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1. Introduction

In this paper we consider energies depending on two vector fields with different behaviors: u ∈
W 1,1(�;Rn) and v ∈ Lp(�;Rm), � being a bounded open subset of RN .

Let 1 � p � ∞ and for every (u, v) ∈ W 1,1(�;Rn) × Lp(�;Rm) define the functional

J (u, v) :=
∫

�

f (v, ∇u) dx, (1.1)

where f : Rm × R
n×N → [0, ∞) is a continuous function.

Minimization of energies depending on two independent vector fields have been introduced to model
several phenomena. For instance the case of thermochemical equilibria among multiphase multicompo-
nent solids and Cosserat theories in the context of elasticity: we refer to [7,9] and the references therein
for a detailed explanation about this kind of applications.

In the Sobolev setting, after the pioneer works [7,9], relaxation with a Carathéodory density f ≡
f (x, u, ∇u, v), and homogenization for density of the type f (x

ε
, ∇u, v) have been considered in [5] and

[6], respectively.
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In the present paper we are interested in studying the lower semicontinuity and relaxation of (1.1)
with respect to the L1-strong ×Lp-weak convergence (p > 1). Clearly, bounded sequences {uh} ⊂
W 1,1(�;Rn) may converge in L1, up to a subsequence, to a BV function.

In the BV -setting this question has been already addressed in [8], only when the density f is convex–
quasiconvex (see (2.2)) and the vector field v ∈ L∞(�;Rm).

Here we allow v to be in Lp(�;Rm), p > 1 and f is not necessarily convex–quasiconvex. We
provide an argument alternative to the one in [8, Section 4], devoted to clarify some points in the lower
semicontinuity result therein.

We also emphasize that under specific restrictions on the density f , i.e. f (x, u, v, ∇u) ≡
W(x, u, ∇u) + ϕ(x, u, v), the analysis in the case 1 < p < ∞ was considered already in [10] in
order to describe image decomposition models. In [11] a general f was taken into account when the
target u is in W 1,1(�;Rn).

In this manuscript we consider f ≡ f (b, ξ), (b, ξ) ∈ R
m × R

n×N and the target u ∈ BV (�;Rn).
We study separately the cases 1 < p < ∞, p = ∞ and discuss briefly the case p = 1 in the

Appendix. Comparing the results in [5] (where the assumptions allow to invoke De La Vallé–Poussin
Criterion) with the true linear growth setting as in [3].

To this end, we introduce for 1 < p < ∞ the functional

Jp(u, v) := inf
{

lim inf
h→∞

J (uh, vh) :uh ∈ W 1,1
(
�;Rn

)
, vh ∈ Lp

(
�;Rm

)
,

uh → u in L1, vh ⇀ v in Lp
}
, (1.2)

for any pair (u, v) ∈ BV (�;Rn) × Lp(�;Rm) and, for p = ∞ the functional

J∞(u, v) := inf
{

lim inf
h→∞

J (uh, vh) :uh ∈ W 1,1
(
�;Rn

)
, vh ∈ L∞(

�;Rm
)
,

uh → u in L1, vh

∗
⇀ v in L∞

}
, (1.3)

for any pair (u, v) ∈ BV (�;Rn) × L∞(�;Rm).
Since bounded sequences {uh} in W 1,1(�;Rn) converge in L1 to a BV function u and bounded se-

quences {vh} in Lp(�;Rm) if 1 < p < ∞ (in L∞(�;Rm) if p = ∞), weakly converge to a function
v ∈ Lp(�;Rm) (weakly ∗ in L∞), the relaxed functionals Jp and J∞ will be composed by an abso-
lutely continuous part and a singular one with respect to the Lebesgue measure (see (2.12)). On the other
hand, as already emphasized in [8], it is crucial to observe that v, regarded as a measure, is absolutely
continuous with respect to the Lebesgue one, besides it is not defined on the singular sets of u, namely
in those sets where the singular part with respect the Lebesgue measure of the distributional gradient of
u, Dsu, is concentrated. Thus specific features of the density f will come into play to ensure a proper
integral representation.

The integral representation of (1.2) will be achieved in Theorem 1.1 under the following hypotheses:

(H1)p There exists C > 0 such that

1

C

(|b|p + |ξ |) − C � f (b, ξ) � C
(
1 + |b|p + |ξ |),

for (b, ξ) ∈ R
m × R

n×N .



G. Carita and E. Zappale / Relaxation in BV × Lp 3

(H2)p There exists C ′ > 0, L > 0, 0 < τ � 1 such that

t > 0, ξ ∈ R
n×N,

with t |ξ | > L =⇒
∣∣∣∣f (b, tξ)

t
− f ∞(b, ξ)

∣∣∣∣ � C ′
( |b|p + 1

t
+ |ξ |1−τ

t τ

)
,

where f ∞ is the recession function of f defined for every b ∈ R
m as

f ∞(b, ξ) := lim sup
t→∞

f (b, tξ)

t
. (1.4)

In order to characterize the functional J∞ introduced in (1.3) we will replace assumptions (H1)p and
(H2)p by the following ones:

(H1)∞ Given M > 0, there exists CM > 0 such that, if |b| � M then

1

CM

|ξ | − CM � f (b, ξ) � CM

(
1 + |ξ |),

for every ξ ∈ R
n×N .

(H2)∞ Given M > 0, there exist C ′
M > 0, L > 0, 0 < τ � 1 such that

|b| � M, t > 0, ξ ∈ R
n×N, with t |ξ | > L =⇒

∣∣∣∣f (b, tξ)

t
− f ∞(b, ξ)

∣∣∣∣ � C ′
M

|ξ |1−τ

t τ
.

Section 2 is devoted to notations, preliminaries about measure theory and some properties of the
energy densities. In particular, we stress that a series of results is presented in order to show all the
properties and relations among the relaxed energy densities involved in the integral representation and
that can be of further use for the interested readers since they often appear in the integral representation
context. Section 3 contains the arguments necessary to prove the main results stated below.

Theorem 1.1. Let J be given by (1.1), with f satisfying (H1)p and (H2)p and let Jp be given by (1.2)
then

Jp(u, v) =
∫

�

CQf (v, ∇u) dx +
∫

�

(CQf )∞
(

0,
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣,
for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm).

