
Argument & Computation -1 (2024) 1–45 1
DOI 10.3233/AAC-230009
IOS Press
CORRECTED PROOF

ω-Groundedness of argumentation and
completeness of grounded dialectical proof
procedures

Phan Minh Dung a, Phan Minh Thang b and Jiraporn Pooksook c,∗
a Department of ICT, Asian Institute of Technology, Thailand
E-mail: dung.phanminh@gmail.com
b International College of Burapha University, Burapha University, Thailand
E-mail: thangpm@gmail.com
c Department of Electrical and Computer Engineering, Naresuan University, Thailand
E-mail: jirapornpook@nu.ac.th

Abstract. Dialectical proof procedures in assumption-based argumentation are in general sound but not complete with respect
to both the credulous and skeptical semantics (due to non-terminating loops). This raises the question of whether we could
describe exactly what such procedures compute.

In a previous paper, we introduce infinite arguments to represent possibly non-terminating computations and present di-
alectical proof procedures that are both sound and complete with respect to the credulous semantics of assumption-based
argumentation with infinite arguments.

In this paper, we study whether and under what conditions dialectical proof procedures are both sound and complete with
respect to the grounded semantics of assumption-based argumentation with infinite arguments. We introduce the class of
ω-grounded and finitary-defensible argumentation frameworks and show that finitary assumption-based argumentation is ω-
grounded and finitary-defensible. We then present dialectical procedures that are sound and complete wrt finitary assumption-
based argumentation.

Keywords: Dialectical proof procedure, infinite argument, grounded semantics, soundness and completeness

1. Introduction

Dialectical proof procedures for assumption-based argumentation ([12,13,15,17–19,22,24,32,33])
could be viewed as an integration of the dialectical procedures of abstract argumentation ([8,20,21,
26,34,35]) with the process of argument constructions where the latter could get into a non-terminating
loop leading to the incompleteness wrt both credulous and skeptical semantics.

A natural question here is: Can we give a precise semantical characterization of what dialectical
proof procedures compute?

Representing possibly non-terminating loops as infinite arguments, we present dialectical proof pro-
cedures in [31], that are sound and complete wrt credulous semantics. Continuing this line of research,
in this paper we present dialectical procedures that are sound and complete with respect to the grounded
semantics.

*Corresponding author. E-mail: jirapornpook@nu.ac.th.

1946-2166 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:dung.phanminh@gmail.com
mailto:thangpm@gmail.com
mailto:jirapornpook@nu.ac.th
mailto:jirapornpook@nu.ac.th
https://creativecommons.org/licenses/by-nc/4.0/

2 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 1. Arguments of F1 and F2.

A detailed analysis of the need for infinite arguments in understanding the semantics of dialectical
proof procedures is given in [31].

To illustrate how some practical systems of dialectical procedures (like SWI-Prolog ([36])) handle
infinite arguments, we analyze the working of SWI-Prolog on two examples taken from [31] below.1

F1 : r : a ← not_α r ′ : α ← f (0) rn : f (n) ← f (n + 1), n � 0

t : β ←
F2 : r : a ← not_α r ′′ : α ← not_β, f (0) rn : f (n) ← f (n + 1), n � 0

t : β ←
The behaviors of F1 and F2 could be explained by the proof trees (viewed arguments) in Fig. 1.
SWI-prolog does not deliver any answer to the queries ← a? and “← α?” because of infinite recursion

in executing α.2

How could we interpret the outputs of SWI-prolog declaratively?
SWI-prolog could not overcome the non-termination of the process to construct an argument support-

ing α due to the “infinite-loop” represented by infinite argument C1.
We could interpret this observation as indicating that infinite arguments (representing “infinite-loop”)

do not support their conclusions the way finite arguments do.
We could also say that the failure of SWI-prolog to deliver any answer to the query “← a?” is due

to the non-acceptability of argument A. It implies that though infinite argument C1 can not support its
conclusion, it could still attack argument A.

SWI-prolog delivers respectively the answers “True”, “False”, “True” to the queries ← a?, “← α?”
and “← β?” wrt program F2.3 The answer to “← α?” is false because the only argument supporting it
is C2 that is based on assumption not_β that is attacked by argument B. We could hence say that infinite
arguments are attacked the same way finite arguments are attacked.

1The written codes in SWI-prolog of both F1, F2 can be found in appendix A.2.
2See Fig. 10 in appendix A.2.
3See Fig. 11 in appendix A.2.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 3

Fig. 2. Illustration of Example 1.

These observations suggest that infinite arguments still attack (or are attacked by) other arguments as
finite arguments do though they do not support their own conclusions.

To capture this peculiar character of infinite arguments, [31] views infinite arguments as self-attacking
arguments.

In [31], two proof procedures for credulous semantics are presented. In one, proof trees are con-
structed explicitly. A filtering mechanism to memorizing the attacked assumptions of both proponent
and opponent is employed to prevent each player from constructing the same proof trees twice. The
other procedure is simply a flattening of the first. The filtering mechanism in these procedures can not
be applied for grounded semantics. The following example illustrates this point.

Example 1. Consider the argumentation framework F represented by the simple logic program:

r : p ← not_q t : q ← not_p

To support p, the proof procedures in [31] would correctly deliver argument P (See Fig. 2).
The proponent first constructs argument P to support p. The opponent responds by constructing ar-

gument Q to attack P at assumption not_q. The filtering mechanism memorizes assumption not_q after
the opponent attacks it and does not allow the opponent to attack it again. The procedures hence stop
and deliver P as an admissible argument supporting p.

As the grounded extension of F is empty, procedures for grounded extension need to drop this filtering
mechanism.

A consequence of dropping the filtering mechanism in the procedures for credulous semantics in [31]
is that an argument could be constructed repeatedly many times at different stages in the computation.
To distinguish between these distinct “copies” of the same argument, we consider them together with
their histories.

The grounded extension of an argumentation framework AF = (Ar, att) coincides with the least fixed
point of the characteristic function FAF. It hence follows that the grounded extension of AF contains the
set Fω

AF(∅) = ∪{F i
AF(∅)|i is a natural number}.4

4Readers who are familiar with theory of ordinals could recognize that the grounded extension could be “computed” as the
least upper bound of the chain (F θ

AF(∅))θ where θ is an ordinal and

F 0
AF(∅) = ∅,

F θ+1
AF (∅) = FAF

(
Fθ

AF(∅)
)
,

F θ
AF(∅) = ∪{

F
γ
AF(∅)|γ < θ

}
if θ is a limit ordinal.

Note that ω is the least limit ordinal.

4 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 3. An argumentation framework that is not ω-grounded.

To check whether an argument A is groundedly accepted, a dialectical proof procedure would compute
the defenders of A (i.e. arguments attacking those attacking A) and then check whether such defenders
could also be defended and so on. In cases where there are infinitely many arguments attacking A, such
process may not succeed.

Example 2. Let AF = (Ar, att) with Ar = {B, A0, A1, . . . , Ai, Ai+1, . . .} and att = {(A2k+1, B)|k �
0} ∪ {(Ak, Ak+1)|k � 0}. (A graphical illustration of this argumentation framework is in Fig. 3).

It is easy to see that for each natural number � 1: F i
AF(∅) = {A0, A2, . . . , A2(i−1)}. Hence Fω(∅) =

∪{F i
AF(∅)|i is a natural number} = {A0, A2, . . . , A2i , . . .}.

The grounded extension of AF is: FAF(Fω
AF(∅)) = Fω

AF(∅) ∪ {B}.
To check whether B is groundedly accepted, a dialectical procedure would need to compute the infinite

set {A2k+1|k � 0} of arguments attacking B and find the infinite set {A2k|k � 0} of defenders of B. In
general, no dialectical proof procedures could carry out such task successfully.

To address this issue, we introduce the class of ω-grounded argumentation frameworks where the
grounded extension is “computed” after at most ω steps, i.e. the grounded extension of AF coincides
with Fω

AF(∅) = ∪{F i
AF(∅)|i is a natural number}. We then present several key results:

• We show that an argumentation framework is ω-grounded iff it is finitary defensible (i.e. all minimal
defences of non-selfattacking arguments are finite);

• We show that finitary assumption-based argumentation frameworks (see Definition 1) with infinite
arguments are finitary defensible;

• We present two dialectical proof procedures that are both sound and complete wrt finitary
assumption-based frameworks with infinite arguments where in the first procedure, proof trees
together with their histories are fully and explicitly represented to shed light on the construction
process of arguments and counter arguments during a derivation and hence providing key insights
into the soundness and completeness of the procedure. We then present another procedure that is
simply the result of flattening the first where most of the data structures representing the proof tree
structures of the arguments are striped away. Consequently, the second procedure is both sound
and complete but with much simpler data structure and hence much more amenable to possible
implementation.

The rest of this paper is organized as follows. In Section 2, we recall the basic notions of abstract
and assumption-based argumentation as well as the machinery of infinite arguments. Section 3 proposes

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 5

the concept of ω-groundedness of argumentation framework and show that finitary assumption-based
argument systems are ω-grounded. We then present a dialectical proof procedure wrt grounded seman-
tics in Section 4. The soundness and completeness of the grounded proof procedure are discussed in
Sections 5–6. Further we present the flatten version of the proof procedure in Section 7. We conclude
and discuss possible expansions of our works in Section 8.

2. Preliminaries: Argumentation with infinite arguments

In this section, we recall key basic concepts of abstract argumentation from [16] and [14] and infinite
arguments together with some illustrating examples in assumption-based argumentation from [31] and
[30].

2.1. Abstract argumentation

Following [14,16], an argumentation framework is a pair AF = (Ar, att) where Ar is a set of argu-
ments, and att ⊆ Ar × Ar so that (X, Y) ∈ att specifies that X attacks Y . A set of arguments S attacks
an argument X if some argument in S attacks X. S attacks another set of arguments S ′ if S attacks some
argument in S ′. Moreover we say that S defends X iff S attacks all arguments attacking X. We also say
that an argument X is defensible if it is defended by some set of arguments.

A set S ⊆ Ar is said to be

• conflict-free iff S does not attack itself; and
• admissible iff S is conflict-free and S defends each argument in S; and
• a preferred extension if S is maximally (wt set inclusion) admissible;5 and
• a complete extension if S is admissible and contains each argument it defends.

The characteristic function of AF, denoted by FAF, is defined by

FAF : 2Ar → 2Ar

where

FAF(S) = {X ∈ Ar|S defends X}
It is straightforward to see that FAF is monotonic (wrt set inclusion). Since 2Ar is a complete partial

order (wrt set inclusion),6 FAF has a least fixed point.7

The grounded extension of AF denoted by GEAF, is defined as the least fixed point of FAF.8

As the set of complete extensions of AF is a complete semilattice ([16]),9 the grounded extension
coincides with the least complete extension of AF.

5Assuming the axiom of choice (or equivalently the maximality principles) it follows immediately that for each admissible
set S of arguments, there exists a preferred extensions E containing S (i.e S ⊆ E). More on this topic, see [9,29].

6A complete partial order is a partial order that has a bottom element and each directed subset has a least upper bound.
7More on fixpoints and least fixpoints, see Knaster–Tarski fixpoint theorem and fixpoint theorems for complete partial oder

in [9].
8It is not difficult to show that grounded extension is also admissible (see [16] for more about semantics of argumentation

frameworks).
9A partial order is a complete semilattice if each nonempty subset has a glb and each increasing sequence has a lub.

6 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

2.2. Assumption-based argumentation

Given a logical language L, a standard assumption-based argumentation (ABA) framework ([6]) is
a triple F = (R,A,) where R is a set of inference rules of the form l0 ← l1, . . . ln (n � 0 and
l0, . . . , ln ∈ L), and A ⊆ L is a set of assumptions, and is a (total) one-one mapping from A into
L \ A, where x is referred to as the contrary of x, and assumptions in A do not appear in the heads of
rules.

Remark 1. In non-standard ABA frameworks ([24]), the contrary α of an assumption α could be a set.
Such non-standard frameworks could be translated into equivalent standard ones by introducing a new
atom α′ for each assumption α and i) define α′ as the contrary of α; and ii) for each δ ∈ α, add a new
rule: α′ ← δ to R.

Remark 2. Logic programming is a well-known instance of standard ABA where the contrary of a
negation-as-failure assumption not_p is p.

Remark 3. For each rule r of the form l0 ← l1, . . . ln, l0 and the set {l1, . . . , ln} are referred respectively
as the head and the body of r and denoted by hd(r), bd(r).

Further the set of assumptions (resp non-assumptions) appearing in the body of r is denoted by Ass(r)
(resp. NAss(r)).

