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Abstract. Biological tissue impedance spectroscopy can provide rich physiological and pathological information by 
measuring the variation of the complex impedance of biological tissues under various frequencies of driven current. 
Electrical Impedance Tomography (EIT) technique can measure the impedance spectroscopy of biological tissue in medical 
field. Before application, a key problem must be solved on how to generally distinguish normal tissues from the cancerous in 
terms of measurable EIT data. In this paper, the impedance spectroscopy characteristics of human lung tissue are studied. On 
the basis of the measured data of 109 lung cancer patients, Cole-Cole Circle radius (CCCR) and the complex modulus are 
extracted. In terms of the two characteristics, 71.6% and 66.4% samples of cancerous and normal tissues can be correctly 
classified, respectively. Furthermore, two characteristics of the measured EIT data of each patient consist of a 
two-dimensional vector and all such vectors comprise a set of vectors. When classifying the vector set, the rate of correctly 
partitioning normal and cancerous tissues can be raised to 78.2%. The main factors to affect the classification results on 
normal and cancerous tissues are generally analyzed. The proposed method will play an important role in further working out 
an efficient and feasible diagnostic method for potential lung cancer patients, and provide theoretical basis and reference data 
for electrical impedance tomography technology in monitoring pulmonary function.  
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1. Introduction 

In recent years, lung cancer has been one of the leading causes for human death and the most 
commonly diagnosed types among all cancerous patients. In terms of averagely surviving time after 
operation, the early-term patients are almost three times as long as the late-term ones. Therefore, the 
early diagnosis of lung cancers plays an important role in saving lung cancer patients. In order to 
achieve early diagnosis, many techniques including Electrical Impedance Tomography (EIT) have 
been developed in the past decades [1,2]. EIT is fast-response, non-invasive and low-cost, so it 
becomes a widely accepted tool in obtaining rich physiological and pathological information. 
Compared with other existing techniques, EIT realizes the early diagnoses of potential lung cancers by 
measuring the variation of the complex impedance of biological tissues under various frequencies of 
driven current. Biological tissue impedance spectroscopy can show intrinsic biophysical properties of 
the normal and cancerous tissues that correspond to healthy and unhealthy patients, respectively. 
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However, without the real measurement data, a key unsolved problem is to generally identify normal 
and cancerous tissues in terms of measurable EIT data [3–5]. In the past three years, the Medical 
Research Group of Tianjin University has been working on lung cancer sample collection of various 
patients. On the individually operational spot of 109 patients with lung cancer, EIT data of cancerous 
and normal tissues have been measured at different exciting frequency. These measured data consist of 
a set of samples. Depending on the data set, two main characteristics of human lung tissue are 
extracted. Firstly, according to Cole-Cole mathematical model that the impedance spectroscopy of 
human tissue nearly satisfies, the CCCR [6–8] of each patient’s two classes of tissues is calculated as 
it is very sensitive to normal and cancerous tissues. The second characteristic is the complex modulus 
of each measured data with its own applicable range, whose function is different from CCCR. In terms 
of these two characteristics, 71.6% and 66.4% samples of cancerous and normal tissues can be 
correctly classified, respectively. Furthermore, the two characteristics of the measured EIT data of 
each patient consist of a two-dimensional vector and all such vectors comprise a set of vectors. When 
classifying the vector set, the rate of correctly classifying all normal and cancerous tissues can be 
raised to 78.2%. Specifically, three key factors are evaluated which affect the correctness of the two 
characteristics when generally classifying normal and cancerous tissues. The proposed method is 
expected to play an important role in further working out an efficient and feasible diagnosing system 
for potential lung cancer patients, and provide a valuable proof on whether a diagnosed patient has 
suffered from the lung cancer.  

2. Related work 

In this section, two parts of related researches will be introduced, including the Cole-Cole math 
metical model and the impedance spectroscopy of lung cancer. 