We denote by CQf the convex–quasiconvex envelope of f in (2.5) and (CQf )∞ represents the re-
cession function of CQf , defined according to (1.4), which coincides, under suitable assumptions (see
assumptions (2.6), (2.7), Proposition 2.12 and Remark 2.13), with the convex–quasiconvex envelope of
f ∞, CQ(f ∞), and this allows us to remove the parenthesis.

For the case p = ∞ we have the following.
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Theorem 1.2. Let J be given by (1.1), with f satisfying (H1)∞ and (H2)∞ and let J∞ be given by (1.3)
then

J∞(u, v) =
∫

�

CQf (v, ∇u) dx +
∫

�

(CQf )∞
(

0,
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣,
for every (u, v) ∈ BV (�;Rn) × L∞(�;Rm).

For the case 1 < p < ∞, the proof of the lower bound is presented in Theorem 3.1 while the upper
bound is in Theorem 3.2, both under the extra hypothesis

(H0) f is convex–quasiconvex.

The case p = ∞ is discussed in Section 3.2. Furthermore, we observe that Proposition 2.14 in Sec-
tion 2.3 is devoted to remove the convexity-quasiconvexity assumption on f .

2. Notations, preliminaries and properties of the energy densities

In this section, we start by establishing notations, recalling some preliminary results on measure theory
that will be useful through the paper and finally we recall the space of functions of bounded variation.

Then we deduce the main properties of convex–quasiconvex functions, recession functions and related
envelopes.

If ν ∈ S
N−1 and {ν, ν2, . . . , νN } is an orthonormal basis of RN , Qν denotes the unit cube centered

at the origin with its faces either parallel or orthogonal to ν, ν2, . . . , νN . If x ∈ R
N and ρ > 0, we set

Q(x, ρ) := x + ρ Q and Qν(x, ρ) := x + ρ Qν , Q is the cube (− 1
2 ,

1
2)

N .
Let � be a generic open subset of RN , we denote by M(�) the space of all signed Radon measures

in � with bounded total variation. By the Riesz Representation Theorem, M(�) can be identified to
the dual of the separable space C0(�) of continuous functions on � vanishing on the boundary ∂�. The
N-dimensional Lebesgue measure in R

N is designated as LN .
If μ ∈ M(�) and λ ∈ M(�) is a nonnegative Radon measure, we denote by dμ

dλ
the Radon–Nikodým

derivative of μ with respect to λ. By a generalization of the Besicovich Differentiation Theorem (see [1,
Proposition 2.2]), it can be proved that there exists a Borel set E ⊂ � such that λ(E) = 0 and

dμ

dλ
(x) = lim

ρ→0+
μ(x + ρC)

λ(x + ρ C)

for all x ∈ Supp λ \ E and any open bounded convex set C containing the origin.
We recall that the exceptional set E above does not depend on C. An immediate corollary is the

generalization of Lebesgue–Besicovitch Differentiation Theorem given below.

Theorem 2.1. If μ is a nonnegative Radon measure and if f ∈ L1
loc(R

N, μ) then

lim
ε→0+

1

μ(x + εC)

∫
x+εC

|f (y) − f (x)| dμ(y) = 0

for μ-a.e. x ∈ R
N and for every, bounded, convex, open set C containing the origin.
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Definition 2.2. A function u ∈ L1(�;Rn) is said to be of bounded variation, and we write u ∈
BV (�;Rn), if all its first distributional derivatives, Djui , belong to M(�) for 1 � i � n and
1 � j � N .

The matrix-valued measure whose entries are Djui is denoted by Du and |Du| stands for its total
variation. We observe that if u ∈ BV (�;Rn) then u �→ |Du|(�) is lower semicontinuous in BV (�;Rn)

with respect to the L1
loc(�;Rn) topology.

By the Lebesgue Decomposition Theorem we can split Du into the sum of two mutually singular
measures Dau and Dsu, where Dau is the absolutely continuous part and Dsu is the singular part of
Du with respect to the Lebesgue measure LN . By ∇u we denote the Radon–Nikodým derivative of Dau

with respect to the Lebesgue measure so that we can write

Du = ∇uLN + Dsu.

Proposition 2.3. If u ∈ BV (�;Rn) then for LN -a.e. x0 ∈ �

lim
ε→0+

1

ε

{
1

εN

∫
Q(x0,ε)

∣∣u(x) − u(x0) − ∇u(x0) · (x − x0)
∣∣ N

N−1 dx

}N−1
N

= 0. (2.1)

For more details regarding functions of bounded variation we refer to [2].

2.1. Convex-quasiconvex functions

We start by recalling the notion of convex–quasiconvex function, presented in [8] (see also [7] and
[9]).

Definition 2.4. A Borel measurable function f : Rm ×R
n×N → R is said to be convex–quasiconvex if,

for every (b, ξ) ∈ R
m × R

n×N , there exists a bounded open set D of RN such that

f (b, ξ) � 1

|D|
∫

D

f
(
b + η(x), ξ + ∇ϕ(x)

)
dx, (2.2)

for every η ∈ L∞(D;Rm), with
∫
D

η(x) dx = 0, and for every ϕ ∈ W
1,∞
0 (D;Rn).

Remark 2.5.

i) It can be easily seen that, if f is convex–quasiconvex then condition (2.2) is true for any bounded
open set D ⊂ R

N .
ii) A convex–quasiconvex function is separately convex.

iii) By [11, Proposition 3], the growth condition from above in (H1)p, ii), entail that there exists γ > 0
such that

∣∣f (b, ξ) − f
(
b′, ξ ′)∣∣ � γ

(∣∣ξ − ξ ′∣∣ + (
1 + |b|p−1 + ∣∣b′∣∣p−1 + |ξ | 1

p′ + ∣∣ξ ′∣∣ 1
p′ )∣∣b − b′∣∣) (2.3)

for every b, b′ ∈ R
m, ξ, ξ ′ ∈ R

n×N , where p > 1 and p′ its conjugate exponent.
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iv) By [11, Proposition 4]), under the growth assumptions in (H1)∞, ii) entails that, given M > 0 there
exists a constant β(M, n, m, N) such that

∣∣f (b, ξ) − f
(
b′, ξ ′)∣∣ � β

(
1 + |ξ | + ∣∣ξ ′∣∣)∣∣b − b′∣∣ + β

∣∣ξ − ξ ′∣∣ (2.4)

for every b, b′ ∈ R
m, such that |b| � M and |b′| � M , for every ξ , ξ ′ ∈ R

n×N .