Definition 1 (Finitary ABA). An ABA framework F = (R,A,) is finitary if for each sentence
δ ∈ L, the set of rules with head δ is finite.10

Convention 1. From now on until the end of the paper,

• we restrict our consideration to standard finitary ABA. Hence whenever we refer to an ABA frame-
work, we mean a standard finitary one; and

• if not otherwise mentioned, we assume an arbitrary but fixed finitary standard assumption-based
argumentation framework F = (R,A,).

Definition 2 (Partial Proof). Given an ABA F , a partial proof supporting σ0 (wrt F) is a finite sequence
of the form

(root, σ0).(r1, σ1). . . . (rn, σn)

where ri ∈ R, i � 1 such that σi−1 = hd(ri) and σi ∈ bd(ri). If bd(ri) = ∅ then σi = true.

Example 3. Let’s consider an argumentation framework F2 in the introduction.

F2 : r : a ← not_α r ′′ : α ← not_β, f (0) rn : f (n) ← f (n + 1), n � 0

t : β ←
10As we will see later, the finitariness guarantees that the corresponding argumentation framework is ω-grounded (see The-

orem 2) and hence all possible attacks against proponent arguments could be considered (see Remark 7).

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 7

Fig. 4. A graphical representation of partial proofs of Example 3.

Some partial proofs supporting a and α are described below and illustrated in Fig. 4.

ψ = (root, a)

ψ ′ = (root, a).(r, not_α)

p0 = (root, α)

p′
1 = (root, α).

(
r ′′, not_β

)
p1 = (root, α).

(
r ′′, f (0)

)
p2 = (root, α).

(
r ′′, f (0)

)
.
(
r0, f (1)

)
. . .

pn+1 = (root, α).
(
r ′′, f (0)

)
.
(
r0, f (1)

)
. . .

(
rn−1, f (n)

)
We next define partial proof trees where we identify the nodes in such trees with the partial proofs

representing the unique paths from the root to them.

Definition 3 (Partial Proof Trees). A partial proof tree (or just proof tree for simplification) T for a
sentence σ0 wrt F is a non-empty set of partial proofs supporting σ0 wrt F such that for each partial

8 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 5. Some proof trees of F2.

proof

p ≡ (root, σ0).(r1, σ1). . . . (rn, σn), n > 0

from T , the following properties hold:

• The partial proof p′ ≡ (root, σ0).(r1, σ1). . . . (rn−1, σn−1) also belongs to T and is referred to as the
unique parent of p whereas p is referred to as a child of p′;

• Every partial proof of the form p′.(rn, σ
′) with σ ′ ∈ bd(rn), also belongs to T and is a child of p′;

• p′ has no other children.

σ0 is often referred to as the conclusion of T , denoted by Cl(T) while the partial proof (root, σ0) is
referred to as the root of T .

An example of partial proof trees is given in Fig. 5.

Remark 4. For convenience, we often refer to a partial proof tree without mentioning its conclusion if
there is no possibility for misunderstanding.

Notation 1 (Nodes in Partial Proof Trees). Abusing the notation for convenience, we often refer to a
partial proof (root, σ0).(r1, σ1). . . . (rn, σn) in a partial proof tree T as a node labeled by σn in T .

Notation 2. Let T be a partial proof tree and S be a set of partial proof trees,

• A node N in T is said to be a leaf of T if N has no children.
A leaf N of T is said to be final if N is labeled by true or by an assumption. N is non-final if it is
not final.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 9

• The support of T , denoted by Sp(T), is the set of all sentences labeling the leaves of T and different
from true.

• The set of all assumptions appearing in T is denoted by Ass(T).
The set of all assumptions appearing in partial proof trees in S is denoted by Ass(S).

• The set of conclusions of partial proof trees in S is denoted by Cl(S).

Considering Fig. 5, the partial proof (root, α).(r ′′, f (0)) is a leaf node of Tr0 while, (root, α).(r ′′,
f (0)) . . . (rn−1, f (n)) is a leaf node of Trn .

Further, the support of Tr0 , i.e. Sp(Tr0), is {not_β, f (0)} and Ass(Tr0) is {not_β}.

Definition 4 (Arguments).

• A partial proof tree T is a full proof tree if all leaves of T are final.
• An argument for α is a full proof tree for α.
• The set of all arguments wrt the ABA framework F is denoted by ArF .

Convention 2. For short, we often simply say, proof trees instead of partial proof trees if there is no
possibility of confusion.

When a player in a dialectical computation is attempting to construct an argument, the attempt may
not terminate. Declaratively, we model a non-terminating attempt to construct an argument as an attempt
to construct an infinite argument.

As infinite arguments do not provide support for their conclusions, they can not be accepted as an
admissible argument. We model this intuition as self-attacks of infinite arguments.

Definition 5 (Attacks).

• An argument A attacks an argument B iff one of the following conditions holds:

(1) The conclusion of A is the contrary of some assumption in the support of B.
(2) A and B are identical and infinite.

• The attack relation between arguments in ArF is denoted by attF . Define

AFF = (ArF , attF)

Due to the fact that the infinite arguments always attack themselves, the following lemma holds obvi-
ously.

Lemma 1. Let S ⊆ ArF be admissible wrt AFF = (ArF , attF). Then S contains only finite arguments.

Notation 3. Let T , T ′ be proof trees and N be a non-final leaf node in T labeled by a non-assumption
σ .11

• T ′ is an immediate expansion of T at N if there is a rule r of the form σ ← b1, . . . , bm such that
T ′ = T ∪ {N.(r, b1), . . . , N.(r, bm)}.
Note that if m = 0, T ′ = T ∪ {N.(r, true)}.12

11See Notations 1 and 2.
12I.e. T ′ is obtained from T by adding m children N.(r, b1), . . . , N.(r, bm) to N (for m = 0, a child node N.(r, true) is

added to N).

10 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 6. Two compatible proof trees.

• We write T ′ = exp(T, N, r).
• We say T ′ is an immediate expansion of T if T ′ is an immediate expansion of T at some leaf node

N of T .
• We define

CE(T, N) = {
exp

(
T , N, r ′)∣∣r ′ is a rule s.t. hd

(
r ′) = σ

}
.

Considering Fig. 5, Tr1 = exp(Tr0, N, r0) where N is (root, α).(r ′′, f (0)).
Further the set of all immediate expansion of Tr0 at node N , i.e. CE(Tr0, N), is {Tr1}.

Notation 4. Let T0, T1 be proof trees for σ0.

• We say T , T ′ are compatible iff T ∪ T ′ is also a proof tree.
• We say T0 is a prefix of T1 iff T0 ⊆ T1.13 14

• We say T0 is a proper prefix of T1 if T0 is a prefix of T1 and T0 �= T1.

Considering Fig. 5, Tr0 is a prefix of Tr1 .

Remark 5. It is worthwhile to note that two proof trees could be compatible without being in a prefix-
relationship as illustrated below (see Fig. 6).

Consider an assumption-based framework with three rules:

r1 : a ← b, c;
r2 : b ←;
r3 : c ← .

Consider two proof trees:

T0 = {p0, p1, p2, p3}, T1 = {p0, p1, p2, p4} where

p0 = (root, a), p1 = (root, a).(r1, b), p2 = (root, a).(r1, c) and

p3 = (root, a).(r1, b).(r2, true), p4 = (root, a).(r1, c).(r3, true).

T0, T1 are compatible but neither is a prefix of the other.

13It may be worthwhile to note that if T0 is a prefix of T1 then obviously T0, T1 are compatible.
14One may wonder what is the prefix of a partial proof (nodes). Well, a partial proof (or node) is in essence a sequence. And

so a prefix of a partial proof (root, σ0).(r1, σ1). . . . (rn, σn) is a partial proof of the form (root, σ0).(r1, σ1). . . . (rk, σk) where
k � n.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 11

Lemma 2. Let T0, T1 be proof trees. The following statements hold:

(1) If T1 is an immediate expansion of T0 then T0 is a proper prefix of T1.
(2) Suppose T0 is a prefix of T1. It holds that

(a) the roots of T0, T1 coincide; and
(b) if N is a node in T0 then the parent and children (if exist) of N in T0 are respectively also the

parent and children of N in T1.

Proof. Obvious. �

Lemma 3. Let T be an argument, T0 be a proof tree such that T0 is a proper prefix of T . Furthermore,
let N be a leaf node in T0 such that CE(T0, N) �= ∅. Then there is an unique T1 ∈ CE(T0, N) such that
T1 is a prefix of T .

T1 is often simply denoted by exp(T0, N, T).
We also define exp(T0, T) = {exp(T0, N, T)|N is a non-final leaf node of T0}.15

Proof. Lemma 3 in [31] proves the existence of T1. The uniqueness of T1 should be obvious. �

Definition 6. An increasing sequence of proof trees T0 ⊆ T1 ⊆ . . . Ti ⊆ . . . is said to be fair if for each
Ti , for each non-final leaf node N ∈ Ti there is a node M ∈ Tj , j > i, such that N is a proper prefix of
M .

Lemma 4. Let sq ≡ T0 ⊆ T1 ⊆ . . . Ti ⊆ . . . be an increasing sequence of proof trees. The following
statements hold:

(1) T0 ∪ T1 ∪ . . . Ti ∪ . . . is a proof tree.
(2) If the sequence sq is fair then T0 ∪ T1 ∪ . . . Ti ∪ . . . is an argument.

Proof. This is Lemma 4 in [31]. �

Notation 5. Let T be a proof tree and N ≡ (root, σ0).(r1, σ1). . . . (ri, σi) be a node in T .
The height of N in T , denoted by h(N, T), is defined by h(N, T) = i.16

The minimum of the heights of the non-final leaf nodes in T are denoted by hi(T), i.e. hi(T) =
min{h(N, T)|N is a non-final leaf node in T }

3. ω-Groundedness of argumentation frameworks

We first introduce the notion of ω-grounded argumentation frameworks. We then show that finitary
ABA frameworks are ω-grounded.

15I.e. exp(T0, T) is the set of all immediate expansions of T0 that are prefixes of T .
16Hence the height of the root is 0.

12 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

3.1. ω-Grounded argumentation frameworks

Let AF = (Ar, att) be an argumentation framework.

Definition 7 (ω-Groundedness). An argumentation framework AF is ω-grounded if its grounded exten-
sion GEAF can be “computed” after at most ω steps, i.e.

GEAF = Fω
AF(∅) =

∞⋃
i=0

F i
AF(∅)

It should be obvious that the argumentation framework in Fig. 1 is not ω-grounded.
We give now a sufficient condition for ω-groundedness.
Let D be a set of sets of arguments (i.e D ⊆ 2Ar). D is said to be directed iff for all S, S ′ ∈ D,

S ∪ S ′ ∈ D.17

Note that the least upper bound of D, lub(D), is lub(D) = ∪D.

Definition 8 (Admissibility Continuity). A function
 : 2Ar → 2Ar is said to be admissibility-continuous
(or just ad-continuous for short) if for each directed set of admissible sets D

lub
{

(S)|S ∈ D

} =

(
lub(D)

)
Lemma 5. If the characteristic function FAF is ad-continuous then AF is ω-grounded.

Proof. Suppose FAF is ad-continuous. Let D = {F i
AF(∅)|i is a natural number}. D is obviously directed

and lub(D) = Fω
AF(∅) = ⋃∞

i=0 F i
AF(∅).

Since FAF is ad-continuous, Fω
AF(∅) = ⋃∞

i=0 F i
AF(∅) = lub{FAF(S)|S ∈ D} = FAF(lub(D)) =

FAF(Fω
AF(∅)). Therefore Fω

AF(∅) coincides with the grounded extension of AF. �

Definition 9. A set S of arguments is said to be a minimal defense of an argument A if S defends A and
no proper subset of S defends A.

Definition 10 (Finitary Defensible).

• A defensible argument A is finitary-defensible iff all minimal defenses of A are finite.18

• An argumentation framework AF is said to be finitary-defensible if all defensible arguments in AF
that are not self-attacking19 are finitary defensible.

Theorem 1 (Finitary Defensibility implies ad-Continuity). Let AF be a finitary-defensible argumenta-
tion framework. Then FAF is ad-continuous and hence AF is ω-grounded.

Proof. Let AF be a finitary-defensible argumentation framework, D be a directed set of admissible sets
of arguments. We show that lub{FAF(S)|S ∈ D} = FAF(lub(D)).

It is obvious that for each S ∈ D: S ⊆ lub(D). Since FAF is monotonic, it holds for each S ∈ D:
FAF(S) ⊆ FAF(lub(D)). Therefore lub{FAF(S)|S ∈ D} ⊆ FAF(lub(D)).