2.1. Cole-Cole equation  

One of the most important behaviors of electrical conductivity is frequency-dependent behaviors 
which demonstrate the induced polarization, so-called ‘low-frequency dispersion’. Up to now, no 
general physical-chemical pattern which can depict frequency dispersion has been found; hence, 
researchers always choose the way in which the experimental result can be met on the strength of 
phenomenological pattern [9,10]. The Cole-Cole equation is one of the most favorite patterns which 
was initially used in complex dielectric constant, as shown in Eq. (1). 
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where �0 and �� are the low-frequency and the high-frequency dielectric constant values, respectively, 
τ is the central relaxation time and c = 1�� is so-called Cole–Cole equation index, which describes the 
broadness of the relaxation time distribution. On the strength of the electrostatic analogy, for dielectric 
materials with losses, Eq. (1) can be evolved to the complex electrical conductivity as follows,  
 

J. Gao et al. / Classification of normal and cancerous lung tissues by electrical impendence tomography2230



 

0
-*= +

1+ c

σ σσ σ
ωτ

∞

∞
 (2) 

 
where �0 and �� are the low and high-frequency electrical conductivity values, respectively. Eq. (2) is 
always applied in actual practice as it is computed firsthand by using the collected electrical 
impedance. In the 1970s, Pelton found that the Cole-Cole equation is very suitable for describing the 
behavior of the complex resistivity by a lot of experiments [11], as expressed by   

 

0
-*= +

1+ c

ρ ρρ ρ
ωτ

∞

∞
, (3) 

 
where �0 and �� refer to the low- and the high-frequency electrical resistivity values, respectively. 
Both Eqs. (2) and (3) are used to estimate the experiments data representatively [12]. In the past two 
decades, the data obtained by different research groups have been compared on the strength of the 
Cole–Cole equation parameters. Their results validate the Cole-Cole equation [13–15]. 

2.2. Cancerous cancers and their electrical characteristics 

According to different histopathology characteristics, lung cancers mainly consist of 4 classes, as 
explained below.  

1) Squamous cell carcinoma. Figure 1(a) shows the visual characteristics of squamous epithelial 
cells in a high-power visual microscope, where the pathological section consists of sphere-distributed 
tissue cells with keratinocytes inside. Squamous cell carcinoma is the most common type and accounts 
for 40%-50% of primary lung cancer. Squamous cell carcinoma has a slower growth process, and has 
a higher probability of successful surgery removal, thus the patients can have a longer survival time 
[16].  

2) Adenocarcinoma. Figure 1(b) shows the adenocarcinoma that accounts for 25% of primary lung 
cancer. The characteristics of adenocarcinoma pathological section are that cancer cells have 
developed into adenoid structure and keratinocytes with various sizes, shapes and arrangements. 
coenothecalia shape is observable among normal gland, and pathological karyokinesis phenomenon 
also exists among cancer cells [17,18]. 

3) Large cell carcinoma. Figure 1(c) shows the undifferentiated lung cancer cell distributions. The 

    
(a) Squamous cell carcinoma   (b) Adenocarcinoma     (c) Large cell carcinoma   (d) Small cell carcinoma 

Fig. 1. Pathological section of four classes of typical lung cancers.  
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characteristic of pathological section in large cell carcinoma is that cancer nest is formed by cancer 
cells. These neoplastic cells are pleomorphic and appear clear cytoplasm [19].  

4) Small cell carcinoma. Figure 1(d) shows the small undifferentiated cells in small cell carcinoma 
for short which is the most malignant type of lung cancer and accounts for 20% of primary lung cancer. 
The characteristics of pathological section are that cancer cells are small, rounded or oat-shaped, and 
have various pathological karyokinesis [20]. 

Electrical impedance tomography of biological tissues is tightly related to tissue structures, 
physiological and pathological states. Biological tissues consist of a great number of plesiomorphous 
cells and intercellular substances including solid and liquid electrolytes with different conductivities. 
When exciting the biological tissues by low-frequency currents, the membrane of each cell has strong 
dielectric effect and stops currents from its inner. Thus the current mainly goes through the 
intercellular substances. As the exciting current frequency increases, the dielectric effect of cell 
membrane decreases since partial currents go through the inner of most cells. Thus the high-frequency 
electrical impedances of biological tissue are larger than the low-frequency ones. Figure 2 shows the 
current paths in the biological tissues.  