We introduce the notion of convex–quasiconvex envelope of a function, which is crucial to deal with
the relaxation procedure.

Definition 2.6. Let f : Rm × R
n×N → R be a Borel measurable function bounded from below. The

convex–quasiconvex envelope is the largest convex–quasiconvex function below f , i.e.,

CQf (b, ξ) := sup
{
g(b, ξ) : g � f, g convex–quasiconvex

}
.

By Theorem 4.16 in [9], the convex–quasiconvex envelope coincides with the so called convex-
quasiconvexification

CQf (b, ξ) = inf

{
1

|D|
∫

D

f
(
b + η(x), ξ + ∇ϕ(x)

)
dx : η ∈ L∞(

D;Rm
)
,

∫
D

η(x) dx = 0, ϕ ∈ W
1,∞
0

(
D;Rn

)}
. (2.5)

As for convexity-quasiconvexity, condition (2.5) can be stated for any bounded open set D ⊂ R
N . It can

also be showed that if f satisfies a growth condition of type (H1)p then in (2.2) and (2.5) the spaces L∞

and W
1,∞
0 can be replaced by Lp and W

1,1
0 , respectively.

The following proposition, that will be exploited in the sequel, can be found in [11, Proposition 5].
The proof is omitted since it is very similar to [10, Proposition 2.1].

Proposition 2.7. Let f : Rm × R
n×N → [0, ∞) be a continuous function satisfying (H1)p. Then CQf

is continuous and satisfies (H1)p. Consequently, CQf satisfies (2.3).

In order to deal with v ∈ L∞(�;Rm) and to compare with the result in BV × Lp, 1 < p < ∞, one
can consider a different setting of assumptions on the energy density f .

Namely, following [11, Proposition 6 and Remark 7], if α : [0, ∞) → [0, ∞) is a convex and increas-
ing function, such that α(0) = 0 and if f : Rm × R

n×N → [0, ∞) is a continuous function satisfying

1

C

(
α
(|b|) + |ξ |) − C � f (b, ξ) � C

(
1 + α

(|b|) + |ξ |) (2.6)

for every (b, ξ) ∈ R
m × R

n×N , then CQf satisfies a condition analogous to (2.6). Moreover, CQf is a
continuous function.
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Analogously, one can assume that f satisfies the following variant of (H2)∞: there exist c′ > 0, L > 0,
0 < τ � 1 such that

t > 0, ξ ∈ R
n×N,

with t |ξ | > L =⇒
∣∣∣∣f (b, tξ)

t
− f ∞(b, ξ)

∣∣∣∣ � c′
(

α(|b|) + 1

t
+ |ξ |1−τ

t τ

)
. (2.7)

We observe that, if from one hand (2.6) and (2.7) generalize (H1)p and (H2)p respectively, from the
other hand they can be regarded also as a stronger version of (H1)∞ and (H2)∞, respectively.

2.2. The recession function

Let f : Rm × R
n×N → [0, ∞[, and let f ∞ : Rm × R

n×N → [0, ∞[ be its recession function, defined
in (1.4).

The following properties are an easy consequence of the definition of recession function and condi-
tions (H0), (H1)p and (H2)p, when 1 < p < ∞.

Proposition 2.8. Provided f satisfies (H0), (H1)p and (H2)p, then

1. f ∞ is convex–quasiconvex;
2. there exists C > 0 such that

1

C
|ξ | � f ∞(b, ξ) � C|ξ |; (2.8)

3. f ∞(b, ξ) is constant with respect to b for every ξ ∈ R
n×N ;

4. f ∞ is continuous.

Remark 2.9. We emphasize that not all the assumptions (H1)p and (H2)p in Proposition 2.8 are neces-
sary to prove items above. In particular, one has that:

i) The proof of 2. uses only the fact that f satisfies (H1)p.
ii) To prove 3. it is necessary to require that f satisfies only (H0) and (H1)p. Indeed if it satisfies (2.3)

one can avoid to require (H0).

Proof.

1. The convexity-quasiconvexity of f ∞ can be proven exactly as in [8, Lemma 2.1], exploiting the
growth condition (H1)p and the estimate given by (H2)p.

2. By definition (1.4) we may find a subsequence {tk} such that

f ∞(b, ξ) = lim
tk→∞

f (b, tkξ)

tk
.

By (H1)p one has

f ∞(b, ξ) � lim
tk→∞

C(1 + |b|p + |tkξ |)
tk

= C|ξ |
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and

f ∞(b, ξ) � lim
tk→∞

1
C
(|b|p + |tkξ |) − C

tk
� 1

C
|ξ |.

Hence (H1)p holds for f ∞.
3. Let ξ ∈ R

n×N , and let b, b′ ∈ R
m, up to a subsequence, by (1.4) and the fact that f satisfies (2.3)

it results that,

f ∞(b, ξ) − f ∞(
b′, ξ

)
� lim

tk→∞
f (b, tkξ) − f (b′, tkξ)

tk

� lim
tk→∞

γ (1 + |b|p−1 + |b′|p−1 + |tkξ | 1
p′ )|b − b′|

tk
= 0.

By interchanging the role of b and b′, it follows that f ∞(·, ξ) is constant and this concludes the
proof.

4. The continuity is a consequence of the growth conditions and the convexity-quasiconvexity of f ∞.

�

Remark 2.10. Under assumptions (H0), (H1)∞ and (H2)∞, f ∞ satisfies properties analogous to those
at the beginning of Section 2.2. In particular in [8, Lemma 2.1 and Lemma 2.2] it has been proved that

i) f ∞ is convex–quasiconvex;
ii) 1

CM
|ξ | � f ∞(b, ξ) � CM |ξ |, for every b, with |b| � M;

iii) If rank ξ � 1, then f ∞(b, ξ) is constant with respect to b.

Remark 2.11. We observe that, if f : R
m × R

n×N → [0, ∞) is a continuous function satisfying
(H1)p and (H2)p, then the function (CQf )∞ : Rm × R

n×N → [0, ∞[, obtained first taking the convex-
quasiconvexification in (2.5) of f and then its recession through formula (1.4) applied to CQf , satisfies
the following properties:

1. (CQf )∞ is convex–quasiconvex;
2. there exists C > 0 such that 1

C
|ξ | � (CQf )∞(b, ξ) � C|ξ |, for every (b, ξ) ∈ R

m × R
n×N ;

3. for every ξ ∈ R
n×N , (CQf )∞(·, ξ) is constant, i.e. (CQf )∞ is independent on b;

4. (CQf )∞ is Lipschitz continuous in ξ .