17The set 2Ar is ordered wrt set inclusion.
18Note that A is defensible if it is defended by some set of arguments.
19An argument A is self-attacking if A attacks itself.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 13

It remains to show that lub{FAF(S)|S ∈ D} ⊇ FAF(lub(D)).
Let A ∈ FAF(lub(D)). Hence lub(D) is a defense of A. Since D is a set of admissible sets of arguments,

lub(D) = ∪D is also admissible. Therefore FAF(lub(D)) is admissible. Thus A is not self-attacking.
Since AF is a finitary-defensible, there is a finite minimal defense M ⊆ lub(D) of A. Hence for each
X ∈ M there is SX ∈ D such that X ∈ SX. Since M is finite, S ′ = ∪{SX|X ∈ M} ∈ D. Thus
A ∈ FAF(S ′) ⊆ lub{FAF(S)|S ∈ D}.

From Lemma 5, it follows immediately that AF is ω-grounded. �

3.2. Finitary ABA frameworks are finitary-defensible and ω-grounded

We present a novel insight into the semantic structure of finitary ABA systems by showing that finitary
ABA frameworks are finitary-defensible and hence ω-grounded. We begin with a lemma stating that
finite arguments of finitary ABA framework are finitary-defensible.

Lemma 6 (Finite Arguments are Finitary Defensible). Let F be a finitary ABA framework. Then defen-
sible finite arguments in AFF are finitary-defensible.

Proof. Let B be a defensible finite argument in ArF .
Let S be a minimal defense of B wrt AFF = (ArF , attF). We show that S is finite.
Suppose the contrary that S is infinite. Hence S = {D1, . . . , Di, . . .}. Let Si = {D1, . . . , Di}.
Because S is a minimal defense of B, it follows that the set A ⊆ ArF of attacks against B is infinite (if

A is finite, pick for each X ∈ A, an argument DX ∈ S s.t. DX attacks X. Hence the set {DX|X ∈ A} ⊂ S

is a finite defense of B (wrt AFF). Contradiction to the fact that S is a infinite minimal defense of B).
Let PAn be the set of balanced proof trees of height n20 that are prefixes of arguments in A and PANn

are those elements in PAn that are not attacked by S.
Further let FAn be the set of the full arguments of height n in A.21

Since F is finitary, both PAn and FAn are finite22 and so are PANn.

• We first show that for each n, PANn �= ∅. Suppose the contrary that there is n such that PANn = ∅,
i.e. each partial argument in PAn is attacked by S. Since PAn is finite, there is some i such that Si

attacks each partial argument in PAn. Therefore each full argument of height > n in A is attacked
by Si .
Since the set FA0 ∪ · · · ∪ FAn is also finite, there is some j such that Sj attacks each argument in
this set. Therefore Si ∪ Sj attacks each (full) argument in A. Hence Si ∪ Sj is a finite defense of B,
contrary to the assumption that S is a infinite minimal defense of B.

• We show now that there is an infinite sequence T0 ⊂ T1 ⊂ . . . such that for each i � 0: Ti ∈ PANi .
It should be clear that each proof tree in PANi+1 is obtained by expanding a proof tree in PANi at
all non-final leaf nodes of the later.
Let T = (V , E) be a tree defined as follows:

20A balanced proof tree of height n is a proof tree such that the heights of all non-final leaf nodes are n.
21The height of a full argument is the length of the longest path from the root to a leaf.
22We could show by induction. Since PA0 ∪FA0 consists of the contraries of the assumptions in B and B is a finite argument,

both PA0 and FA0 are obviously finite. From the finitariness of F and the finiteness of PAn, it should be clear that the set
PAn+1 ∪FAn+1 is finite since it is the set of the expansions of PAn obtained by expanding each non-final leaf node in each proof
tree in PAn one step.

14 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

∗ The set of vertices of T is defined by: V = {root} ∪ ⋃∞
i=0 PANi where root is the root of T .23

∗ The set of edges of T is defined by: (T , T ′) ∈ E iff

∗ ∃i s.t. T ∈ PANi and T ′ ∈ PANi+1 and T ⊆ T ′; or
∗ T = root and T ′ ∈ PAN0.

Since PANi �= ∅ for all i, T is infinite and because F is finitary, each child of T has finitely
many children. Thus there is an infinite path in T . In other words, there is an infinite sequence
T0 ⊂ T1 ⊂ . . . such that for each i � 0: Ti ∈ PANi . Since each Ti is a balanced tree of height i, the
sequence T0 ⊂ T1 ⊂ . . . is obviously fair.

• Let T = ⋃∞
i=0 Ti . T is therefore a full proof tree and hence an argument. T is hence an attack

against B and not attacked by S. Contradiction. �

Since the set of finite arguments in AFF contains the set of all non-self-attacking arguments, it follows
immediately from Theorem 1 and the above Lemma 6:

Theorem 2 (ω-Groundedness of finitary ABA frameworks). Let F be a finitary ABA framework. Then
the following statements hold:

• AFF is finitary-defensible;
• The characteristic function FAFF is ad-continuous;
• AFF is ω-grounded.

4. Grounded dispute derivations

In this section we will present a proof procedure for grounded semantics where proof trees together
with their histories are fully and explicitly represented to shed light on the construction process of argu-
ments and counter arguments during a derivation and hence providing key insights into the soundness
and completeness of the procedure. Later, in Section 7, we present another procedure that is simply
the result of flattening the one presented in this section. Consequently, the second procedure is both
sound and complete but with much simpler data structure and hence much more amenable to possible
implementation.

The purpose of the dispute derivations is to construct arguments. So it is kind of natural to refer to
proof trees representing partly constructed arguments in a dispute derivation as partial arguments. It also
makes it more intuitive to talk about attack between partial arguments.

Remark 6 (Partial Arguments).

• Abusing the notation slightly for ease of reference, from now on until the end of the paper, we often
refer to proof trees as partial arguments.
To avoid any possibility of misunderstanding, we often refer to arguments as full arguments.

• We often say that a partial argument T attacks a partial argument T ′ if there is an assumption
α ∈ Ass(T ′) such that Cl(T) = α.

• We also often refer to a proof tree consisting only of the root and supporting a sentence δ by [δ],
i.e. [δ] = {(root, δ)}.

23Note that root /∈ ⋃∞
i=0 PANi .

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 15

In a dispute derivation, an argument could be constructed repeatedly many times at different stages
in the computation. To distinguish between these distinct “copies” of the same argument, we consider
them together with their histories.

Definition 11 (Histories of Partial Arguments). A possible history of a partial argument T is represented
by a sequence (T0, t0), . . . , (Tk, tk) where T0, . . . , Tk are partial arguments such that

• T0 = [Cl(T)] and T = Tk; and
• Ti , 0 < i � k, is an immediate expansion of Ti−1; and
• t0 < t1 < · · · < tk are natural numbers representing the stages in the dispute when such expansions

happen.

Definition 12 (Profiled Partial Arguments). A profiled partial argument (ppa) is a pair π = (T , h) where
T is a partial argument and h = (T0, t0), . . . , (Tk, tk) is a history of T .

(1) We also often refer to T and h by Tπ and hπ respectively;
(2) t0 is often referred to as the starting time of π denoted by st(π) while k is referred to as the length

of the history of π denoted by lh(π);
(3) An assumption α is often referred to as the target of π denoted by target(π), if Cl(T) = α;

Example 4. Considering again the argumentation framework F2 in the introduction

F2 : r : a ← not_α r ′′ : α ← not_β, f (0) rn : f (n) ← f (n + 1), n � 0.

t : β ←

π0 = (T0, h0) is an example of a profiled partial argument where T0 = [a] and h0 = (T0, 0) where h0

says that T0 is obtained at stage 0.
Suppose T0 is expanded at stage 1 resulting in a new profiled partial argument π1 = (T1, h1) (see

Fig. 7) where h1 = (T0, 0), (T1, 1). The history h1 says that T1 is obtained by expanding T0 at stage 1
and T0 is obtained a stage 0.

A dispute derivation is viewed as a game between a proponent and an opponent where the players
take turn to develop their arguments. The goal of the proponent is to construct an argument to support
some desired conclusion and other arguments to defend against the attacks from the opponent while the
opponent’s goal is to construct arguments to attack proponent’s arguments. At each step, either player
could choose to either expand their partly constructed arguments or start a new argument to attack the
other’s argument.

Definition 13 (Grounded Dispute Derivation). A grounded dispute derivation for a sentence σ is a
(possibly infinite) sequence of the form

〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 . . .

Fig. 7. Proof trees of Example 4.

16 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

where 24

• (1) for each i � n, PPT i , OPT i are sets of profiled partial arguments; and
(2) PTAi is a set of assumptions appearing in the proponent partial arguments (up to stage i) that

are to be attacked by the opponent; and
(3) PPT0 contains exactly one profiled partial argument consisting of only the root labeled by σ ,

i.e. PPT0 = {(T0, h0)} where T0 = [σ] and h0 = ([σ], 0), and
(4) PTA0 = ∅ if σ is not an assumption, otherwise PTA0 = {σ }, and
(5) OPT0 = ∅.

• at stage i > 0, one of the dispute parties makes a move transforming the dispute from state i − 1 to
state i as follows:

(1) Suppose the proponent makes a move at stage i. The proponent can choose one of the following
two options:

(a) The proponent expands some profiled partial argument π = (T , h) ∈ PPT i−1 by:

∗ selecting a non-final leaf node N in T labeled by a non-assumption sentence δ and a rule
r with hd(r) = δ; and

∗ expanding (T , h) at N by r .

The result will be:

∗ PPT i = (PPT i−1 \ {π}) ∪ {π ′} where π ′ = (T ′, h′) and T ′ = exp(T , N, r) and h′ =
h.(T ′, i);25

∗ PTAi = PTAi−1 ∪ Ass(r)
∗ OPT i = OPT i−1.

(b) The proponent attacks an opponent’s profiled partial argument π = (T , h) ∈ OPT i−1 at an
assumption α ∈ Ass(T) resulting in:
PPT i = PPT i−1 ∪ {(T ′, h′)} where T ′ = [α] and h′ = ([α], i); and
PTAi = PTAi−1

OPT i = OPT i−1 \ {π}
(2) Suppose the opponent makes a move at stage i. The opponent can choose one of the following

two options:

(a) The opponent expands an opponent profiled partial argument π = (T , h) ∈ OPT i−1 at a
non-final leaf node N ∈ T labeled by a non-assumption sentence δ resulting in:
PPT i = PPT i−1

PTAi = PTAi−1

OPT i = (OPT i−1 \ {π}) ∪ {π ′|π ′ = (T ′, h′), T ′ ∈ CE(T , N), h′ = h.(T ′, i)}26

(b) The opponent attacks an assumption α ∈ PTAi resulting in:
PPT i = PPT i−1

PTAi = PTAi−1 \ {α}
OPT i = OPT i−1 ∪ {π} where π = (T , h) and T = [α] and h = ([α], i)

24PPT, PTA, OPT stand respectively for “proponent profiled trees”, “proponent to-be-attacked assumptions “and “opponent
profiled trees”.

25See Notation 3 for the definition of exp(T , N, r).
26See Notation 3 for the definition of CE(T , N).

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 17

Remark 7.

• When opponent carries out step (2.a), it is possible that CE(T , N) = ∅. We often refer to this case
as a failed expansion of opponent profiled partial argument π .

• Note that if the assumption-based framework is not finitary, the set OPT i in step (2a) could be
infinite, and hence not implementable.

A dispute derivation is successful (for the proponent) if i) the proponent manages to construct in full
her arguments to support her stated conclusion and to defend against the attacks from the opponent and
ii) the opponent runs out of attacks against the proponent.

Definition 14 (Successful Grounded Dispute Derivation). A grounded dispute derivation

〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉

is successful (for the proponent) if PTAn = OPTn = ∅ and for each (T , h) ∈ PPTn, T is a full argument.

Example 5. A successful grounded dispute derivation

〈PPT0, PTA0, OPT0〉, . . . , 〈PPT5, PTA5, OPT5〉

for sentence a (wrt the argumentation framework F2 in the introduction) is illustrated in Table 1 and
explained in details below. For convenience we recall F2 below.

F2 : r : a ← not_α r ′′ : α ← not_β, f (0) rn : f (n) ← f (n + 1), n � 0

t : β ←

At stage 0, we have PPT0 = {π0}, PTA0 = OPT0 = ∅ where π0 = (T0, h0) and T0 = [a] and
h0 = (T0, 0).