The low-frequency and high-frequency currents lead to very different characteristics of electrical 
impedances. As usual, when the external drive signal frequency ranges among 20 kHz-100 kHz, 
65�·m -166�·m electrical impedances can be obtained in data measuring system, and the ratio of 
bones to soft tissues may reach 1:250. Moreover, the maximal ratio between the pump and lung tissues 
can attain 35:1, and different soft tissues have different electrical impedances in different 
physiological status. Specifically, electrical impedances between normal and cancerous lung tissues 
for various cancerous patients also vary with the expiratory and inspiratory process. From comparison, 
the ray absorption rate in the X-ray computed tomography has much smaller difference. For example, 
the attenuation coefficient of bone is only 1.5 times that of soft tissue. Consequently, EIT technology 
can bring higher contrast to different tissue diagnoses, and have a potential to be applied in medicine 
clinic [21]. When the characteristics of electrical impedance are applied to distinguish the normal 
tissues from the cancerous or the lung cancers, the electrical impedance is expected to serve as a 
valuable tool to diagnose potential patients with lung cancer.  

2.3. EIT principle and prior electrical information effect 

EIT imaging technology [22] is one nondestructive visualization measurement technique. Through 
exciting a group of electromagnetic sources in turns into the field containing the investigated objects, 
the grey-based distributions of the investigated objects by the boundary measures can be visually 
reconstructed. While the existing algorithms show promise in a number of applications, some issues 

 
Fig. 2. The effect of high-frequency and low-frequency currents. 
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remain unsolved as explained as follows:    
1) Ill-posed problem. A high-resolution ET image necessarily has full and high signal-noise -ratio 

measurements, while the measurements in the existing ET techniques are much less than the number 
of solved or determined pixels. Moreover, the ET measurements usually are low signal- noise-ratio. 
Consequently, the existing ET techniques are of low resolution. Along with the existing algorithms, it 
is undesired that this problem can be solved. Therefore the reconstructed images usually have low 
resolution.  

2) “Soft-field” effect. Owing to the use of weak current excitation to produce the measured data in 
ET that must be a weak signal, any small measured errors or noise may lead to large variance of the 
investigated object image. Essentially, any measure data is associated with the material distributions of 
the whole investigated field. This is called "soft-field" effect which is a much undesired case in 
practice [23]. The existing ET imaging algorithms are limited for this problem as the algorithms result 
in the obtained ET image being unstable and often unacceptable in noisy conditions. 

An effective way to overcome the above problem is to apply the prior information on the 
investigated objects. The lung cancer type is very useful to obtain the approximate electrical 
characteristic ratio between the normal and cancerous tissues. Figure 3 shows the reconstructed ET 
images and X-ray computed tomography (XCT) for four typical cancerous tissues, where the 
cancerous tissues can be approximately obtained after adding some simple and generally available 
prior information. Thus the prior information on different cancerous types is expected to be obtained 
through comparing the real normal and cancerous tissues. 

3. Sample measurement and collection 

Experimental samples of lung tissue are taken from 109 patients in the lung surgery department in 
the General Hospital of Tianjin Medical University. Experimental samples are selected by clinicians of 

(a)small cell carcinoma CT 
image 

(b) Squamous cell 
carcinoma CT image 

(c) Adenocarcinoma CT 
image 

(d) Large cell carcinoma 
CT image 

(e) Small cell carcinoma 
ET image 

(f) Squamous cell 
carcinoma ET image 

(g) Adenocarcinoma ET 
images 

( ) Large cell carcinoma 
ET image 

Fig. 3. Comparison between CT images and ET images of prior information on four classes of lung cancers. 

h
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tumor tissue which around normal part. In accordance with the standards of checkerboard, the 
cancerous tissue and normal tissue are collected and filled, respectively. Table 1 shows the statistics of 
109 patients according to their gender, operational positions and ages. After removing some noisy data 
and error-contained data, only 91 groups of data are valid. Table 1 shows the gender of 109 patients 
with lung cancer, surgery cutting areas and the age distributions. Table 2 groups these samples into 
four classes in terms of pathological types, that is, 34 adenocarcinoma, 29 squamous carcinoma, 11 
large cell carcinoma, 9 small cell carcinoma, and 9 others.  