Assuming that f satisfies (H1)p, one can prove that the convex-quasiconvexification of f ∞, CQ(f ∞),
satisfies the following conditions:

5. CQ(f ∞) is convex–quasiconvex;
6. there exists C > 0 such that 1

C
|ξ | � CQ(f ∞)(b, ξ) � C|ξ |, for every (b, ξ) ∈ R

m × R
n×N ;

7. for every ξ ∈ R
n×N , and assuming that f satisfies (2.3), CQ(f ∞)(·, ξ) is constant, i.e. CQ(f ∞) is

independent on b;
8. CQ(f ∞) is Lipschitz continuous in ξ .

The above properties are immediate consequences of Propositions 2.7, 2.8 and (2.3). In particular 8.
follows from 3. of Proposition 2.8, without requiring (H2)p.
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On the other hand, Proposition 2.12 below entails that CQ(f )∞ is independent on b, without requiring
that f is Lipschitz continuous, but replacing this assumption with (H2)p.

We also observe that (CQf )∞ and CQ(f ∞) are only quasiconvex functions, since they are indepen-
dent of b. In particular, in our setting, these functions coincide as it is stated below.

Proposition 2.12. Let f : Rm × R
n×N → [0, ∞) be a continuous function satisfying (H1)p and (H2)p.

Then

CQ
(
f ∞)

(b, ξ) = (CQf )∞(b, ξ) for every (b, ξ) ∈ R
m × R

n×N.

Proof. The proof will be achieved by double inequality.
For every (b, ξ) ∈ R

m × R
n×N the inequality

(CQf )∞(b, ξ) � CQ
(
f ∞)

(b, ξ) (2.9)

follows by Definition 2.6, and the fact that CQf (b, ξ) � f (b, ξ). In fact, (1.4) entails that the same
inequality holds when, passing to (·)∞. Finally, 1. in Proposition 2.8, guarantees (2.9).

In order to prove the opposite inequality, fix (b, ξ) ∈ R
m × R

n×N and, for every t > 1, take ηt ∈
L∞(Q;Rm), with 0 average, and ϕt ∈ W

1,∞
0 (Q;Rn) such that

∫
Q

f
(
b + ηt , tξ + ∇ϕt(y)

)
dy � CQf (b, tξ) + 1. (2.10)

By (H1)p and Proposition 2.7, we have that ‖b+ηt‖Lp(Q), ‖∇( 1
t
ϕt )‖L1(Q) � C for a constant independent

on t . Defining ψt := 1
t
ϕt , one has ψt ∈ W

1,∞
0 (Q;Rn) and thus

CQ
(
f ∞)

(b, ξ) �
∫

Q

f ∞(
b + ηt , ξ + ∇ψt(y)

)
dy.

Let L be the constant appearing in condition (H2)p. We split the cube Q into the set {y ∈ Q :
t |ξ + ∇ψt(y)| � L} and its complement in Q. Then we apply condition (H2)p and (2.8) to get

CQ
(
f ∞)

(b, ξ) �
∫

Q

(
C

1 + |b + ηt |p
t

+ C
|ξ + ∇ψt |1−τ

t τ
+ f (b + ηt , tξ + ∇ϕt)

t
+ C

L

t

)
dy.

Applying Hölder inequality and (2.10), we get

CQ
(
f ∞)

(b, ξ) � C

tτ

(∫
Q

|ξ + ∇ψt | dy

)1−τ

+ CQf (b, tξ) + 1

t
+ C

L

t
+ C ′

t
,

and the desired inequality follows by definition of (CQf )∞ and using the fact that ∇ψt is bounded in
L1 norm, letting t go to ∞. �
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Remark 2.13. It is worth to observe that inequality

(
CQf ∞)

(b, ξ) � CQ
(
f ∞)

(b, ξ) for every (b, ξ) ∈ R
m × R

n×N,

has been proven without requiring neither (H1)p and (H2)p on f , nor (H1)∞ and (H2)∞.
Furthermore, we emphasize that the proof of Proposition 2.12 cannot be performed in the same way

in the case p = ∞, with assumptions (H1)p and (H2)p replaced by (H1)∞ and (H2)∞. Indeed, an L∞
bound on b + ηt analogous to the one in Lp cannot be obtained from (H1)∞. On the other hand, it is
possible to deduce the equality between CQf ∞ and (CQf )∞, when f satisfies (2.6) and (2.7).

2.3. Auxiliary results

Here we prove that assumption (H0) on f is not necessary to provide an integral representation of Jp

as in (1.2). Indeed, we can assume that f : Rm × R
n×N → [0, ∞[ is a continuous function and satisfies

assumptions (H1)p and (H2)p, (p ∈ (1, ∞]). First we extend, with an abuse of notation, the functional
J in (1.1), to L1(�;Rn) × Lp(�;Rm), p ∈ (1, ∞], as

J (u, v) :=
{∫

�
f (v, ∇u) dx if (u, v) ∈ W 1,1(�;Rn) × Lp(�;Rm),

∞ otherwise.
(2.11)

Then we define the functional

JCQf (u, v) :=
{∫

�
CQf (v, ∇u) dx if (u, v) ∈ W 1,1(�;Rn) × Lp(�;Rm),

∞ otherwise,

(p ∈ (1, ∞]) where CQf is given by Definition 2.6 and,

JCQf p
(u, v) := inf

{
lim inf
h→∞

JCQf (uh, vh) :uh ∈ W 1,1
(
�;Rn

)
, vh ∈ Lp

(
�;Rm

)
,

uh → u in L1, vh ⇀ v in Lp
}
,

for any pair (u, v) ∈ BV (�;Rn) × Lp(�;Rm), p ∈ (1, ∞). Analogously, one can consider

JCQf ∞(u, v) := inf
{
lim inf
h→∞

JCQf (uh, vh) :uh ∈ W 1,1
(
�;Rn

)
, vh ∈ Lp

(
�;Rm

)
,

uh → u in L1, vh

∗
⇀ v in L∞}

,

for any pair (u, v) ∈ BV (�;Rn) × L∞(�;Rm).
Clearly, it results that for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm),

JCQf p
(u, v) � Jp(u, v),

but, as in [11, Lemma 8 and Remark 9], the following proposition can be proven.