Table 1

A successful grounded dispute derivation of F2

Stage Move PPT PTA OPT

0 π0 = (T0, h0)
h0 = (T0, 0)

∅ ∅

1 1a π1 = (T1, h1)
h1 = (T0, 0), (T1, 1)

not_α ∅

2 2b π1 = (T1, h1),
h1 = (T0, 0), (T1, 1)

∅ π ′
0 = (T ′

0, h
′
0)

h′
0 = (T ′

0, 2)

3 2a π1 = (T1, h1),
h1 = (T0, 0), (T1, 1)

∅ π ′
1 = (T ′

1, h
′
1)

h′
1 = (T ′

0, 2), (T ′
1, 3)

4 1b π1 = (T1, h1), h1 = (T0, 0), (T1, 1)
π ′′

0 = (T ′′
0 , h′′

0), h′′
0 = (T ′′

0 , 4)
∅ ∅

5 1a π1 = (T1, h1), h1 = (T0, 0), (T1, 1)
π ′′

1 = (T ′′
1 , h′′

1), h′′
1 = (T ′′

0 , 4), (T ′′
1 , 5)

∅ ∅

18 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 8. Proof trees for Example 5.

• At stage 1, the proponent makes a move to expand the ppa π0 by applying step (1a) using rule r .
Hence PPT1 = (PPT0 \ {π0}) ∪ {π1} = {π1} where π1 = (T1, h1), T1 = exp(T0, root, r) and
h1 = (T0, 0), (T1, 1) (T1 is illustrated in Fig. 8).
Since rule r has the assumption not_α (i.e. Ass(r) = {not_α}), we have PTA1 = PTA0 ∪ Ass(r) =
PTA0 ∪ {not_α} = {not_α}.
OPT1 = OPT0 = ∅.

• Next, at stage 2, the opponent attacks the assumption not_α ∈ PTA1 by applying step (2b). Hence
OPT2 = OPT1 ∪ {π ′

0} = {π ′
0} where π ′

0 = (T ′
0, h

′
0) with T ′

0 = [α] and h′
0 = (T ′

0, 2) stating that T ′
0

is created at stage 2 (See Fig. 8).
PPT2 = PPT1 = {π1}.
PTA2 = PTA1 \ {not_α} = ∅.

• At stage 3, the opponent applies step (2a) to expand T ′
0 to T ′

1. Since rule r ′′ is the only one with head
α, it follows CE(T ′

0, root) = {T ′
1} with T ′

1 = exp(T ′
0, root, r ′′) (See Fig. 8). Therefore

OPT3 = (OPT2 \ {π ′
0}) ∪ {π ′

1} = {π ′
1} where π ′

1 = (T ′
1, h

′
1) and h′

1 = (T ′
0, 2), (T ′

1, 3).
PPT3 = PPT2 = {π1}
PTA3 = PTA2 = ∅

• At stage 4, the proponent attacks opponent’s ppa π ′
1 at assumption not_β ∈ T ′

1 by applying step
(1b).
Therefore PPT4 = PPT3 ∪ {π ′′

0 } = {π1, π
′′
0 } where π ′′

0 = (T ′′
0 , h′′

0) and T ′′
0 = [β] and h′′

0 = (T ′′
0 , 4)

(See Fig. 8).
PTA4 = PTA3 = ∅
OPT4 = OPT3 \ {π ′

1} = ∅.
• Finally at stage 5, the proponent applies step (1a), using rule t , to expand T ′′

0 to argument T ′′
1 =

exp(T ′′
0 , root, t) (See Fig. 8). Therefore

PPT5 = (PPT4 \ {π ′′
0 }) ∪ {π ′′

1 } = {π1, π
′′
1 } where π ′′

1 = (T ′′
1 , h′′

1) with h′′
1 = (T ′′

0 , 4), (T ′′
1 , 5).

PTA5 = PTA4 ∪ Ass(t) = ∅
OPT5 = OPT4 = ∅

As there is no any other assumption in PTA5 and OPT5 is empty and all ppa in PPT5 are full, the
derivation is successful.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 19

Table 2

A successful grounded dispute derivation of F3

Stage Move PPT PTA OPT

0 π0 = (T0, h0)
h0 = (T0, 0)

∅ ∅

1 1a π1 = (T1, h1)
h1 = (T0, 0), (T1, 1)

not_a ∅

2 2b π1 = (T1, h1)
h1 = (T0, 0), (T1, 1)

∅ π ′
0 = (T ′

0, h
′
0)

h′
0 = (T ′

0, 2)

3 2a π1 = (T1, h1)
h1 = (T0, 0), (T1, 1)

∅ ∅

Fig. 9. Proof trees of the dispute derivation for sentence “p”.

Example 6. Consider the following argumentation framework

F3 : r : p ← not_a

A successful dispute derivation for sentence “p”

〈PPT0, PTA0, OPT0〉, . . . , 〈PPT3, PTA3, OPT3〉
is illustrated in Table 2 and is explained in details below.

At stage 0, we have PPT0 = {π0}, PTA0 = OPT0 = ∅ where π0 = (T0, h0) and T0 = [p] and
h0 = (T0, 0) (see Fig. 9).

• At stage 1, the proponent makes a move to expand the ppa π0 by applying step (1a) using rule r .
Hence PPT1 = (PPT0 \{π0})∪{π1} = {π1} where π1 = (T1, h1), T1 = exp(T0, root, r) (see Fig. 9)
and h1 = (T0, 0), (T1, 1).
Since rule r has the assumption not_a (i.e. Ass(r) = {not_a}), we have PTA1 = PTA0 ∪ Ass(r) =
PTA0 ∪ {not_a} = {not_a}.
OPT1 = OPT0 = ∅.

• Next, at stage 2, the opponent attacks the assumption not_a ∈ PTA1 by applying step (2b). Hence
OPT2 = OPT1 ∪ {π ′

0} = {π ′
0} where π ′

0 = (T ′
0, h

′
0) with T ′

0 = [a] and h′
0 = (T ′

0, 2) stating that T ′
0

is created at stage 2 (see Fig. 9).
PPT2 = PPT1 = {π1}.
PTA2 = PTA1 \ {not_a} = ∅.

• At stage 3, the opponent applies step (2a) to expand T ′
0. Since there is no rule with head a, it follows

CE(T ′
0, root) = ∅. Therefore

OPT3 = (OPT2 \ {π ′
0}) ∪ ∅ = ∅.

PPT3 = PPT2 = {π1}
PTA3 = PTA2 = ∅

As there is no any other assumption in PTA3 and OPT3 is empty and all ppa in PPT3 are full, the
derivation is successful.

20 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

5. Soundness of grounded dispute derivation

We first introduce some new notations.

Notation 6.

• We say a ppa π ′ is a continuation of another ppa π iff hπ is a prefix of hπ ′ (and hence Tπ ⊆ Tπ ′ and
st(π) = st(π ′)).
π ′ is an immediate expansion of π if hπ = (T0, t0), . . . , (Tk, tk) and hπ ′ = hπ .(Tk+1, tk+1).27

• A ppa π is said to be full iff Tπ is an argument.
• We say two ppas π , π ′ are compatible if st(π) = st(π ′) and Tπ , Tπ ′ are compatible.
• We often refer to a ppa appearing in some PPT i (resp. OPT i) in a grounded dispute derivation as a

proponent ppa (resp opponent ppa).

The following lemma expresses the intuition that when the proponent has partially constructed an
argument, she is expected to finish it. And she should not construct two distinct arguments for the same
purpose at the same time, i.e. at any stage there should be no distinct continuations of the same proponent
ppa at some previous stage.

Lemma 7. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute derivation.

(1) Let π be some proponent ppa appearing in dd. The following statements hold:

(a) For each i : st(π) � i � n, there is an unique continuation of π in PPT i .
(b) Let πi , πi+1 (st(π) � i < n) be continuations of π in PPT i , PPT i+1 respectively. Then πi+1

is either an immediate expansion of πi or identical to πi .

(2) Let π , π ′ be two proponent ppas in dd such that st(π) = st(π ′). Then one is a continuation of the
other.
Consequently, if π , π ′ are full then they are identical.

Proof. See proof of Lemma 7 in Appendix A.3. �

The following lemma states intuitively that at any stage in a derivation, it is not possible for the
opponent to construct the same argument in different ways.

Lemma 8. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute derivation.
It holds that for each 0 � i � n, for all π, π ′ ∈ OPT i , if π , π ′ are compatible then π , π ′ are identical.

Proof. See proof of Lemma 8 in Appendix A.3. �

Remark 8. An opponent ppa π in a dispute derivation dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn,

OPTn〉 is said to be discontinued at step i iff π ∈ OPT i−1 and there is no continuation of π afterwards,
i.e. ∀j � i there is no continuation of π in OPTj .

It is obvious that in a successful grounded dispute derivation, every opponent ppa is discontinued at
some stage. The following lemma sheds light on the structure of the evolution of opponent ppas in a
grounded dispute derivation.

27I.e. π ′ is a continuation of π and Tπ ′ is an immediate expansion of Tπ .

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 21

Lemma 9. Let dd be a dispute derivation dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉.
Further let A be an argument such that Cl(A) = α for some assumption α and π = ([α], ([α], i)) ∈

OPT i for some 0 � i � n.
Then there is an unique sequence contdd(π) = π0, . . . , πk (i � i + k � n) such that

(1) π0 = π; and
(2) for each i < j � k, πj ∈ OPT i+j and πj is a continuation of πj−1 and Tπj

⊆ A; and
(3) if i + k < n then πk is discontinued at i + k + 1 and there is no ppa at any OPT i+k+1, . . . , OPTn

that is compatible with πk.

Proof. See proof of Lemma 9 in Appendix A.3. �

The following lemma states that each argument attacking a proponent argument in a successful dispute
derivation is counter-attacked by some proponent argument.

Lemma 10. Let dd be a successful grounded dispute derivation that terminates at 〈PPTn, PTAn, OPTn〉
and π = (T , h) ∈ PPTn and T ′ be an argument attacking argument T . Then there is a opponent ppa π ′
such that st(π) < st(π ′) and Tπ ′ ⊆ T ′ and π ′ is discontinued at some step between st(π ′) and n.

Proof. See proof of Lemma 10 in Appendix A.3. �

The following theorem shows that in a successful dispute derivation, each proponent argument whose
construction started at some stage i is defended by the proponent arguments constructed after stage i.

Theorem 3. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a successful grounded dis-
pute derivation and π = (T , h) ∈ PPTn. Further let Tπ = {Tπ ′ |π ′ ∈ PPTn and st(π ′) > st(π)}. It
holds:

T ∈ FAFF (Tπ)

Proof. Let T ′ ∈ ArF such that T ′ attacks T . From Lemma 10 there is opponent ppa π ′ (discontinued at
stage i) such that st(π) < st(π ′) and Tπ ′ ⊆ T ′.

There are two cases:

(1) Case 1 The opponent makes a move at stage i. Because π ′ is discontinued at step i, the opponent
expands π ′ at stage i. Because Tπ ′ ⊆ T ′, it follows from Lemma 3 that π ′ has a continuation at
stage i. Contradiction to the fact that π ′ is discontinued at stage i. Hence this case is not possible.

(2) Case 2 The proponent makes a move at stage i. Since π ′ is discontinued at stage i, it follows that
the proponent attacks π ′ at some assumption α at this stage. Since Tπ ′ ⊆ T ′, it follows that α

appears in T ′.
Hence a new proponent ppa π1 = (T1, h1) is created in PPT i where T1 = [α] and h1 = (T1, i).
Since dd is successful, there is π2 ∈ PPTn that is a continuation of π1. Hence Tπ2 attacks T ′.
Since st(π2) = st(π1) = i > st(π ′) > st(π), it follows that Tπ2 ∈ Tπ . Thus Tπ defends T against
T ′.
Since T ′ is arbitrary selected, it follows that Tπ defends T against all attacks against T .
We have proved that T ∈ FAFF (Tπ). �

22 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

An immediate consequence of Theorem 3 is the soundness of the grounded dispute procedure as stated
in the following theorem.

Theorem 4 (Soundness Theorem). Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a suc-
cessful grounded dispute derivation. It holds

{Tπ |π ∈ PPTn} ⊆ GEAFF

Proof. Let m = |PPTn|. Let πm, . . . , π1 be an increasing (according to the starting times) listing of
ppas in PPTn, i.e. for m � i > 1, st(πm) = 0 and st(πi) < st(πi−1).

Let Ti = Tπi
. We first prove by induction on i, Ti ∈ F i

AFF (∅).
Basic Step i = 1.
From Theorem 3, it follows immediately that T1 ∈ FAFF (∅) (because Tπ1 = ∅).
Inductive Step Suppose for all j (i > j � 1), Tj ∈ F

j

AFF (∅).
We prove that Ti ∈ F i

AFF (∅).

