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Abstract. Implant-abutment assemblies are usually subject to long-term cyclic loading. To evaluate the dynamic fatigue per-
formance of implant-abutment assemblies with different tightening torque values, thirty implant-abutment assemblies (Zim-
mer Dental, Carlsbad, CA, USA) were randomly assigned to three tightening groups (24 Ncm; 30 Ncm; 36 Ncm), each con-
sisted of 10 implants. Five specimens from each group were unscrewed, and their reverse torque values recorded. The re-

maining specimens were subjected to a load between 30N～300N at a loading frequency of 15 Hz for 5×106 cycles. After 

fatigue tests, residual reverse torque values were recorded if available. In the 24 Ncm tightening group, all the implants frac-
tured at the first outer thread of the implant after fatigue loading, with fatigue crack propagation at the fractured surface 
showed by SEM observation. For the 30 Ncm and 36 Ncm tightening groups, a statistical significant difference (p<0.05) 
between the unloaded and loaded groups was revealed. Compared with the unloaded specimens, the specimens went through 
fatigue loading had decreased reverse torque values. It was demonstrated that insufficient torque will lead to poor fatigue 
performance of dental implant-abutment assemblies and abutment screws should be tightened to the torque recommended by 
the manufacturer. It was also concluded that fatigue loading would lead to preload loss. 
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1. Introduction 

Since Branemark introduced the osseointegration concept, dental implants have been successively 

used for edentulous patients [1,2]. However, long-term clinical follow-ups reported biological or me-

chanical complications after osseintergration has been achieved. Such mechanical complications in-

clude screw loosening, implant system deformation, and fracture. Abutment screw loosening is one of 

the most frequent complications in single-tooth implant restoration. According to a systematic review 

conducted by Pjetursson, B.E. et al. [3], abutment screw loosening is found in 5.3% of implants in one 
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year follow-up. Systematic reviews of the literature revealed the incidence of screw loosening to be 

5.8% -12.7% after five years [4,5].  

Screw loosening may cause implant or screw fracture, inadequate occlusal force distribution and 

possible osseointegration failure. In addition, screw loosening would also lead to micromotion at the 

implant-abutment interface while chewing. Micromotion has been regarded as one of the main causes 

of microgaps between implant and abutment [6]. Such microgaps could act as reservoirs for bacteria, 

and may cause inflammatory reaction in peri-implant soft tissues [7]. Some of those problems are ca-

tastrophic to the implant. They may cause an increase in subsequent visits for maintenance, which is 

time consuming and inconvenient to both the patient and the doctor. The stability of implant-abutment 

assemblies and their resistance against occlusal force are crucial to long-term clinical success.   

Many factors can contribute to screw loosening, such as inadequate tightening torque, mechanical 

overload, screw setting, and mismatch in screw material and design [8]. These factors may affect the 

preload between implant and abutment. Preload is defined as the clamping force between abutment 

and implant and is derived from the tightening torque applied to the retaining screw [9]. The elastic 

recovery of the screw creates the clamping force that keeps the screw thread tightly secured to the im-

plant internal threads, and holds together the screw head and its seat [10]. The screw tightening torque 

value plays an important role in the preload of a system. However, the effect of tightening torque val-

ues on the fatigue performance of implant-abutment assemblies has rarely been studied. 

In this study, the dynamic fatigue performance of implant-abutment assemblies with different tigh-

tening torque values was investigated. The primary objective of this study was to evaluate the effect of 

different tightening torque values on the fatigue performance of implant-abutment assemblies. Mean-

while, the other objective was to investigate the effect of fatigue loading on abutment screw reverse 

torque values.        

2. Experimental procedures 

2.1. Materials and methods  

Thirty implant-abutment assemblies (Zimmer Dental, Carlsbad, CA, USA) were randomly assigned 

to three tightening groups (less than recommended torque, 24 Ncm; recommended torque, 30 Ncm; 

more than recommended torque, 36 Ncm), each consisted of ten implants. The implants were tapered, 

13 mm in length and 3.7 mm at the neck, with 20o
-angle abutments. Five implant-abutment assemblies 

from each group were randomly selected to constitute the control group; they were unscrewed, and 

their reverse torque values recorded. A digital torque meter (HN-5, Haibao, China) was used to meas-

ure the tightening torque and reverse torque. The remaining specimens were subjected to fatigue tests 

according to ISO14801:2007 guidelines [11]. 

A fatigue testing machine (E1000, Instron Ltd, USA) with 1000 N-load capacity, driven under load 

control, was used to perform the fatigue tests in this study. The steel jig was individually fabricated 

with an angle adjustable stand. Individually fabricated steel balls (6 mm in diameter) were glued to the 

abutment with two-component methyl methacyllate adhesive (X60, HBM, Germany). The steel jig 

fixed the specimen rigidly at a distance of 3.0 mm±0.1 mm apically from the nominal bone level to 

simulate marginal bone loss. The distance between the center of the hemisphere to the fixing plane 

was 11 mm±0.1 mm. The overall setup for the fatigue tests is depicted in Figure 1. 
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Fig. 1. Fatigue testing device. 

 

A compressive cyclic sine wave load between 30 N and 300 N at a loading frequency of 15 Hz was 

applied to the remaining specimens for 5×10
6
 cycles, or until failure. After the fatigue tests, the resi-

dual reverse torque values were recorded if available.  

2.2. Testing environments 

The tests were conducted by the same operator. All tests were performed in vitro in a dry area and at 

room temperature (24ο

C±1
ο

C), with humidity of 53%±1%.  