G. Carita and E. Zappale / Relaxation in BV × Lp 11

Proposition 2.14. Let p ∈ (1, ∞] and consider the functionals J and JCQf and their corresponding
relaxed functionals Jp and JCQf p

. If f satisfies conditions (H1)p and (H2)p if p ∈ (1, ∞), and both f

and CQf satisfy (H1)∞ and (H2)∞ if p = ∞, then

Jp(u, v) = JCQf p
(u, v)

for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm), p ∈ (1, ∞].
Remark 2.15. The proof is omitted since it can be performed as in [11, Lemma 8 and Remark 9]. In
[11] it is not required that f satisfies (H2)p, (p ∈ (1, ∞]). Indeed, the equality Jp = JCQf p

holds
independently on this assumption on f , but in order to remove hypothesis (H0) from the representation
theorem we need to assume that CQf inherits the same properties as f , which is the case as it has been
observed in Proposition 2.7. It is also worth to observe that, when p = ∞, (2.7) is equivalent to∣∣f ∞(b, ξ) − f (b, ξ)

∣∣ � C
(
1 + α

(|b|) + |ξ |)
for every (b, ξ) ∈ R

m ×R
n×N , and this latter property is inherited by CQf and CQf ∞ as it can be easily

verified arguing as in [10, Proposition 2.3]. Thus Proposition 2.14 holds when p = ∞ just requiring that
f satisfies (2.6) and (2.7).

The following result can be deduced in full analogy with [11, Theorem 13], where it has been proven
for J∞.

Proposition 2.16. Let � be a bounded and open set of RN and let f : Rm ×R
n×N → R be a continuous

function satisfying (H1)p and (H2)p, 1 < p � ∞. Let J be the functional defined in (1.1), then Jp in
(1.2) (1 < p < ∞), (1.3) (p = ∞) is a variational functional, namely it is lower semicontinuous
with respect to the first arguments and for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm), one can define
Jp(u, v; ·), (p ∈ (1, ∞]) (in analogy with (1.2) and (1.3)) as a set function on the open subsets of �,
and it turns out to be the restriction of a Radon measure to these subsets of �.

By virtue of this result Jp can be decomposed as the sum of two terms

Jp(u, v; ·) = J
a

p(u, v; ·) + J
s

p(u, v; ·), (2.12)

where J
a

p(u, v; ·) and J
s

p(u, v; ·) denote the absolutely continuous part and the singular part with respect

to the Lebesgue measure, respectively. Next proposition deals with the scaling properties of Jp.

Proposition 2.17. Let f : Rm × R
n×N → R be a continuous and convex–quasiconvex function, let J

and Jp be the functionals defined respectively by (1.1) and (1.2) when p ∈ (1, ∞], respectively ((1.3),
when p = ∞). Then the following scaling properties are satisfied

Jp(u + η, v;�) = Jp(u, v;�) for every η ∈ R
n,

J p

(
u(· − x0), v(· − x0); x0 + �

) = Jp

(
u(·), v(·);�

)
for every x0 ∈ R

N,

J p

(
u�, v�; � − x0

�

)
= �−NJp(u, v;�),

(2.13)

where u�(y) := u(x0+�y)−u(x0)

�
and v�(y) := v(x0 + �y), for y ∈ �−x0

�
.
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The following result will be exploited in the sequel. The proof is omitted since it develops along the
lines of [2, Lemma 5.50], the only differences being the presence of v and the convexity-quasiconvexity
of f .

Lemma 2.18. Let f : Rm×R
N×n → R be a continuous and convex–quasiconvex function, and let J and

Jp be the functionals defined respectively by (1.1) and (1.2). Let ν ∈ SN−1, η ∈ Sn−1 and ψ : R → R,
bounded and increasing. Denoted by Q the cube Qν , let u ∈ BV (Q;Rn) be representable in Q as

u(y) = ηψ(y · ν),

and let w ∈ BV (Q;Rn) be such that supp(w − u) ⊂⊂ Q. Let v ∈ Lp(Q;Rm). Then

Jp(w, v;Q) � f

(∫
Q

v dy, Dw(Q)

)
.

3. Main results

This section is devoted to deduce the results stated in Theorems 1.1 and 1.2. We start by proving the
lower bound in the case 1 < p < ∞. For what concerns the upper bound we present, for the reader’s
convenience, a self contained proof in Theorem 3.2. For the sake of completeness we observe that the
upper bound, in the case 1 < p < ∞, could be deduced as a corollary from the case p = ∞ (see
Theorem 1.2), which, in turn, under slightly different assumptions, is contained in [8].

3.1. Lower semicontinuity in BV × Lp, 1 < p < ∞

Theorem 3.1. Let � be a bounded open set of RN , let f : R
m × R

n×N → [0, ∞) be a continuous
function satisfying (H0), (H1)p and (H2)p, and let Jp be the functional defined in (1.2). Then

Jp(u, v;�) �
∫

�

f (v, ∇u) dx +
∫

�

f ∞
(

0,
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ (3.1)

for any (u, v) ∈ BV (�;Rn) × Lp(�;Rm).

Proof. The proof will be achieved, in two steps, namely by showing that

lim
�→0+

Jp(u, v;Q(x0; �))

LN(Q(x0, �))
� f

(
v(x0), ∇u(x0)

)
, for LN -a.e. x0 ∈ �, (3.2)

lim
�→0+

Jp(u, v;Q(x0, �))

|Du|(Q(x0, �))
� f ∞

(
0,

dDsu

d|Dsu|(x0)

)
, for

∣∣Dsu
∣∣-a.e. x0 ∈ �. (3.3)

Indeed, if (3.2) and (3.3) hold then, by virtue of (2.12), and [2, Theorem 2.56], (3.1) follows immedi-
ately.
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Step 1. Inequality (3.2) is obtained through an argument entirely similar to [2, Proposition 5.53] and
exploiting [11, Theorem 11].

For LN -a.e. x0 ∈ � it results that u is approximately differentiable (see (2.1)) and

lim
�→0+

1

LN(Q(x0, �))

∫
Q(x0,�)

∣∣v(x) − v(x0)
∣∣ dx = 0.