From FAFF (∅) ⊆ F 2
AFF (∅) ⊆ · · · ⊆ F i−1

AFF (∅) and for each j (i > j � 1), Tj ∈ F
j

AFF (∅), it follows
that Tπi

= {Ti−1, . . . , T1} ⊆ FAFF (∅) ∪ F 2
AFF (∅) ∪ · · · ∪ F i−1

AFF (∅) ⊆ F i−1
AFF (∅).

Thus from Theorem 3, Ti ∈ FAF(Tπi
) ⊆ FAF(F i−1

AFF (∅)) = F i
AFF (∅).

Therefore {Tπ |π ∈ PPTn} = {Tm, . . . , T0} ⊆ Fm
AFF (∅) ⊆ GEAFF . �

6. Completeness of grounded proof procedure

It should be clear that for each sentence σ ∈ Cl(GEAFF), there are always some arguments in GEAFF
supporting σ . The completeness of the grounded proof procedure means that at least one of such argu-
ments could be derived in a successful grounded dispute derivation.

In other words, completeness of grounded procedure is not about verifying whether a sentence is
supported by an argument in the grounded extension. It is rather about showing that for each sen-
tence in the grounded extension, an argument supporting it could be derived by a grounded deriva-
tion.

The proof is constructive by first constructing (according to the definition of strongly grounded dd)
for each sentence σ ∈ Cl(GEAFF), a special kind of grounded dispute derivation, and then show that
each of such special grounded derivation is always successful.

For each argument A ∈ GEAFF and sentence δ ∈ Cl(GEAFF), define

rank(A) = min
{
i|A ∈ F i

AFF (∅)
}

and

rank(δ) = min
{
i|δ ∈ Cl

(
F i

AFF (∅)
)}

Remark 9.

(1) Since AFF is ω-grounded (because F is finitary (see Convention 1)), both rank(A) and rank(δ)
are natural numbers.

(2) It is not difficult to see that for each A ∈ GEAFF , rank(Cl(A)) � rank(A).

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 23

(3) For each δ ∈ Cl(GEAFF), an argument A ∈ GEAFF with Cl(A) = δ and rank(δ) = rank(A), is
often referred to as a ground support of δ.
It is obvious that each sentence δ ∈ Cl(GEAFF) has a ground support.

(4) A mapping λ assigning to each sentence in δ ∈ Cl(GEAFF) a ground support λ(δ) ∈ GEAFF of δ

is often referred to as a ground map of F .28

Lemma 11. Let A ∈ GEAFF and α ∈ Ass(A). Further let B be an argument attacking α. The following
statements hold:

(1) α ∈ Cl(GEAFF) and rank(α) � rank(A); and
(2) There is an assumption β ∈ Ass(B) such that β ∈ Cl(GEAFF) and rank(β) < rank(α).

Proof. Since A ∈ GEAFF , it follows from Theorem 2 that A ∈ Fk
AFF (∅) where k = rank(A) and k

is a natural number. Hence, every attack against A is attacked by some argument in Fk−1
AFF (∅). Thus

every attack against α is attacked by some argument in Fk−1
AFF (∅) implying that α ∈ Cl(F k

AFF (∅)). Hence
rank(α) � k = rank(A).

Let rank(α) = m. Hence α ∈ Cl(Fm
AFF (∅)). From Theorem 2, m is a natural number. Thus every attack

against α is attacked by some argument in Fm−1
AFF (∅). It follows that B is attacked by some argument

C ∈ Fm−1
AFF (∅) at some assumption β ∈ Ass(B). Thus Cl(C) = β and rank(β) � rank(C) � m − 1 <

m = rank(α) � rank(A). �

We introduce the concept of strongly grounded dispute derivation below where the proponent ar-
guments are grounded according to some ground map λ. This concept is inspired by the idea of the
H -constrainted dispute derivations for admissibility semantics in [31].

The construction of strongly grounded dispute derivations mimics such derivations in abstract ar-
gumentation when arguments are assumed to be given and a key basic step is like: “pick some argu-
ment. . . ”.

This step is elaborated in the strongly grounded dispute derivation by the proponents and opponents
as follows:

• Once the proponent has started to build up an argument, she will continue until getting the full
argument constructed without being bothered to attack the other’s arguments. The opponent is not
allowed to disrupt her even if he could attack her still partly constructed argument at some stage.

• On the contrary, the opponent’s construction of his arguments will be disrupted by attacks from the
proponent whenever she could launch such attacks. But the opponent is not allowed to interrupt the
constructions of his own arguments to launch an attack against a proponent argument even if such
attack is possible.

Definition 15 (Strongly Grounded Dispute Derivation). A strongly grounded dispute derivation for a
sentence δ wrt a ground map λ is a grounded dispute derivation for δ (as defined in Definition 13) such
that the following extra constraints are satisfied:

• The proponent executes step (1.a) (to expand proponent ppa π = (T , h)) with an extra condition
that exp(T , N, r) ⊆ λ(Cl(T));

28We assume the axiom of choice or equivalently the maximality principles (see [9] for more details). Hence such mapping
always exists.

24 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

• The proponent executes step (1.b) (to attack an opponent ppa π = (T , h) ∈ OPT i at an assumption
α ∈ Ass(T)) with two extra conditions:

∗ α ∈ Cl(GEAFF) and rank(α) < rank(target(π)); and
∗ step (1.a) is not possible;

• The opponent executes step (2.a) (to expand an opponent ppa π = (T , h) ∈ OPT i) with two extra
conditions:

∗ h(N, T) = hi(T);29

∗ It is not possible for the proponent to perform any of steps (1.a) or (1.b).

• The opponent executes step (2.b) (to attack a proponent assumption α ∈ PTAi) with two extra
conditions:

∗ It is not possible for the proponent to perform any of steps (1.a) or (1.b);
∗ It is not possible for the opponent to perform step (2.a).

Remark 10. We often simply refer to a strongly grounded dispute derivation without explicitly men-
tioning the associated ground map if there is no possibilities for misunderstanding.

Definition 16. A strongly grounded dispute derivation 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉
is said to be terminated if neither the proponent nor the opponent could make a move at stage n.

Theorem 5 (Completeness Theorem). Let F be a finitary ABA framework and σ ∈ Cl(GEAFF). Then
there is a successful strongly grounded dispute derivation for σ 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn,

OPTn〉 such that σ ∈ Cl(Tπ) for some π ∈ PPTn.

Proof. See Section 6.1. �

The proof of the completeness theorem follows directly from two insights:

i) each terminated strongly grounded dispute derivation for σ ∈ Cl(GEAFF) is successful; and
ii) there is no infinite strongly grounded dispute derivation.

We first show below that each terminated strongly grounded dispute derivation for σ ∈ Cl(GEAFF) is
successful.

Theorem 6. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a terminated strongly
grounded dispute derivation for δ ∈ Cl(GEAFF) wrt a ground map λ. Then sdd is successful.

Proof. Let π ∈ PPTn and hπ = (T0, i0) . . . (Tm, im) with T0 = [δ]. From the design of the proof
procedure in definitions 13, 15, it holds: T0 ⊂ T1 ⊂ · · · ⊂ Tm ⊆ λ(δ). Since sdd is terminated, it is not
possible to expand Tm further into λ(δ). Hence λ(δ) = Tm = Tπ . Hence Tπ is a full argument.

Since the opponent can not carry out step (2.b) (attack proponent assumptions in PTAn), even though
all other steps are not possible, it follows that PTAn = ∅.

Since the opponent can not carry out step (2.a) (expand opponent partial arguments) even though none
of steps (1.a, 1.b, 2.b) can be executed, it follows that for each π ∈ OPTn: Tπ is a full argument and
there is p ∈ PPTn s.t. Tπ attacks Tp. Since Tp = λ(Cl(Tp)), Tp ∈ GEAFF .

29See Notation 5 for the introduction of hi(T).

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 25

From Lemma 11, it follows there is an assumption α ∈ Ass(Tπ) such that α ∈ Cl(GEAFF) and
rank(α) < rank(target(π)). Thus it is possible for the proponent to execute step (1b) at stage n. Contra-
diction. Therefore π does not exist. Hence OPTn = ∅.

We have proved that sdd is successful. �

To show the completeness theorem, it remains for us to show that there is no infinite strongly grounded
dispute derivation.

Lemma 12. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a strongly grounded dispute
derivation wrt a ground map λ. The following statements hold:

(1) Each PPT i contains at most one not-full ppa;
(2) Let π ∈ PPT i , 0 � i � n. Then it holds that π is not full iff there is an unique immediate

expansion of π in PPT i+1;
(3) Let π = (T , h) ∈ PPT i , 0 � i � n. Then h is of the form

h = (T0, i0), (T1, i0 + 1), . . . , (Tk, i0 + k)

such that

• i0 + k � i; and
• Tj ⊆ λ(Cl(T))) for k � j � 1; and
• if π is not full then i0 + k = i.

(4) Let π ∈ PPT i (0 � i � n) such that the proponent does not make a move to expand π at some
stage k with i � k > st(π). Then π is full.

Proof.

(1) By induction on i. The statement holds obviously for i = 0.
Suppose the statement holds for i. We show that it also holds for i + 1. If the opponent makes a
move at stage i + 1 then PPT i+1 = PPT i . The statement holds obviously.
If the proponent executes step (1b) at stage i + 1 meaning that step (1a) is not possible at this
stage. Hence all ppas in PPT i are full. The statement holds obviously.
Suppose the proponent executes step (1a) at stage i + 1 (to expand a ppa π ∈ PPT i into a new
ppa π ′ ∈ PPT i+1). Hence π is the only non-full ppa in PPT i . Therefore, if π ′ is full, there is
no non-full ppa in PPT i+1. If π ′ is not full, π ′ is the only non-full ppa in PPT i+1. The statement
holds.

(2) Suppose π is not full. It follows immediately from the definition of sdd that the proponent will
execute step (1a) at stage i + 1 to expand π into π ′ ∈ PPT i+1. The uniqueness of π ′ follows from
Lemma 7.
Suppose π ′ ∈ PPT i+1 is the unique immediate expansion of π . Hence π is no-full obviously.

(3) By induction on i with i � i0. The statement holds obviously for i = i0. Suppose the statement
holds for i � i0. We show that it also holds for i + 1.
Let π ∈ PPT i+1. There are two cases:
Case 1 π ∈ PPT i . From statements (1,2) and Lemma 7, it follows that π is full. The statement
follows directly from the induction hypothesis.

26 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Case 2 π /∈ PPT i . Hence the proponent executes step (1a) at stage i+1 to expand some p ∈ PPT i

into π with hp = (T0, i0), (T1, i0 + 1), . . . , (Tk, i0 + k) and Tp = Tk. Hence p is not full. From
the induction hypothesis, we have i0 + k = i. Therefore hπ = hp.(Tπ, i + 1) and Tπ ⊆ Cl(Tπ).
Hence the statement holds.

(4) Suppose π is not full. From statement (3), hπ = (T0, i0), (T1, i0+1), . . . , (Tk, i0+k) with i0+k =
i where i0 = st(π). It follows that the proponent makes the move (1a) at every stage j : i � j > 0.
Contradiction. We have proved that π is full. �

Lemma 13. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a strongly grounded dispute
derivation for δ ∈ Cl(GEAFF) wrt a ground map λ.

It holds that for all i: PTAi ⊆ Cl(GEAFF).

Proof. Let α ∈ PTAi , 0 � i � n. We show by induction on i that α ∈ Cl(GEAFF).
Base Step: “i = 0”. If δ is not an assumption then PTA0 = ∅. The lemma holds vacuously. Suppose δ

is an assumption. The lemma holds since it is assumed that δ ∈ Cl(GEAFF).
Inductive Step: Suppose the lemma holds for i − 1. We show that it also holds for i.
The lemma follows directly from the inductive hypothesis if at step i, the opponent makes a move or

the proponent attacks an opponent ppa.
Suppose now that the proponent expands some ppa π at step i. If α ∈ PTAi−1, the lemma follows

from the inductive hypothesis.
Suppose now α ∈ PTAi \PTAi−1. Therefore α ∈ Ass(λ(Cl(Tπ)). Since λ(Cl(Tπ)) ∈ GEAFF , it follows

α ∈ Cl(GEAFF). �

Lemma 14. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a strongly grounded dispute
derivation for δ ∈ Cl(GEAFF) wrt a ground map λ.

For each 0 � i � n, for all π, π ′ ∈ OPT i , it holds that st(π) = st(π ′).

Proof. Suppose there are π , π ′ s.t. st(π) �= st(π ′); Without loss of generality, we assume that st(π) <

st(π ′). We first show that π is full.
Suppose π is not full. That means that at stage st(π ′), the opponent attacks a proponent assumption

(step 2.b) even though the opponent could have perform step (2a) (expanding a prefix of π). Hence sdd
is not a strongly grounded dispute derivation. Contradiction.

