alloy (SMA) is an ideal material for intravascular stents due to its shape memory 
characteristics, corrosion resistance and biocompatibility. SMA intravascular stents have been applied 
in clinical treatment to intravascular lesion stenosis widely. It is fixed in artery by friction in the course 
of surgery. Subjected to the radial pressure from the vascular wall and the axial viscous force from 
blood, the SMA intravascular stent has complex response, which causes its vibration and loss. For 
avoiding stent loss, it is necessary to study the dynamic characteristics of SMA intravascular stent sub-
jected to the radial pressure from vascular wall and the axial viscous force from blood. 
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Many scholars studied the applications of SMA stent in biomedical engineering [1–8]. Longas pro-
posed a NiTi stent and test its mechanical properties firstly [1]. Kaoriuri et al. applied TiNi shape 
memory alloy foil in self-deployable origami stent grafts [2]. Verschuur et al. designed a new esopha-
geal Niti-S stent for the prevention of migration [3]. Puertolas et al. studied the behavior of a bell-
shaped colonic self-expandable NiTi stent under peristaltic movements [4]. Auricchio et al. established 
the model of SMA stent and analyzed its deployment in finite element method [5]. Zhu et al. devel-
oped a SMA nonlinear constructive model [6]. Although many achievements were obtained in the past 
years, most of them were focused on design and deformation analysis, and the theoretical results of the 
dynamic characteristics of SMA stent were not abundant. To patients who have arrhythmia, the radial 
pressure from the vascular wall is irregular and can be assumed as a harmonic wave added a stochastic 
excitation, while the axial viscous force from blood changes slowly due to the fluid continuity of the 
blood. In this paper, the stochastic bifurcation characteristics of SMA intravascular stent subjected to 
radial and axial excitations were studied. 

For analyzing the dynamic characteristics of SMA intravascular stent, the accurate constitutive 
model of SMA is needed. However, it is hard to establish an accurate model of the SMA due to its 
complex nonlinear hysteretic characteristics. Most of the current SMA models are shown as equations 
with subsection functions or double integral functions, which cause the difficulty to analyze the dy-
namic characteristics of SMA stent in theory [7,8]. In this paper, a new nonlinear differential model is 
introduced to interpret the hysteretic phenomena of SMA strain-stress curves, the nonlinear dynamic 
model of SMA intravascular stent subjected to radial and axial excitations is developed, and the sto-
chastic bifurcation characteristics of the system are analyzed.  

2. Material and methods 

The strain-stress curves of the SMA are presented in Figure 1. In this paper, a new nonlinear differ-
ential model is introduced to interpret the hysteretic strain-stress curves of the SMA as follows: 

 

 
Fig. 1. Strain-stress curves of the SMA. 
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where σ  is the stress, ε  is the strain, ia (i=1~11) are coefficients, 3
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nonlinear differential item. To SMA shown in Figure 1, 1a =70.5, 2a =-0.32, 3a =0.057. 

Partial least-square regression method is used to test the fitting effect of Eq. (1). The analyze result 
of principal component based on experimental data is shown in Figure 2, and the coefficient values are 
shown in Figure 3, in which VIP is variable importance. In Figure 2, there isn’t any item whose VIP is 
evidently little, which means that each item should be reserved in the constructive model. 

The results of DModX and DModY are shown in Figures 4 and 5, in which residual standard devia-
tion (RSD) of samples are shown in X space and Y space. X space is the data space of the independent 
variable, and Y space is the data space of the dependent variable. Only some points are singular points, 
which means that most of the forecasted data are effective. 

The result of forecast test to Eq. (1) is shown in Figure 6, where the red line presents the real data 
and the black line presents the forecast value. Eq. (1) can describe the real curve well. 

 

 

Fig. 2. Variable importance of each item.                                   Fig. 3. Coefficient values of each item. 

    

Fig. 4. RSD in X space.                                                                Fig. 5. RSD in Y space. 

 

Fig. 6. Results of forecast test for the fitting effect of Eq. (1) on strain-stress data of SMA. 
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Fig. 7. Structure of SMA intravascular stent.                  Fig. 8. Mechanical model of SMA intravascular stent. 

3. Nonlinear dynamic model and stochastic stability analysis of SMA intravascular stent 
subjected to radial and axial excitations 

The structure of SMA intravascular stent is shown in Figure 7. The structure can be simplified as 
thin cylindrical shell shown in Figure 8. 

The dynamic model of SMA intravascular stent under radial loads can be shown as follows: 
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where ρ  is the density of SMA, h  is the thickness of SMA stent, r  is the radius of SMA stent, w  is 
vibration mode, ( , ) ( )sinw w t u t kθ θ= = , θ  is the torsion angle, Nθ  is the shearing stress, Mθ  is the 

torque, q  is the radial pressure from the vascular wall, vF  is the axial viscous force from the blood. 
To patients who have arrhythmia, the radial pressure from the vascular wall is irregular and can be 
assumed as a harmonic wave added to a stochastic excitation, while the axial viscous force from the 
blood changes slowly due to the fluid continuity of the blood. Thus, cos ( )1q a t b tς= Ω +  and 

cos ( )2F c t d tv ς= Ω + , b and d  are the intensities of radial and axial stochastic excitation, a  and c  

are the intensities of harmonic wave, ( )1 tς  and ( )2 tς  is standard Gauss white noises, their means are 

zero and their intensities are 2D.  
Let ( , ) ( )sinw t u t kθ θ= , where )(tu  is the radial vibration amplitude. Thus, the dynamic equation 

of radial vibration amplitude of SMA stent can be solved from Eq. (2) as follows: 
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Let qu = , pu =� , then Eq. (3) can also be rewritten as follows: 
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Let the system’s Hamiltonian function be 2
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1 qpH η+= , then the averaged Ito equation about 

Eq. (4)  can be shown as follows: 
 

( ) ( ) ( )dH m H dt H dB tσ= +  (5) 

 
where ( )B t  is standard Wiener process, ( )m H  and ( )Hσ  are drift and diffusion coefficients,  
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When  

0→H :   )(O)( 0HHm → , )(O)( 12 HH →σ  
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where lα  is diffusion exponent, lβ  is drift exponent, lc  is character value, l  is left boundary, r  is 
the right boundary.  