Consequently, given � > 0, and defined u� and v� as in Proposition 2.17, it results that u� → u0 in
L1(�;Rn), where u0 := ∇u(x0)x and v� → v(x0) in Lp(�;Rm). Then the scaling properties (2.13),
and the lower semicontinuity of Jp entail that

lim inf
�→0+

Jp(u, v;Q(x0, �))

�N
= lim inf

�→0+ Jp(u�, v�;Q) � Jp

(
u0, v(x0);Q

)
. (3.4)

Then the lower semicontinuity result proven in [11, Theorem 11], when u is in W 1,1(�;Rn) and v ∈
Lp(�;Rm), allows us to estimate the last term in (3.4) as follows

Jp

(
u0, v(x0);Q

)
� f

(
v(x0), ∇u(x0)

)
,

and that provides (3.2).

Step 2. Here we present the proof of (3.3). To this end we exploit techniques very similar to [1] (see
[2, Proposition 5.53]). Let Du = z|Du| be the polar decomposition of Du (see [2, Corollary 1.29]),
for z ∈ SN×n−1, and recall that for |Dsu|-a.e. x0, z(x0) admits the representation η(x0) ⊗ ν(x0), with
η(x0) ∈ Sn−1 and ν(x0) ∈ SN−1 (see [2, Theorem 3.94]). In the following, we will denote the cube
Qν(x0, 1) by Q.

To achieve (3.3) it is enough to show that

lim
�→0+

Jp(u, v;Q(x0, �))

|Du|(Q(x0, �))
� f ∞(

0, z(x0)
)

at any Lebesgue point x0 of z relative to |Du| such that the limit on the left hand side exists and

z(x0) = η(x0) ⊗ ν(x0), lim
�→0+

|Du|(Q(x0, �))

�N
= ∞, (3.5)

0 = lim
�→0+

∫
Q(x0,�)

|v|p dx

|Du|(Q(x0, �))
= lim

�→0+

∫
Q(x0,�)

|v| dx

|Du|(Q(x0, �))
. (3.6)

The above requirements are, indeed, satisfied at |Dsu|-a.e. x0 ∈ �, by Besicovitch’s derivation the-
orem and Alberti’s rank-one theorem (see [2, Theorem 3.94]). Set η ≡ η(x0) and ν ≡ ν(x0), for
� < N− 1

2 dist(x0, ∂�), define

u�(y) := u(x0 + �y) − ũ�

�

�N

|Du|(Q(x0, �))
, y ∈ Q,
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where ũ� is the average of u in Q(x0, �). Analogously define, as in Proposition 2.17,

v�(y) := v(x0 + �y), y ∈ Q. (3.7)

Let us fix t ∈ (0, 1). By [2, formula (2.32)], there exists a sequence {�h} converging to 0 such that

lim
h→∞

|Du|(Q(x0, t�h))

|Du|(Q(x0, �h))
� tN . (3.8)

Denote u�h
by uh, then |Duh|(Q) = 1 and, passing to a not relabelled subsequence, {uh} converges

in L1(Q;Rn) to a BV function u. Correspondingly, denote v�h
by vh. Then, arguing as in [2, Proof of

Proposition 5.53] we have

|Du|(Q) � 1 and |Du|(Qt) � tN , (3.9)

where Qt := tQ. It results that u(y) = ηψ(y · ν), for some bounded increasing function ψ in (− 1
2 ,

1
2).

Take ϕ ∈ C1
c (Q) such that ϕ = 1 on Qt and 0 � ϕ � 1, and let us define wh := ϕuh + (1 − ϕ)u. The

functions wh converge to u in L1(Q;Rn) and moreover we have

∣∣D(wh − uh)
∣∣(Q) �

∣∣D(uh − u)
∣∣(Q \ Qt) +

∫
Q

|∇ϕ||uh − u| dy

� |Duh|(Q \ Qt) + |Du|(Q \ Qt) +
∫

Q

|∇ϕ||uh − u| dy.

Therefore, by (3.8) and (3.9), one has

lim sup
h→∞

∣∣D(wh − uh)
∣∣(Q) � 2

(
1 − tN

)
. (3.10)

Similarly,

|Dwh|(Q \ Qt) � |Duh|(Q \ Qt) + |Du|(Q \ Qt) +
∫

Q

|∇ϕ||uh − u| dy,

consequently

lim sup
h→∞

|Dwh|(Q \ Qt) � 2
(
1 − tN

)
. (3.11)

Setting ch := |Du|(Q(x0,�h))

�N
h

, by the scaling properties of Jp in Proposition 2.17 and by the growth

conditions (H1)p, we have

Jp(u, v;Q(x0, �h))

|Du|(Q(x0, �h))
= Jp(chuh, vh;Q)

ch

� Jp(chwh, vh;Qt)

ch
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� Jp(chuh, vh;Q)

ch

− C

(
c−1
h |Q \ Qt | + |Dwh|(Q \ Qt) + c−1

h

∫
Q\Qt

|vh|p dy

)
.

By (3.5), ch → ∞, moreover taking into account (3.7) and (3.6), by (3.11), it results that

lim
�→0+

Jp(u, v;Q(x0, �))

|Du|(Q(x0, �))
� lim sup

h→∞
Jp(chuh, vh;Q)

ch

− 2C
(
1 − tN

)
.

On the other hand, Lemma 2.18 entails that, for every h ∈ N,

Jp(chwh, vh;Q) � f

(∫
Q

vh dy, chDwh(Q)

)

� f

(∫
Q

vh dy, chDuh(Q)

)
− chγ

∣∣D(wh − uh)
∣∣(Q),

where γ is the constant appearing in (2.3). Then by (3.10), we have that

lim
�→0+

Jp(u, v;Q(x0, �))

|Du|(Q(x0, �))
� lim sup

h→∞

f (
∫
Q

vh dy, chDuh(Q))

ch

− 2(C + γ )
(
1 − tN

)
.

By the definition of uh, Duh(Q) = Du(Q(x0,�h))

|Du|(Q(x0,�h))
, hence Duh(Q) → z(x0), since x0 is a Lebesgue point

of z. Now, taking into account (2.3) and (H2)p, we have

lim sup
h→∞

f (
∫
Q

vh dy, chDuh(Q))

ch

= lim
h→∞

f (
∫
Q

vh dy, chz(x0))

ch

= lim
h→∞

(
f ∞

(∫
Q

vh dy, z(x0)

)
− C

| ∫
Q

vh dy|p + 1

ch

)

= f ∞(
0, z(x0)

)
,

where it has been exploited the fact that ch → ∞, 3. of Proposition 2.8, the nondecreasing behaviour of
the Lp norm in the unit cube with respect to p (i.e. | ∫

Q
vh dy|p �

∫
Q

|vh|p dy), and (3.6). �

3.2. Relaxation

We start by observing that Theorem 1.2 is contained in [8] under a uniform coercivity assumption. We
do not propose the proof in our setting, since it develops along the lines of Theorems 3.1 and 3.2.