2.3. Statistical method and fractured surface observation 

Statistical analysis was conducted using SPSS software (version16, SAS Institute Inc, Cary, NC) 

with a 0.05 level of statistical significance assumed prior to tests. Descriptive statistics of reverse tor-

que values and residual reverse torque values values were calculated, and comparisons were per-

formed with Student’s t-test for RT and reverse torque values and residual reverse torque values. A 

scanning electron microscope (EVO L18, Carl Zeiss Ltd, Germany) was used to observe the fractured 

surfaces of specimens. Prior to insertion to the Scanning electron microscope (SEM), the fractured 

surfaces were coated with a thin layer of gold. 

3. Results 

3.1. Scanning electron microscope (SEM) observation of fractured specimens 

In the 24 Ncm tightening group, all the implant and abutment screws fractured at the root of the first 

outer thread of the implant. SEM micrographs of the fractured implants were obtained. Figure 2 shows 

a fractured surface, and Figure 3 shows the fatigue striations and final stage overload zone of the im-

plant. 
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those of other researchers [13,14] who observed that lower tightened implant-abutment assemblies 

failed to survive fatigue tests, while implants assemblies in the recommended and over-tightened tor-

que groups had intact implant-abutment interfaces. Some other researchers [15,16] discovered a linear 

relationship between tightening torque and screw preload. As the torque increases, the preload gets 

greater (up to the ultimate strength), resulting in greater force it requires to loosen the screw. Lee, F.K. 

[15] reported that screws over-tightened by 20% exhibited higher implant critical bending moment and 

the least amount of micromotion with no apparent compromise of the implant system. 

The purpose of tightening a screw is to obtain optimum preload, which will maximize the fatigue 

life and protect the screw from loosening [17]. If the joint is compressed, preload will be lost; the 

screw and the interface have to withstand plastic deformation and the joint may separate [18]. Bick-

ford [9] described screw loosening as a two-stage process. Firstly, external functional forces applied to 

the screw joint gradually decrease the tightening force. Vibration and micromotion lead to the backing 

off of the screw, reducing the effective preload and diminishing the screw’s ability to maintain stabili-

ty of the joint. Secondly, preload decreases and exceeds a critical level, allowing threads to turn, and 

thus losing the intended screw joint function. If the screw loosens and the preload falls below a critical 

level, stability of the joint may be compromised and failure of the joint may be caused [19]. In this 

study, the fracture of the implant-abutment assemblies in the 24Ncm tightening group may be caused 

by insufficient preload resulting from the reduced tightening torque.   

As suggested by the available literature, offering the optimum torque is critical for clinical use. The 

optimization of the torque should be based on the occlusal forces applied to the implant-abutment as-

semblies, so that the osseointegrated bone-implant interface will not be damaged [20]. If the screw 

tightening torque is lower than the appropriate tightening torque required, screw loosening may occur. 

Moreover, screw loosening is followed by a considerable risk of implant fracture [21]. Using higher 

torque values would provide the implants with increased resistance to joint separation and greater 

screw stability. However, overly high torque values may exceed the yield strength of the screws. Plas-

tic deformation would lead to the loss of mechanical properties of the screws [22]. Meanwhile, the 

osseointegration of bone-implant interface may be affected. Therefore, it is crucial to apply the correct 

amount of tightening force. When tightening the screws, manufacturer’s recommendations should be 

followed, and torque wrenches should be calibrated to ensure appropriate tightening torque [23]. 

 In this study, we used reverse torque value to evaluate preload. Reverse torque value has been used 

as a measurement of preload in numerous studies to evaluate interface stability following fatigue tests 

[24–27]. In this study, the mean reverse torque values of the control group were lower than the mean 

tightening torque values. This finding is in agreement with that Saboury, A. et al. [28], who reported 

that reverse torque values are less than the initial tightening torque values, the former ranging from 

80.9% to 93.1% of the latter. The torque loss may be explained by the fact that the screws are sub-

jected to a mechanical effect known as embedment relaxation [29,30]. As the contacting surface be-

tween the screw and the implant cannot be machined perfectly smooth, high spots will be the only 

contacting surfaces when the initial tightening torque is applied. The contacting surface will make 

some adaption to smooth the surface, thus leading to preload loss. 

After fatigue tests, the mean residual reverse torque values of the tested specimens were lower than 

that of the control group. This result is consistent with those of other studies. Vianna, C.A. et al. [31] 

reported torque loss in relation to the tightening torque loss of 36.25% without fatigue loading and 

40.85% after fatigue testing. Ricciardi, C.A. et al. [32] measured torque loss of 32% for the control 

group and 37.2% for the loading group. When fatigue loading is applied to an implant assembly, fur-

ther torque loss occurs due to the accommodation of the surface inside the implant [31]. After the ab-

utment screw was removed from the implant, the abutment remained secured inside the implant due to 
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friction generated by the contacting surface between the abutment and implant inner part. In the inter-

nal taper system, the screw plays a relatively minor role in retaining the implant-abutment interface. 

The aforementioned friction between the abutment and the implant keeps the two parts together [33].  

5. Conclusion 

In this study, the dynamic fatigue performance of implant-abutment assemblies with different tigh-

tening torque values was investigated. It was demonstrated that the variation of tightening torque value 

has significant influence on the fatigue performance of implant-abutment assemblies. Insufficient tor-

que will lead to poor fatigue performance of implant-abutment assemblies, and the abutment screws 

should be tightened to the torque recommended by the manufacturer in order to prevent mechanical 

complications.  

Compared with those of the unloaded specimens, reverse torque values of specimens after fatigue 

loading declined. It was also concluded that fatigue loading would lead to preload loss. 
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