The measurement system consists of measuring electrodes, specimen test box, test fixture, adapter, 
impedance analyzer, data acquisition interface and PC. Before measurements, the tissue will be put 
into the cylindrical cavity of the test box. The test box is connected to 4294A impedance analyzer by 
42942A adapter and 16092A fixture, measuring the series resistance R and reactance X of tissue 
samples from 31 frequency points of logarithmic increments within 100Hz-100MHz. The initialization 
procedures and data acquisition procedures of the impedance analyzer are programmed through 
standard commands for programmable instruments (SCPI) on LabView 8.0 development platform. 
Data acquisition is completed through the GPIB data interface and measurement results are saved in 

Table 1 

Statistics of 109 lung cancer patients 

Gender Operation removal part Age group 

Male Female Left lung Right lung 50 50~60 60~70 70 

71 38 
Superior 
lobe 

Inferior 
lobe 

Superior 
lobe 

Middle and 
inferior lobe 

Inferior 
lobe 11 36 41 19 

13 25 40 2 16 
 

Table 2 

Sample number of different tissue types 

Tissue type Lesion type Number Total 

Normal tissue 
--- 109 109 
Adenocarcinoma 34  
Squamous carcinoma 29  

Lesion tissue 
Large cell carcinoma 11 91 
Small cell carcinoma 9  
Other 8  

 

       
(a) Surgical removal tissues.  (b)Normal and cancerous tissues  (c) 4294A impedance analyzer 

Fig. 4. Sample and measurement of normal and cancerous tissues.  
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the form of TXT file. In order to ensure the activity of the measured tissues and minimize 
measurement errors, human lung tissue dielectric measurement environment control platform is set up 
by the test chamber, temperature control system, the humidity measuring instrument and the ultrasonic 
atomizer. Human lung tissue sampling steps are shown in Figure 4.  

Our research group tests dielectric spectrum characteristics of normal and cancerous tissues, 
respectively. But before pathology confirmation errors may be included, for example, normal tissues 
are classified into lung cancer tissues, vice versa. So after the completion of the test, pathological 
analysis is done for all the tissue samples with formalin soaked, paraffin embedded, and stained. After 
performing pathological analysis, the measurement error of data can be decreased to some extent. 

4. Classification of normal and cancerous tissues 

Two characteristics in electrical impedances are extracted including Cole-Cole circle radius and the 
complex modulus. The motivation of choosing these characteristics is due to their sensitiveness and 
classification function for various normal and cancerous tissues. In order to test the application in 
practice, the two characteristics are evaluated under different conditions, as explained below.  

4.1. Comparison of electrical impedance spectroscopy of the biological tissue  

The averages of electrical impedances of normal and cancerous tissues for the four classes of lung 
cancers are listed in the same coordinate system, and these data from 31 exciting frequencies comprise 
an electrical impedance spectroscopy, as shown in Figure 5.  

Figure 5 shows that normal and cancerous tissues decrease as the exciting frequency increases. In 
addition, the average values of electrical impedances of four classes of lung cancers according to their 
real parts and imaginary parts are shown in Figures 5(a)-5(d), respectively. For each class of lung 
cancer, its differences between normal and cancerous tissues are clear, and these averages of four 
classes of lung cancers are very different. As usual, there is very large difference between the normal 
and cancerous electrical impedance spectroscopy for the same patient. However, these electrical 
impedance spectroscopies of different patients are difficult to be distinguished, since some electrical 
impedances of cancerous tissues of some patients are larger than those of normal tissues of other 
patients, and the two classes of electrical impedance spectroscopy has no clear boundary. So the first 
task to apply electrical impedance spectroscopy for lung cancer diagnosis is to extract the 
characteristics of electrical impedance spectroscopy (Note: since the original measuring data of 
electrical impedance spectroscopy is not allowed for public application, these data fail to be shown in 
this paper). 

4.2. Feature extraction  

The first extracted feature from electrical impedance spectroscopy is CCCR. Assume that f(x) is an 
arbitrary function of variable x, the curvature value of f(x) at x0 is expressed as  
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Let f(i ,j) be the measuring electrical impedance of the i-th patient at the j-th excitation, where i=1, 
2,…,71 (the selected number of typical patients); j=1,2,…, 30 (exciting times). For the i-th patient, the 
optimal curvature radius R(i) is solved by the following equation: 

 
30 2

( ) 1
( ) argmin ( 1/ ( )) 1,2,...,71K j j

R i R K j i
=

= − =�  (5) 

 
where K(j) is the value of Eq. (4) when x takes 71 discrete electrical impedances. According to these 
curvature radiuses of 71 patients, their averages are shown in Figure 6. 