On the other hand, several observations about Theorem 1.2 are mandatory:

i) If f satisfies (H1)p and (H2)p then Jp(u, v) � J∞(u, v) for every (u, v) ∈ BV (�;Rn) ×
L∞(�;Rm).
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ii) For the reader’s convenience we observe that the proof of the lower bound in Theorem 1.2 de-
velops exactly as that of Theorem 3.1, using the L∞ bound on v to deduce (3.6) and the uniform

bound on v� in (3.7), (H2)∞ and (2.4) in order to estimate lim suph→∞
f (

∫
Q vh dy,chDuh(Q))

ch
.

Regarding the upper bound, the bulk part follows from [11, Theorems 12 and 14], while for
the singular part we can argue exactly as proposed in the proof of the upper bound in [8] just
considering conditions (H1)∞ and (H2)∞ in place of (H1)p and (H2)p.

iii) The above arguments remain true under assumptions (2.6) and (2.7).

We are now in position to prove the upper bound for the case BV ×Lp, for 1 < p < ∞. We emphasize
that an alternative proof could be obtained via a truncation argument from the case p = ∞ as the one
presented in [11, Theorem 12], but we prefer the self contained argument below.

Theorem 3.2. Let � be a bounded open set of RN and let f : Rm × R
n×N → [0, ∞) be a continuous

function. Then, assuming that f satisfies (H0), (H1)p and (H2)p,

Jp(u, v) �
∫

�

f (v, ∇u) dx +
∫

�

f ∞
(

0,
dDsu

d|Dsu|(x)

)
d
∣∣Dsu

∣∣(x),

for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm).

Proof. First we observe that Proposition 2.16 entails that Jp is a variational functional. Thus the inequal-
ity can be proved analogously to [2, Proposition 5.49]. For what concerns the bulk part, it is enough to
observe that given u ∈ BV (�;Rn) and v ∈ Lp(�;Rm), taking a sequence of standard mollifiers {�εk

},
where εk → 0, it results that ∇uk = ∇u ∗ �εk

+ Dsu ∗ �εk
, where uk := u ∗ �εk

. The local Lipschitz
behaviour of f in (2.3) gives

∫
A

f (v, ∇uk) dx �
∫

A

f (v, ∇u ∗ �εk
) dx + γ

∣∣Dsu
∣∣(Iεk

(A)
)

for every k ∈ N, where Iεk
(A) denotes the εk neighborhood of A. Then if |Dsu|(∂A) = 0, letting

εk → 0, we obtain

Jp(u, v;A) �
∫

A

f (v, ∇u) dx + γ
∣∣Dsu

∣∣(A),

for every open subset A of �. Thus we can conclude that

J
a

p(u, v;B) �
∫

B

f
(
v(x), ∇u(x)

)
dx

for every (u, v) ∈ BV (�;Rn) × Lp(�;Rm) and B Borel subset of �.
To achieve the result, it will be enough to show that

J
s

p(u, v;B) �
∫

B

f ∞
(

0,
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣ for every B Borel subset of �.
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For every ξ ∈ R
n×N and b ∈ R

m, define the function

g(b, ξ) := sup
t�0

f (t
1
p b, tξ) − f (0, 0)

t
.

It is easily seen that g is (p, 1)-positively homogeneous, i.e. tg(b, ξ) = g(t
1
p b, tξ) for every t > 0,

(b, ξ) ∈ R
m ×R

n×N , g is continuous and, since f satisfies (2.3), g inherits the same property. Moreover,
the monotonicity property of difference quotients of convex functions ensures that, whenever rank ξ � 1,
g(b, ξ) = f ∞

p (b, ξ), where the latter is defined as

f ∞
p (b, ξ) := lim sup

t→∞
f (t

1
p b, tξ)

t
.

In particular g(0, ξ) = f ∞(0, ξ) = f ∞
p (0, ξ), whenever rank ξ � 1.

Then for every open set A ⊂⊂ � such that |Du|(A) = 0, defining for every h ∈ N, uh := u ∗ �εh

and vh := v where {�εh
} is a sequence of standard mollifiers and εh → 0. Then uh → u in L1. Also

[2, Theorem 2.2] entails that |Duh| → |Du| weakly ∗ in A and |Duh|(A) → |Du|(A). Thus, since
f � f (0, 0) + g,

Jp(u, v;A) � lim inf
h→∞

∫
A

f (v, ∇uh) dx

� lim sup
h→∞

∫
A

f (0, 0) dx + lim inf
h→∞

∫
A

g(v, ∇uh) dx. (3.12)

Since the first term in the right hand side is bounded by CLN(A), taking the Radon–Nikodým derivative
with respect to |Dsu| we obtain 0.

Regarding the second term in the right hand side of (3.12), we have

lim inf
h→∞

∫
A

g
(
v(x), Du ∗ �h

)
dx

� lim sup
h→∞

∫
A

g(0, Du ∗ �h) dx + C

∫
A

∣∣v(x)
∣∣p dx + lim inf

h→+∞

∫
A

∣∣v(x)
∣∣|Du ∗ �h|

1
p′ dx.

Taking the Radon–Nikodým derivative, the last two terms disappear, since |Du∗�h| → |Du|, |v|pLN

is singular with respect to |Dsu| and the Hölder inequality can be applied, i.e.

∫
A

∣∣v(x)
∣∣|Du ∗ �h|

1
p′ dx �

(∫
A

∣∣v(x)
∣∣p dx

) 1
p
(∫

A

|Du ∗ �n| dx

) 1
p′

.

Then the thesis is achieved via the same arguments as in [2, Proposition 5.49]. �

Remark 3.3. It is worth to observe that an alternative argument to the one presented above, concerning
the upper bound inequality for the singular part, can be provided by means of approximation. In fact,
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one can prove that J
s

p(u, v;B) �
∫
B

f ∞(0, dDsu
d|Dsu|) d|Dsu| for every B Borel subset of �, when u ∈

BV (�;Rn) and v ∈ C(�;Rm), and then a standard approximation argument via mollification allows to
reach every v ∈ Lp(�;Rm).