We have proved that π is full.
Since step (2a) has higher priority than step (2b) in the definition of sdd, it follows that st(π)+lh(π) <

st(π ′).
Since π is full, Tπ is an argument. Let α be an assumption such that Cl(Tπ) = α. From Lemma 13,

it follows α ∈ Cl(GEAFF). From Lemma 11, there is β ∈ Ass(Tπ) such that rank(β) < rank(α) and
β ∈ Cl(GEAFF). It is thus possible for the proponent to execute step (1b) before st(π ′) to attack β.
Hence π /∈ OPT i . Contradiction.

Therefore the assumption that st(π) �= st(π ′) is wrong. �

Definition 17. Let π be an opponent ppa and π ′, π ′′ be proponent ppas in a strongly grounded dispute
derivation sdd.

(1) We say π hits π ′ at an assumption α′ ∈ Ass(Tπ ′) if

• π ′ is full and α′ = Cl(Tπ); and

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 27

• st(π ′) < st(π); and
• there is no opponent ppa p in sdd such that α′ = Cl(Tp) and st(π ′) < st(p) < st(π).

We say π hits π ′ if π hits π ′ at some assumption.
(2) We say π ′ hits π (at an assumption α ∈ Ass(Tπ)) if the proponent attacks π at assumption α at

stage st(π ′).
(3) We say π ′′ supports π ′ if there is an opponent ppa p such that p hits π ′ and π ′′ hits p.

It is not difficult to see that the following lemma holds.

Lemma 15. Let π be an opponent ppa and π ′ be proponent ppa in a strongly grounded dispute deriva-
tion sdd.

(1) for each assumption α ∈ Tπ , there is at most one proponent ppa hitting π at α.
(2) for each assumption α′ ∈ Tπ ′ , there is at most one opponent ppa hitting π ′ at α′.
(3) if π ′ hits π then π is discontinued at stage st(π ′);30

Lemma 16. Let π , π ′ be two proponent ppas in a strongly grounded dispute derivation sdd for δ ∈
Cl(GEAFF) such that π ′ supports π . It holds rank(Cl(Tπ)) > rank(Cl(T ′

π)).

Proof. Let p be an opponent ppa such that p hits π and π ′ hits p.
From Lemma 11, it follows rank(Cl(Tπ)) � rank(target(p)). From the selection criteria for step (1b)

in sdd, it follows rank(target(p)) > rank(Cl(Tπ ′)).
Hence rank(Cl(Tπ)) > rank(Cl(Tπ ′)). �

Theorem 7. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉, . . . be an infinite strongly
grounded dispute derivation for δ ∈ Cl(GEAFF) wrt ground map λ.

Then for each k, the set OPTk = {π ∈ ⋃∞
i=0 OPT i |st(π) = k} is finite.

Proof. Suppose the contrary that there is k, such that OPTk is infinite. From Definition 13 (of grounded
dispute derivation), it follows that the opponent attacks a proponent assumption α at stage k. From
Lemma 14, it follows OPTk = {π0} where π0 = (T0, h0) with T0 = [α] and h0 = ([α], k).

It follows that OPTk has the structure of a tree Tk as follows:
The root of Tk is π0. A ppa π ′ ∈ OPTk is a child of π ∈ OPTk iff π ′ is an immediate expansion of π .
Because F is finitary, each ppa has only finitely many immediate expansions. Hence each node in Tk

has finitely many children. Since Tk is infinite (because OPTk is infinite), there is an infinite path labeled
by π0, π1, . . . , in Tk such that πi+1 is an immediate expansion of πi .

We show that T = ⋃∞
i=0 Tπi

is a full argument. Suppose T is not a full argument. Then there is a
non-final leaf node N in T . Therefore there is m such that for each j � m, N is a non-final leaf node in
Tπj

.
For each j � m, let Nj be the non-final leaf node in Tπj

selected for expansion to Tπj+1 . It follows from
the extra condition for step (2a) in Definition 15 of sdd, that h(Nj , T) = h(Nj , Tπj

) � h(N, Tπj
) =

h(N, T). The set of Njs is therefore finite implying that the sequence π0, π1, . . . is finite. Contradiction.
We have proved that T is a full argument.

30Since π is discontinued at stage i, there are two possibilities: π is attacked by the proponent or the expansion of π by the
opponent fails. Since π ′ starts at i, it is the proponent who makes a move at stage i. Hence π is attacked by the proponent.

28 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

It is clear that T attacks α. Since α ∈ Cl(GEAFF) (Lemma 13), T is attacked by some X ∈ GEAFF
such that rank(X) < rank(α). It follows there is β ∈ Ass(T) such that β = Cl(X). Hence rank(β) <

rank(X) < rank(α).
Let j = min{i|β ∈ Ass(Tπi

)}. From Definition 15 of sdd, it is possible for the proponent to execute
step (1b) at stage j or some later stage > j .31 As step (1b) has higher priority than step (2a), the infinite
path π0, π1, . . . , in Tk does not exist. Contradiction

Hence tree Tk is finite. Contradiction. Hence we have proved that OPTk is finite. �

Lemma 17. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉, . . . be an infinite strongly
grounded dispute derivation for δ ∈ Cl(GEAFF) wrt ground map λ.

Let π ∈ ∪{PPT i |i � 0} and π be a full ppa. Then the set of proponent ppas in sdd supporting π is
finite.

Proof. It is obvious that for each assumption α ∈ Tπ there is at most one opponent ppa hitting π at
α. Let P be the set of opponent ppas in sdd that hit π . Since Ass(Tπ) is finite, it follows directly from
Lemma 15 that P is finite. Hence it also follows directly from Lemma 15 that there are only finite
number of proponent ppas hitting the ppas in P . Therefore the lemma holds. �

Theorem 8. Let sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉, . . . be an infinite strongly
grounded dispute derivation wrt ground map λ.

The set of proponent profiled full arguments in sdd is finite.

Proof. We first prove two relevant properties.

Property 1.

(1) Each opponent ppa in sdd hits some proponent ppa in sdd;
(2) Each proponent ppa in sdd that does not start at stage 0 hits some opponent ppa in sdd.
(3) Each full proponent ppa in sdd that does not start at stage 0 supports some other full proponent

ppa in sdd.

Proof of Property 1. Statement 2 holds obviously. Statement 3 follows directly from statements 1,2.
We prove statement 1. Let π be an opponent ppa in sdd and i = st(π) and α ∈ PTAi−1 such that
α = Cl(Tπ).

Let π ′ be a proponent full ppa in sdd satisfying the following condition:

• α ∈ Ass(Tπ ′);
• st(π ′) = max{st(q)|α ∈ Ass(Tq) and q ∈ PPT i−1}
We show that π hits π ′. Suppose π does not hit π ′. Hence there is opponent ppa p such that st(π ′) <

st(p) < st(π) s.t. α = Cl(Tp). Let j = st(p). It follows j < i and α /∈ PTAj . Since α ∈ PTAi−1,
it follows that there is proponent full ppa q such that st(π ′) < j < st(q) < i and α ∈ Tq . Because
st(q) < i, it follows q ∈ PPT i−1. Contradiction to the construction of π ′. �

31From statements (1,2,3) in Lemma 12, it follows that at any point during a sdd, the proponent has at most one ppa to expand
and such ppa is expanded in consecutively stages and hence finished after finitely many steps (1a). Afterwards, if step (1b) is
executable, it will be executed.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 29

Let π0 be the unique proponent profiled full argument such that st(π0) = 0 (the existence and unique-
ness of π0 follows from Lemma 12).

A support path in sdd is a sequence of profiled full arguments π0, . . . , πn (n � 0) in
⋃∞

i=0 PPT i such
that πi+1 supports πi (0 � i < n).

Property 2. Each full proponent ppa π in sdd appears as the last element of a support path.

The proof is by induction on st(π). The property holds obviously for st(π) = 0. Suppose that the
property holds for all full proponent ppas that start before π . Therefore π supports some full proponent
ppa π ′ (from above Property 1). Hence st(π ′) < st(π). From the induction hypothesis, it follows that π ′

is the last element of some support path sq. Hence sq.π is a support path.
The set of all support paths in sdd forms a tree T where the root is π0 and the nodes in T are support

paths and a support path π0, . . . , πn, πn+1 is a child of π0, . . . , πn.
Suppose the set of proponent profiled full argument in sdd is infinite. Therefore T is infinite.
From Lemma 17, each node in T has only finitely many children. Hence there is an infinite support

path in T . Contrary to Lemma 16.
Hence the set of proponent profiled full arguments in sdd is finite. �

6.1. Proof of completeness theorem

We only need to show that there exists no infinite sdd for δ wrt λ.
Assume that there exists an infinite strongly grounded dispute derivation for δ ∈ Cl(GEAFF) wrt

ground map λ

sdd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPT i , PTAi , OPT i〉, . . .

From Theorem 8, it follows that there is n such that PPTn contains all proponent profiled full argu-
ments in sdd. Therefore the opponent makes a move at all stages m > n in sdd.

Let K0 be the set of starting times before n of opponent ppas in sdd while K1 be the set of starting
times of all opponent ppas in sdd, i.e.

K0 =
{

j |∃π ∈
∞⋃
i=0

OPT i s.t. j = st(π) < n

}
, and

K1 =
{

j |∃π ∈
∞⋃
i=0

OPT i s.t. j = st(π)

}
.

From the Definition 15 (of strongly grounded dispute derivation), it follows that |K1| � |K0|+|PTAn|.
From

⋃∞
i=0 OPT i = ⋃

k∈K1
OPTk, it follows immediately from Theorem 7 that

⋃∞
i=0 OPT i is finite.

Hence sdd is finite. Contradiction.
We have proved that there is no infinite sdd.
The completeness theorem follows directly from Theorem 6. �

30 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

7. Flatten dispute derivation

We have presented the grounded dispute derivations that are both sound and complete wrt finitary
assumption-based frameworks where proof trees together with their histories are fully and explicitly
represented to shed light on the construction process of arguments and counter arguments during a
derivation and hence providing key structural insights into the soundness and completeness of the pro-
cedure.

In this section, we present another procedure that is simply the result of flattening the first where
instead of the whole proof trees, only their supports are recorded. Consequently, the second procedure
is both sound and complete but with much simpler date structure and hence much more amenable to
possible implementation. The disadvantage of the flatten version (like Prolog for logic programming) is
that it does not give the reasons how a returned answer is supported and defended.

In this section we propose the flatten grounded dispute derivations which focus on the supports of
proof trees instead of the whole trees like other proposals including [17–19,24].

The representation of flatten grounded dispute derivations is based on multisets. To keep the paper
self-contained, we recall in Appendix A.1 a brief but formal introduction of multisets from [31].32

Definition 18 (Flatten Grounded Dispute Derivation). A flatten grounded dispute derivation for a sen-
tence δ is a sequence of the form

〈PS0, OS0〉, . . . , 〈PSn, OSn〉

where

• for each i, PSi is a multiset of sentences while OSi is a multisets of multisets of sentences; and
• PS0 = {δ}, and OS0 = ∅, and
• at stage i (i > 0), one of the dispute parties makes a move satisfying the following properties:

(1) Suppose the proponent makes a move at stage i. The proponent has two options:

(a) The proponent selects a non-assumption σ ∈ PSi−1, a rule r with hd(r) = σ and,
PSi = (PSi−1 \ {σ }) ⊕ bd(r)

OSi = OSi−1.
(b) The proponent selects S ∈ OSi−1 and an assumption α ∈ S and,

PSi = PSi−1 ⊕ {α}
OSi = OSi−1 \ {S}

(2) Suppose the opponent makes a move at stage i. The opponent has two options:

(a) The opponent selects S ∈ OSi−1 and a non-assumption σ ∈ S and proceeds as follows:
PSi = PSi−1

OSi = (OSi−1 \ {S}) ⊕ {(S \ {σ }) ⊕ bd(r)|hd(r) = σ }.
32Intuitively, a multiset is like a set where its member may occur multiple times. For example, A = {2, 2, 2, 5} is a multiset

with 2 occurs 3 times and 5 occurs one time. Some readers may find it sensible to imagine A as a bag of three 2-dollars notes
and one 5-dollar note (if such notes are ever in circulation). So if you have another bag B = {2, 5, 5} of money containing one
2-dollar note and two 5-dollar notes then putting them together (their union) gives you a bag C = A ⊕ B = {2, 2, 2, 2, 5, 5, 5}
of four 2-dollar notes and 3 5-dollars notes. If you removes one 2-dollar note from C (C \{2}), you would get a bag of 3 2-dollar
notes and 3 5-dollar notes (C \ {2} = {2, 2, 2, 5, 5, 5}. But if you remove all 2-dollar note from C (C − {2}), what remains is a
bag of 3-dollar notes (C − {2} = {5, 5, 5}.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 31

Table 3

A successful flatten grounded dispute derivation

Stage Move PS OS

0 {a} ∅
1 1a {not_α} ∅
2 2b ∅ {{α}}
3 2a ∅ {{not_β, f (0)}}
4 1b {β} ∅
5 1a ∅ ∅

(b) The opponent selects an assumption α ∈ PSi−1 and,
PSi = PSi−1 − {α}
OSi = OSi−1 ⊕ {{α}}.