The mean values of all cancerous and normal tissues by Eq. (5) are 423.4 and 583.6, respectively, 
which are regarded as the representative values to identify the normal and cancerous tissues, 
respectively. When the value of the measured electrical impedance is close to 423.4, the corresponding 
tissue is classified into the cancerous group, or else into the normal group. Consequently, 81.5% 
normal tissues and 73.3 % cancerous tissues can be correctly classed, respectively.  

In medical research field, the experimental results are often evaluated by the statistical receiver 
operating characteristic (ROC) curve. ROC curve is a widely applied method to evaluate the 
classification (diagnosis) results. The abscissa and ordinate in a ROC curve show the computed values 
of specificity and sensitivity of all measuring data, respectively. The ROC curve evaluates the 
effectiveness of a classification result by the area below the curve. When the area value is less than 0.5, 
the classification result is meaningless. When the area values range between 0. 5-0.7, the classification 
result can be adopted to some extent. When the area values range between 0.7-0. 9, the classification 
result is valuable. Specifically, when the value is larger than 0.9, the results are perfectly believable. 
By means of CCCR for classifying normal and cancerous tissues, the area value of 0.805 can be 

 
(a) Average of real parts in normal tissues          (b) Average of imaginary parts in normal tissues  

 
(c) Average of real parts in cancerous tissues        (d) Average of imaginary parts in cancerous tissues 

Fig. 5. Comparison of electrical impedance spectroscopy of normal and cancerous tissue. 
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obtained, as shown in Figure 5(b). 
The second extracted feature from electrical impedance spectroscopy is the complex modulus (CM). 

Assume that the measuring electric impendence is expressed as  
 

( , ) ( ) ( )f n i A n B n i= + , n=1,2,…,30; i=1,2,…,109 (6) 

 
The complex modulus (CM) of electric impendence is extracted as:  
 

2 2( , ) ( , )iR A n i B n i= + , n=1,2,…,30; i=1,2,…,109 (7) 

 
The typical value of different lung classes is computed by the following equation: 
 

CCCR 1 ( , )
( )

l
s K n i

CCCR k
l
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where K(k, i) is the CM value of the k-th class. When all samples are partitioned into normal and 
cancerous classes, k=1, 2; the computed values are 145.6 and 164.8, respectively. Consequently, all 
samples are partitioned into two types. According the nearest neighborhoods (NN) assignment 
principle, 75% samples of normal and cancerous tissues can be correctly partitioned by CM. On the 
other hand, the CM area value in ROC curve is about 0.79 (see Figure 7(b)), the classification results 
of CM are believable as well.  

Combining both CCCR and CM to a vector as the following form,  
 

1 2 91{ }, . ., ( , ), , , , ...,i i i iV V s t V CCCR CM i= = =  (9) 

 
(a) Distributions of CCCR                           (b) ROC curve 

Fig. 6. Comparison of electrical impedance spectroscopy of normal and cancerous tissue. 
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(a) Distributions of CCCR                            (b) ROC curve 

Fig. 7. Effect of CM on normal and cancerous tissues.  

When a widely used clustering algorithm, the K-means algorithm, is used to cluster the group of 
samples, their cluster centers are (423.4, 145.6) and (583.6, 164.8) for normal and cancerous tissues, 
respectively. According to the two values and the NN assignment principle, all vectors in V are 
classified to two groups, and on average, 85.4% samples can be correctly partitioned. So the combined 
characteristics can improve the classification correctness of normal and cancerous tissues.  

4.3. Major factors of affecting classification correctness  

There are many factors affecting the classification results such as the patient’s age, gender, 
chemotherapy, and etc. These factors are analyzed as follows.  