According to the singular boundary theory: 
1. the left boundary 0=H  is entrance boundary 
2. the right boundary ∞=H  is entrance boundary if 05 >η ; 
3. the right boundary ∞=H  is regular boundary if 05 =η ; 
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4. the right boundary H = ∞  is exit boundary if 05η < ; 

The system’s globally stability is presented in Figure 9. We can see that the system is globally as-
ymptotic unstable when 05η < , and the necessary and sufficient conditions for globally asymptotic 

stability of the trivial solution is 05η > . Thus, the trivial solution H H const= =  is globally asymp-

totically stable only 05η > , which means that the system’s motion is periodic. 

4. Stochastic bifurcation analysis and simulation result 

The averaged FPK equation of Eq. (5) is:  
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where f  is the stationary probability density of system response, 
 

 

Fig. 9. System’s globally stability. 

 

Fig. 10. Stationary probability density of the system response. 
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where A  is a normalization constant. 

The numerical simulation results are presented in Figure 10, where 1.01 =η , 1006 =η , 5.0=D , 
1503 =b , 1=l , 40=M , 11102×=E , 4108 −×=A , 11106 −×=I .  

 (a) )7,5~2(0 == iiη ; 

(b) 5.02 −=η , 5.07 =η , )5~3(0 == iiη   

(c) 12 −=η , 17 =η , )5~3(0 == iiη  

(d) 5.02 −=η , 02.03 =η , 0015.0-4 =η , 00125.05 =η , 5.07 =η  

(e) 12 −=η , 02.03 =η , 001.0-4 =η , 00125.05 =η , 5.07 =η  

(f) 5.02 −=η , 02.03 =η , 002.0-4 =η , 0015.05 =η , 5.07 =η  

From Figure 10: 
1. 1η  is the linear damping coefficient, 0η ≥ ; 6η  is the linear stiffness coefficient, 06η ≥ ; D is in-

tensity of Gauss white noise, 0D > .Thus, the exponent 2
612

De
ηη

−  is always negative or zero; 
2. In a linear system, the nonlinear damping and stiffness of the substrate are both zero, which 

means that 0( 2 ~ 5,7)iiη = = . The stationary probability density ( )f H  is determined only by 
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−  is always negative, and thus, the stationary probability density of H=0 is 
the maximum, which is shown in Figure 10(a); 

3. In a nonlinear system, the stationary probability density ( )f H  is determined by Eq. (9). When 
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4a) when 01η > , 02η <  , 07η >  and 0iη =  ( 3~5)i = , the stationary probability density ( )f H  

initially decreases, increases, and finally decreases when H  increases. A limit loop is found 
in the figures of stationary probability density, which are shown in Figure 10(b) and Figure 
10(c); the limit loop increase with the parameters 2η  and 7η . Limit cycle means that self-

excited vibration are induced by the hysteretic nonlinear characteristics of SMA since the pa-
rameters 2η  and 7η  are the nonlinear coefficients of SMA; 
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4b) when 01η > , 02η <  , 03η > , 04η < , 05η >  and 07η > , Two limit cycles are found in the 

stationary probability density, which are shown in Figures 10(d), 10(e) and 10(f). Two limit 
cycles mean that there are two vibration amplitudes whose probability are both sufficiently 
high, and jumping phenomena between the two vibration amplitudes appear with the change 
to conditions, which should cause stents loss; 

4c) when 05η < , the stationary probability density ( )f H  finally increases. However, the sta-

tionary probability density of the system cannot be infinite. Thus, the system becomes unsta-
ble when 05η < ;  

4. In sum, the stationary probability density of the system response can be changed through adjust-
ing the parameters iη . It means that different SMA materials cause different vibration amplitudes 

of the system because the parameters iη   are determined by the substrate material. It provides a 

way to reduce the vibration of SMA stent. 

5. Conclusion 

A kind of shape memory alloy (SMA) hysteretic nonlinear model is developed, and the stochastic 
bifurcation characteristics of SMA intravascular stents subjected to radial and axial excitations are 
studied in this paper. A new differential item is introduced to interpret the hysteretic phenomena of 
SMA strain-stress curves, and the dynamic model of SMA intravascular stent subjected to radial and 
axial stochastic excitations is established. The conditions of global stochastic stability of the system 
are determined, and the stationary probability density function of the system response is obtained. Fi-
nally, the stochastic Hopf bifurcation characteristics of the system are analyzed. Theoretical analysis 
and numerical simulation show that the system stability varies with bifurcation parameters, and sto-
chastic Hopf bifurcation occurs in the process; there are two limit cycles in the stationary probability 
density of the system response in some cases, which means that there are two vibration amplitudes 
whose probability are both very high; jumping phenomena between the two vibration amplitudes ap-
pears with the change of conditions, which can cause stent fracture or loss. The results of this paper 
are helpful for application of SMA intravascular stent in biomedical engineering fields. 
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