Definition 19. A flatten grounded dispute derivation 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 is successful if PSn =
OSn = ∅.

Example 7. A successful flatten grounded dispute derivation 〈PS0, OS0〉, . . . , 〈PS5, OS5〉 for sentence
a (wrt the argumentation framework F2 in the introduction) is illustrated in Table 3 and explained in
details below. For convenience we recall F2 below.

F2 : r : a ← not_α r ′′ : α ← not_β, f (0) rn : f (n) ← f (n + 1), n � 0

t : β ←

At stage 0, we have PS0 = {a} and OS0 = ∅.

• At stage 1, the proponent makes a move to expand the non-assumption a by applying step (1a)
using rule r .
Hence PS1 = (PS0 \ {a}) ⊕ bd(r) = {not_α} where bd(r) = {not_α}.
OS1 = OS0 = ∅.

• Next, at stage 2, the opponent attacks the assumption not_α ∈ PS1 by applying step (2b). Hence
OS2 = OS1 ⊕ {{α}} = {{α}}.
PS2 = PS1 − {not_α} = ∅.

• At stage 3, the opponent applies step (2a), selecting S = {α} from OS2 and expanding α. Since rule
r ′′ is the only one with head α, it follows
OS3 = (OS2 \ {S}) ⊕ {(S \ {α}) ⊕ bd(r ′′)} = {{not_β, f (0)}}.
PS3 = PS2 = ∅

• At stage 4, the proponent applies step (1b) by selecting S = {not_β, f (0)} ∈ OS3 and assumption
not_β ∈ S for attack. Therefore
PS4 = PS3 ⊕ {β} = {β}.
OS4 = OS3 \ {S} = ∅.

• Finally at stage 5, the proponent applies step (1a), using rule t , to expand β. Therefore
PS5 = (PS4 \ {β}) ⊕ bd(r) = ∅ (since bd(r) = ∅).
OS5 = OS4 = ∅

As both PS and OS are empty, the derivation is successful.

32 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Definition 20.

(1) Let dd be a grounded dispute derivation of length n for a sentence δ (as defined in Definition 13).
Define a sequence of multisets of assumptions

M(dd) = MPTA0, . . . , MPTAn

by:

• MPTA0 = PTA0.
• Suppose MPTAi−1 is defined. Then

∗ MPTAi = MPTAi−1 if the move at stage i is (1b) or (2a);
∗ MPTAi = MPTAi−1 ⊕ Ass(r) if the move at stage i is (1a);
∗ MPTAi = MPTAi−1 − {α} if the move at stage i is (2b);

(2) For any proof tree T , NSpm(T) and Spm(T) denote respectively the multiset of the non-
assumptions and the multiset of sentences labeling the leaf nodes of T and different to true.
NSpm(T) and Spm(T) are often referred to as the multiset non-assumption support or multiset
support of T , respectively.
For a set S of ppas, define

NSpm(S) = ⊕{
NSpm(Tπ)|π ∈ S

};
Lemma 18. Let dd be a grounded dispute derivation of length n for a sentence δ and M(dd) =
MPTA0, . . . , MPTAn. It holds that for all 0 � i � n, MPTAi and PTAi are set-equivalent.

Proof. We prove by induction that for each i, MPTAi and PTAi are set-equivalent.
It is obvious that PTA0 = MPTA0.
Let i > 0. Suppose for each j < i, PTAj and MPTAj are set-equivalent. We show PTAi and MPTAi

are set-equivalent. There are four cases according to four possible moves of the players at stage i.

• The move at stage i is (1a). Hence PTAi = PTAi−1 ∪ Ass(r) and MPTAi = MPTAi−1 ⊕ Ass(r).
From the induction hypothesis, PTAi−1 and MPTAi−1 are set-equivalent, it follows obviously that
PTAi and MPTAi are set-equivalent.

• The move at stage i is (1b) or (2a). From the induction hypothesis, PTAi−1 and MPTAi−1 are set-
equivalent and MPTAi = MPTAi−1 and PTAi = PTAi−1, it follows obviously that PTAi and MPTAi

are set-equivalent.
• The move at stage i is (2b). Hence PTAi = PTAi−1 \ {α} and MPTAi = MPTAi−1 − {α}. From the

induction hypothesis, PTAi−1 and MPTAi−1 are set-equivalent, it follows obviously that PTAi and
MPTAi are set-equivalent. �

The following lemmas show that each grounded dispute derivation could be translated into an equiv-
alent flatten one and vice versa.

Lemma 19. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute deriva-
tion for δ.

Further let M(dd) = MPTA0, . . . , MPTAn.
Then the sequence 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 where for each 0 � i � n,

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 33

• PSi = NSpm(PPT i) ⊕ MPTAi; and
• OSi = {Spm(Tπ)|π ∈ OPT i};

is a flatten grounded dispute derivation for δ.

Proof. See Appendix A.4 �

Lemma 20. Let fdd = 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 be a flatten grounded dispute derivation for δ.
There is a grounded dispute derivation dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 for δ

such that for all 0 � i � n, the following properties hold:

• PSi = NSpm(PPT i) ⊕ MPTAi; and
• OSi = {Spm(Tp)|p ∈ OPT i};

where M(dd) = MPTA0, . . . , MPTAn.

Proof. See Appendix A.5. �

Theorem 9 (Soundness Theorem for Flatten Grounded Dispute Derivation). Let dd = 〈PS0, OS0〉, . . . ,
〈PSn, OSn〉 be a successful flatten grounded dispute derivation for δ. Then δ ∈ Cl(GEAFF).

Proof. From Lemma 20, there exists a grounded dispute derivation dd′ = 〈PPT0, PTA0, OPT0〉, . . . ,
〈PPTn, PTAn, OPTn〉 for δ such that PSi = NSpm(PPT i) ⊕ MPTAi ; and OSi = {Spm(Tp)|p ∈ OPT i};

Since PSn = ∅, the sets NSpm(PPTn) are empty. Therefore all ppas in PPTn are full.
As OSn = {Spm(Tp)|p ∈ OPTn} and OSn = ∅, it follows OPTn = ∅.
Because PSn = ∅ and PSn = NSpm(PPTn) ⊕ MPTAn, MPTAn is empty.
Since PTAn and MPTAn are set-equivalent (see Lemma 18) and MPTAn is empty, PTAn is empty.
Therefore dd′ is a successful grounded dispute derivation. The theorem follows from Theorem 4. �

Theorem 10 (Completeness Theorem for Flatten Grounded Dispute Derivation). Let F be a fini-
tary ABA framework and σ ∈ Cl(GEF). Then there is a successful flatten dispute derivation
〈PS0, OS0〉, . . . , 〈PSn, OSn〉 for σ .

Proof. From the completeness Theorem 5, there is a successful grounded dispute derivation sdd =
〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 for σ .

It holds that OPTn = ∅ and all ppas in PPTn are full.
Let sdd′ = 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 be the flatten dispute derivation for σ as defined in Lemma 19.
Since PTAn = ∅, MPTAn = ∅ (see Lemma 18).
Since all ppas in PPTn are full, NSpm(PPTn) = ∅. It hence follows PSn = NSpm(PPTn)⊕ MPTAn =

∅.
Since OPTn = ∅, OSn = {Spm(Tp)|p ∈ OPTn} = ∅, sdd′ is successful. �

8. Discussion

We study the soundness and completeness of dialectical proof procedures for assumption-based argu-
mentation with respect to the skeptical semantics. We have presented two proof procedures. In one, proof
trees together with their histories are fully and explicitly represented. The other procedure is simply the

34 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

result of flattening the first. We show the soundness and completeness of both proof procedures wrt
grounded semantics of assumption-based argumentation frameworks where possibly non-terminating
computation is represented by infinite arguments.

Assumption-based argumentation is an instance of abstract argumentation. Another well-known in-
stance of abstract argumentation is the ASPIC+ system [27,28]. It would be interesting to see how to
apply our proof procedures to ASPIC+.

In many applications, a sentence is (universally) accepted if it is accepted in every preferred extensions
(or stable extensions) [2]. It would be interesting to see how our proof systems in this paper as well as
in [31] could be extended for the universal acceptance.

Attacks may have different strength [16]. [7] proposed a dialectical proof procedure for abstract ar-
gumentation frameworks with attacks having different strength. It would be interesting to see how to
integrate the ideas of [7]’s into our proof system for assumption-based argumentation with attacks of
different strength.

Dialectical proof procedures are not the only approach to proof theory of logical argumentation. [1]
proposes dynamic proof systems for logical argumentation. It would be intriguing to see the relationship
between these rather distinct approaches.

Grounded semantics of an assumption-based argumentation could be viewed as a form of nonmono-
tonic inductive definition of the ABA framework [10]. In that sense, our proof system can be viewed as
an example of a dialectical proof procedure for a nonmonotonic inductive definition. It may be worth ex-
ploring further whether dialectical proof systems could be developed for other nonmonotonic inductive
definition systems as defined in [10].

There are recently several interesting works on the semantics of infinite argumentation frameworks
[3,4]. It is worth noting that the inclusion of infinite arguments into the argumentation frameworks
of assumption-based argumentation does not transform it into infinite argumentation frameworks as
illustrated in the introduction. This leads to an interesting question of how to extend the results in [3,4]
to frameworks with “two kinds of infinity”: infinite number of arguments and arguments of infinite size.

Dialectical procedures could be viewed as a form of dialogue games where for both players the sets
of rules as well as assumptions are given and fixed at the beginning. A more general form of dialogue
games is proposed in [23] where rules and assumptions are introduced during the dialogue. While the
soundness of such games has been studied in [23], their completeness is not. The completeness results
in this paper, especially the completeness of the flatten procedure could shed light on the completeness
of such dialogue games.

Appendix

A.1. Appendix: Multisets

This section recalls a brief introduction of multisets from [31].33

Intuitively, a multiset is like a set but allowing each element to have many instances.
Formally, a multiset is a pair A = (B, μ) where B is a set referred to as the base set of A, and μ is a

function from B into the set of positive integers. The function μ is referred to as the multiplicity function
of the multiset A and often denoted referred to by μA.

Two multisets M = (B, μ) and M ′ = (B ′, μ) are set-equivalent if B, B ′ are identical.

33Further details can be seen in [5,11,25].

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 35

For simplicity we represent a multiset as a set where its member may occur multiple times. For exam-
ple, the prime factorization of 40 can be represented as a multiset A = {2, 2, 2, 5}. Another representa-
tion of the prime factorization of 40 is A = ({2, 5}, μA) where μA = {(2, 3), (5, 1)}.34

We introduce the major types of the multisets operations performing on two multisets as follows.

Definition 21. The union and intersection of two multisets M = (B, μ), M ′ = (B ′, μ′) are defined by:

(1) M ⊕ M ′ = (B ∪ B ′, μ + μ′) where for x ∈ B ∪ B ′, (μ + μ′)(x) = μ(x) + μ′(x).
(2) M ∩ M ′ = (B ∩ B ′, μ′′) where μ′′(x) = min{μ(x), μ′(x)}.
We also introduce two notions of difference and strong difference between multisets and sets in the

definition below.

Definition 22. Let M = (B, μ), M ′ = (B ′, μ′) be multisets and S be a set.

(1) The difference between M , M ′ is defined by:
M \ M ′ = (B ′′, μ′′) where the following conditions are satisfied:

(a) B ′′ = (B \ B ′) ∪ {x ∈ B ∩ B ′|μ(x) > μ′(x)}.
(b)

μ′′(x) =
{

μ(x) if x ∈ B \ B ′

μ(x) − μ′(x) if x ∈ B ∩ B ′

(2) The strong difference between M and S is defined by

M − S = (
B \ S, μ′)

where for each x ∈ B \ S, μ′(x) = μ(x).

A.2. Appendix: Execution of programs on SWI-prolog

See Fig. 10 and Fig. 11 .

A.3. Appendix: Proofs of lemmas supporting soundness theorem

A.3.1. Proof of Lemma 7
Lemma. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute deriva-
tion.