For what concerns the case v ∈ C(�;Rm) it is enough to consider the function g(b, ξ) :=
supt�0

f (b,tξ)−f (b,0)

t
, exploit its properties of positive 1-homogeneity in the second variable, i.e.

tg(b, ξ) = g(b, tξ), for every t > 0, (b, ξ) ∈ R
m ×R

n×N , (2.4), and the fact that when rank ξ � 1, then
g(b, ξ) is constant with respect to b and f ∞(b, ξ) = g(b, ξ) = f ∞(0, ξ). To conclude it is enough to
apply Reshetnyak continuity theorem.

Proof of Theorem 1.1. The result follows from Theorems 3.1 and 3.2, applying Proposition 2.14 to
remove assumption (H0). �

Acknowledgements

The research of the authors has been partially supported by Fundação para a Ciência e Tecnologia
(Portuguese Foundation for Science and Technology) through UTA-CMU/MAT/0005/2009 and CIMA-
UE.

The second author is a member of INdAM-GNAMPA, whose support is gratefully acknowledged.

Appendix

Consider the functional

J 1(u, v) := inf
{
lim inf
h→∞

J (uh, vh) :uh ∈ W 1,1
(
�;Rn

)
, vh ∈ L∞(

�;Rm
)
,

uh → u in L1, vh

∗
⇀ v in M

}
, (A.1)

for any pair (u, v) ∈ BV (�;Rn) × M(�;Rm), where this latter set denotes the set of signed Radon
measures and the weak ∗ convergence denotes the one in the sense of measures.

The integral representation of (A.1) will be stated in Theorem A.1 under the following hypotheses:

(H1)1 There exists C > 0 such that

1

C

(|b| + |ξ |) − C � f (b, ξ) � C
(
1 + |b| + |ξ |),

for (b, ξ) ∈ R
m × R

n×N .
(H2)1 There exists C ′ > 0, L > 0, 0 < τ � 1 such that

t > 0, ξ ∈ R
n×N, with t

∣∣(b, ξ)
∣∣ > L =⇒

∣∣∣∣f (tb, tξ)

t
− f ∞(b, ξ)

∣∣∣∣ � C ′
( |(b, ξ)|1−τ

t τ

)
,

where f ∞
1 is the recession function of f defined for every b ∈ R

m as

f ∞
1 (b, ξ) := lim sup

t→∞
f (tb, tξ)

t
. (A.2)
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Theorem A.1. Let J be given by (1.1), with f satisfying (H1)1 and (H2)1 and let J 1 be given by (A.1)
then

J 1(u, v) =
∫

�

CQf
(
va, ∇u

)
dx +

∫
�

(CQf )∞
1

(
dv

d|Dsu| ,
dDsu

d|Dsu|
)

d
∣∣Dsu

∣∣
+

∫
�

(CQf )∞
1

(
dv

d|vs | , 0

)
d
∣∣vs

∣∣
for every (u, v) ∈ BV (�;Rn) × M(�;Rm), where va is the absolutely continuous part of the Radon
measure v with respect to the Lebesgue measure and vs is the singular part of v with respect to |Du|.
Proof. The same arguments which lead to Proposition 2.14, allow to assume without loss of generality
that f is convex–quasiconvex, i.e. to replace f by CQf in (A.1).

Arguing as in [3, Lemma 4.7] one can prove that the set function J 1(v, u, ·), defined as in (A.1) for
all the open subsets of �, is the trace on these latter sets of a Radon measure absolutely continuous with
respect to LN + |Du| + |v|.

Then the rest of the proof can be obtained as in [3] by providing a lower bound and an upper bound,
that we will sketch in the sequel, just emphasizing the main differences.

For what concerns the lower bound, it is enough to prove that

lim
�→0+

J1(u, v;Q(x0; �))

LN(Q(x0, �))
� f

(
va(x0), ∇u(x0)

)
, for LN -a.e. x0 ∈ �, (A.3)

lim
�→0+

J1(u, v;Q(x0, �))

|Du|(Q(x0, �))
� f ∞

(
dv

d|Dsu|(x0),
dDsu

d|Dsu|(x0)

)
, for

∣∣Dsu
∣∣-a.e. x0 ∈ �, (A.4)

lim
�→0+

J1(u, v;Q(x0, �))

|Du|(Q(x0, �))
� f ∞

(
dv

d|vs |(x0), 0

)
, for

∣∣vs
∣∣-a.e. x0 ∈ �. (A.5)

All the inequalities can be proven following arguments analogous to the ones in [3, Lemma 5.1],
taylored for thin structures. Indeed we observe that the density Q∗(·) appearing therein coincides with
CQ(·), as proven in [4]. Then the proofs in [3, Lemma 5.1] can be repeated line by line but with easier
constructions, in particular it suffices to replace the unique sequence {un} (and its average), by the couple

{(un, vn)} with un → u in L1, and vn

∗
⇀ v in M.

For what concerns the upper bound, i.e proving inequalities opposite to (A.3)–(A.5), one can argue
as in the proof of Theorem 3.2, using as a recovery sequence the couple {(vk, uk)} with uk := u ∗ �εk

and vk := v ∗ �εk
, where {�εk

} is a sequence of standard mollifiers. Then for the bulk term it suffices to
exploit the standard Lipschitz property of f with respect to the couple (b, ξ) (i.e. (2.3), when p = 1),
and the fact that v ∗ �εk

= va ∗ �εk
+ vs ∗ �εk

, and finally taking the Radon–Nikodým derivative around
points of absolute continuity with respect to the Lebesgue measure of u, ∇u and va .

For what concerns the other two terms in the limiting energy they can be reached through the function
g(b, ξ) := supt�0

f (tb,tξ)

t
, which is positively 1 homogeneous and coincides with f ∞

1 (b, ξ), whenever
rank ξ � 1. Finally the conclusion can be achieved differentiating with respect to |Dsu| or vs . �

Remark A.2. We observe that in [5] it was considered for the v′s the weak convergence in L1 thus
leading to a target function still in L1. In the present case the limiting function is a measure, which
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can be decomposed in three terms, the first two absolutely continuous with respect to LN and |Dsu|
respectively, and the third possibly singular with respect to |Du| and this entails the presence of a third
integrand in the energy above.

We also observe that an argument entirely similar to Proposition 3.6 warranties that (CQf )∞
1 (b, ξ) =

CQ(f ∞
1 )(b, ξ) for every b ∈ R

m, ξ ∈ R
n×N .
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