4.3.1. Test on effect of age, gender and cancerous type  
In order to study the effect of patient’s age and gender, 91 samples are grouped and the 

classification correctness is evaluated by CCCR and CM. Table 3 shows that the classification 
correctness of squamous cell carcinoma by CCCR is the highest among the four classes of cancerous 
tissues. Moreover, CM outperforms CCCR in the three classes of cancerous tissues. But in our 
experiments, the number of samples of squamous cell carcinoma and adenocarcinoma is the majority, 
thus their statistical results are more general. 

Table 4 shows that the gender has no effect on the classification correctness, where the rates for 
different gender are much closer to each other. However, in terms of age, a younger age results in a 
lower correctness.  

 

Table 3 

Effect of different cancerous tissue on cancerous classification 

 Squamous cell carcinoma  Adenocarcinoma Large cell carcinoma Small cell carcinoma 

Rate Cancerous Normal  Cancerous Normal Cancerous Normal  Cancerous  Normal  

CCCR 0.8571 0.5676 0.7000 0.5714 0.5000 0.5000 0.5.000 0.5000 
CM 0.8125 0.6667 0.9167 0.6923 0.5000 0.5000 0.6000 1.0000 
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Table 4 

Effect of patient’s age and gender on cancerous classification 

�  Male Female > 50  50~60 60~70 >70 
Rate Cancerous Normal Cancerous Normal CancerousNormal Cancerous Normal Cancerous Normal Cancerous Normal 
CCCR 0.7619 0.5696 0.6923 0.5862 0.6667 0.5556 0.6364 0.5517 0.8000 0.5682 0.7778 0.6087
CM 0.8125 0.6471 0.7778 0.5758 0.6000 0.5714 0.7692 0.6296 0.7895 0.6571 0.6087 0.5600

 

 
     (a) Conductivity variance from chemotherapy          (b) Permittivity variance from chemotherapy 

Fig. 8. Conductivity and permittivity variances due to patients’ chemotherapy.  

4.3.2. Test on chemotherapy effect  
Chemotherapy is a treatment which induces the benign differentiation of tumor cells, which can 

inhibit the growth and reproduction of a tumor cell, or kill tumor cells by chemical drugs. Clinicians 
may choose chemotherapy according to the lung cancer patient’s health states. However, 
chemotherapy not only kills tumor cells, but also affects the systemic normal cells. Conductivity and 
permittivity measurements on the patients have been done before operation in the same way. The 
comparison of dielectric characteristics between cancer tissue and normal tissue shows that the 
conductivity and relative permittivity of cancer tissue are higher than those of normal tissue. The 
conductivity and relative permittivity of cancer tissue after preoperative chemotherapy are less than 
those of normal tissue, as shown in Figures 8(a) and 8(b), respectively. This may be due to the fact that 
chemotherapy drugs play a role in killing or inhibiting the cancer cells, destroying the structure and 
activity of cancer cells, which is manifested as the reduction of conductivity capacity and dielectric 
capacity in the biophysical characteristics. Consequently, when both CCCR and CM are applied to 
indentify the normal and cancerous tissues, corresponding to the healthy and unhealthy lung tissues 
respectively, the difference must be considered. In the collected 91 samples, about 5.5% needs to be 
added to the original measurable values.  

5. Conclusion  

Firstly, this study reports the measuring process of the electrical impedance of removing normal and 
cancerous tissues from 91 patients with lung cancer. These measured electrical impedances consist of 
a set of samples. There is an apparent distinct difference between original electrical impedance 
spectroscopes of the two classes of tissues. But when mixing all samples of 91 patients together, the 
normal and cancerous tissues can hardly be identified, since the electrical impedance spectroscopes of 
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partial cancerous tissues for some patients are larger than those of partial normal tissues for other 
patients. In order to classify normal and cancerous tissues by their electrical impedance spectroscopes, 
two main characteristics of Cole–Cole circle radius and complex modulus are extracted. In light of the 
two characteristics, most normal and cancerous tissues can be correctly classified and identified. 
Consequently, each class of electrical impedance spectroscopes can have interpretability and 
classification characteristics.  

These research results can lay a solid foundation for establishing both the classification of 
impedance in different pathologies and the quantitative relationship between different lung illnesses, 
and can bring some practical experience for establishing a lung cancer diagnostic system based on 
electrical tomography technology in the future. 
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