(1) Let π be some proponent ppa appearing in dd. The following statements hold:

(a) For each i : st(π) � i � n, there is an unique continuation of π in PPT i .
(b) Let πi , πi+1 (st(π) � i < n) be continuations of π in PPT i , PPT i+1 respectively. Then πi+1

is either an immediate expansion of πi or identical to πi .

(2) Let π , π ′ be two proponent ppas in dd such that st(π) = st(π ′). Then one is a continuation of the
other.
Consequently, if π , π ′ are full then they are identical.

34{(2, 3), (5, 1)} represents the function assigning 3 to 2 and 1 to 5.

36 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

Fig. 10. The execution of F1 on SWI-prolog.

Fig. 11. The execution of F2 on SWI-prolog.

Proof. Statement 2 follows directly from statements (1a,1b) and the fact that at any stage, at most one
new proponent ppa is created (according to Definition 13 of dispute derivation).

Let k = st(π). We prove statements (1a,1b) by induction on i > st(π).
Base case: i = k. It follows directly from the fact that at any stage, at most one new proponent ppa is

created (according to Definition 13 of dispute derivation).
Inductive step. Suppose the lemma holds for i : k � i < n. We show that it also holds for i + 1.
If it is the opponent who makes a move at stage i + 1. Then PPT i = PPT i+1. The lemma follows

directly from the induction hypothesis.
If the proponent makes a move according to step (1b) (in Definition 13 of dispute derivation) at stage

i + 1 or step (1a) where πi is not selected. Then πi ∈ PPT i+1. The lemma follows directly from the
induction hypothesis.

Suppose the proponent makes a move according to step (1a) (in Definition 13 of dispute derivation)
by expanding πi at stage i + 1. The lemma follows directly from the definition of step (1a) of dispute
derivation. �

A.3.2. Proof of Lemma 8
Lemma. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute derivation.
It holds that for each 0 � i � n, for all π, π ′ ∈ OPT i , if π , π ′ are compatible then π , π ′ are identical.

Proof. By induction on i.

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 37

Basic step: i = 0. Since OPT0 = ∅, the lemma holds obviously.
Inductive step: Suppose the lemma holds for i −1. Let π , π ′ be compatible ppas from OPT i . We show

that π , π ′ are identical.
There are two cases:

• Both π , π ′ belong to OPT i−1. The lemma follows immediately from the induction hypothesis.
• Suppose π ∈ OPT i \ OPT i−1.

It follows immediately that the opponent moves at stage i. Hence there are two cases:

∗ The opponent makes a move according to step (2a). Hence there exists π0 ∈ OPT i−1 such that π

is an immediate expansion of π0 and π0 /∈ OPT i .
There are two cases:

∗ π ′ ∈ OPT i−1. Since π , π ′ are compatible, it follows that π ′, π0 are also compatible. From the
induction hypothesis, it is obvious that π ′ = π0. Hence π ′ /∈ OPT i . Contradiction. This case
hence can not happen.

∗ π ′ ∈ OPT i \ OPT i−1. Hence π ′ is also an immediate expansion of π0. Since π , π ′ are com-
patible, Tπ , Tπ ′ are compatible. From Lemma 3, Tπ = Tπ ′ . Hence π = π ′.

∗ The opponent makes a move according to step (2b). Therefore the starting time of π is i. Since
π , π ′ are compatible, the starting time of π ′ is also i. Hence π = π ′. �

A.3.3. Proof of Lemma 9
Lemma. Let dd be a dispute derivation

dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉
Further let A be an argument such that Cl(A) = α for some assumption α and π = ([α], ([α], i)) ∈

OPT i for some 0 � i � n.
Then there is an unique sequence contdd(π) = π0, . . . , πk (i � i + k � n) such that

(1) π0 = π; and
(2) for each i < j � k, πj ∈ OPT i+j and πj is a continuation of πj−1 and Tπj

⊆ A; and
(3) if i + k < n then πk is discontinued at i + k + 1 and there is no ppa at any OPT i+k+1, . . . , OPTn

that is compatible with πk.

Proof. Let m = n − i. We prove by induction on m. Note that i is fixed.
Base Step: m = 0. The lemma holds obviously (as the statements 2,3 do not apply).
Inductive Step: Suppose the lemma holds for m � 0. We show that it also holds for m + 1 (i.e. for

n + 1).
Let dd′ = dd, 〈PPTn+1, PTAn+1, OPTn+1〉, and π ∈ OPT i and contdd = π0, . . . , πk where π0 = π .
There are two cases:

• i + k < n. Let contdd′(π) = contdd(π).
From the induction hypothesis, it follows that πk is discontinued at i + k + 1 and there is no ppa at
any OPT i+k+1, . . . , OPTn that is compatible with πk.
We show that there is no ppa in OPTn+1 that is compatible with πk. Suppose there is π ′ ∈ OPTn+1

that is compatible with πk. Therefore π ′ ∈ OPTn+1 \ OPTn. Hence it is the opponent who makes a
move at stage n + 1. There are two cases:

38 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

∗ The opponent makes a move according to step (2a) to expand some of her ppa p ∈ OPTn. Since
π ′, πk are compatible, p, πk are hence compatible. Contradiction!

∗ The opponent makes a move according to step (2b). Therefore the starting time of π ′ is n + 1. π ′
is hence not compatible with πk. Contradiction.

The uniqueness of contdd′(π) comes from the uniqueness of contdd(π).
• i + k = n. There are six cases.

(1) At stage n + 1, the proponent makes a move to expand some proponent ppa. Hence OPTn+1 =
OPTn. The lemma holds obviously for contdd′(π) = contdd(π).πk.

(2) At stage n + 1, the proponent makes a move to attacks some opponent ppa that is different to
πk. Hence πk ∈ OPTn+1. The lemma holds obviously for contdd′(π) = contdd(π).πk .

(3) At stage n + 1, the proponent makes a move to attacks πk. Hence πk /∈ OPTn+1. The lemma
holds obviously for contdd′(π) = contdd(π).

(4) At stage n+ 1, the opponent moves to attack some proponent ppa and create a new ppa π ′. It is
obvious that st(π ′) > st(πk). Hence the lemma holds obviously for contdd′(π) = contdd(π).πk .

(5) At stage n + 1, the opponent moves to expand some opponent ppa, and the selected ppa is not
πk. Hence πk ∈ OPTn+1. Thus the lemma holds obviously for contdd′(π) = contdd(π).πk .

(6) At stage n + 1, the opponent moves to expand πk at a non-final leaf node N ∈ Tπk
labeled by

a non-assumption sentence δ and OPTn+1 = (OPTn \ {πk}) ∪ {(T ′, h′)|T ′ ∈ CE(Tπk
, N), h′ =

hπk
.(T ′, n + 1)}

If the expansion fails at stage n + 1 (i.e. CE(Tπk
, N) = ∅), the lemma holds obviously for

contdd′(π) = contdd(π).
Suppose now that CE(Tπk

, N) �= ∅. Hence from Lemma 3, there is an unique immediate ex-
pansion of πk+1 ∈ OPTn+1 of πk and Tπk+1 ⊆ A.
Let contdd′(π) = contdd(π).πk+1. It remains to show that contdd′(π) is unique.
Suppose the contrary that contdd′(π) is not unique. From the uniqueness of contdd(π), it follows
that there is π ′ ∈ OPTn+1 such that π ′ is a continuation of πk and Tπ ′ ⊆ A and π ′ �= πk+1.
There are two cases:

∗ π ′ ∈ OPTn. From Lemma 8, it follows that π ′ = πk. Hence πk ∈ OPTn+1 Contradiction.
This case can not happen.

∗ π ′ ∈ OPTn+1 \ OPTn. Hence π ′ is an immediate expansion of πk. Since Tπ ′ ⊆ A, it follows
from Lemma 3 that π ′ = πk+1. Contradiction. Hence this case is also not possible.

Thus contdd′(πk+1) is unique. �

A.3.4. Proof of Lemma 10
The following lemma states that each argument attacking a proponent argument in a successful dispute

derivation is counter-attacked by some proponent argument.

Lemma. Let dd be a successful grounded dispute derivation that terminates at 〈PPTn, PTAn, OPTn〉
and π = (T , h) ∈ PPTn and T ′ be an argument attacking argument T . Then there is a opponent ppa π ′
such that st(π) < st(π ′) and Tπ ′ ⊆ T ′ and π ′ is discontinued at some step between st(π ′) and n.

Proof. Let α ∈ Ass(T) such that α = Cl(T ′). Therefore there is m � st(π) s.t. α ∈ PTAm and there is
i � m s.t. the opponent attack α at stage i. Hence the ppa π0 = ([α], ([α], i)) ∈ OPT i .

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 39

From Lemma 9 and the fact that OPTn = ∅, it follows that there is an unique contdd(p) = π0, . . . , πk,
i +k < n, such that for each j (0 � j � k), πj ∈ OPT i+j and πj is a continuation of πj−1 and Tπj

⊆ A;
and

πk is discontinued at i + k +1 and there is no ppa at any OPT i+k+1, . . . , OPTn that is compatible with
πk.

The lemma holds obviously for π ′ = πk. �

A.4. Appendix: Proof of Lemma 19

Lemma. Let dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 be a grounded dispute derivation
for δ.

Further let M(dd) = MPTA0, . . . , MPTAn.
Then the sequence 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 where for each 0 � i � n,

• PSi = NSpm(PPT i) ⊕ MPTAi; and
• OSi = {Spm(Tπ)|π ∈ OPT i};

is a flatten grounded dispute derivation for δ.

Proof. We prove by induction on n. The base case (n = 0) holds obviously.
Suppose the lemma holds for n − 1. We show that it also holds for n.
Let dd′ = 〈PS0, OS0〉, . . . , 〈PSn−1, OSn−1〉 be a flatten grounded dispute derivation such that 0 � i �

n − 1,
PSi = NSpm(PPT i) ⊕ MPTAi ;
OSi = {Spm(Tπ)|π ∈ OPT i};
There are four cases:

(1) The proponent executes step (1a) at stage n by expanding some profiled partial argument π =
(T , h) ∈ PPTn−1 by expanding T at a non-final leaf node N ∈ T labeled by a non-assumption
sentence σ and a rule r with hd(r) = σ such that
PPTn = (PPTn−1 \ {π}) ∪ {π ′} where π ′ = (T ′, h′) and T ′ = exp(T , N, r) and h′ = h.(T ′, n);
MPTAn = MPTAn−1 ⊕ Ass(r)
OPTn = OPTn−1.
It is clear that NSpm(Tπ ′) = (NSpm(Tπ) \ {σ }) ⊕ (bd(r) \ Ass(r)).
From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1;
OSn−1 = {Spm(Tp)|π ∈ OPTn−1};
It is clear that σ ∈ PSn−1.
Let OSn = OSn−1 and PSn = (PSn−1 \ {σ }) ⊕ bd(r).
It is obvious that the sequence dd′, 〈PSn, OSn〉 is a flatten grounded dispute derivation.
We now proceed to show that it satisfies the lemma.
Since OPTn = OPTn−1 and OSn = OSn−1, it holds obviously that OSn = {Spm(Tπ)|π ∈ OPTn};
Let PPTX = (PPTn−1 \ {π})
It follows:

PSn = (
PSn−1 \ {σ }) ⊕ bd(r)

= ((
NSpm(PPTn−1) ⊕ MPTAn−1

) \ {σ }) ⊕ bd(r) (from induction hypothesis)

40 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

= ((
NSpm(PPTX) ⊕ NSpm(Tπ) ⊕ MPTAn−1

) \ {σ }) ⊕ bd(r)

= ((
NSpm(PPTX) ⊕ MPTAn−1

) ⊕ NSpm(Tπ)
) \ {σ }) ⊕ bd(r)

= (
(
NSpm(PPTX) ⊕ MPTAn−1 ⊕ Ass(r)

) ⊕ (
NSpm(Tπ) \ {σ }) ⊕ (

bd(r) \ Ass(r)
)

= NSpm(PPTX) ⊕ MPTAn ⊕ NSpm(Tπ ′)

= NSpm(PPTn) ⊕ MPTAn

(2) The proponent executes step (1b) at stage n by attacking an opponent’s profiled partial argument
π = (T , h) ∈ OPTn−1 at an assumption α ∈ Ass(T) resulting in:
PPTn = PPTn−1 ∪ {(T ′, h′)} where T ′ = [α] and h′ = ([α], n); and
PTAn = PTAn−1

OPTn = OPTn−1 \ {π}
Let S = Spm(T). It is clear α ∈ S.
From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1;
OSn−1 = {Spm(Tp)|p ∈ OPTn−1};
Let OSn = OSn−1 \ {S}.
PSn = PSn−1 ⊕ {α}
It is obvious that the sequence dd′, 〈PSn, OSn〉 is a flatten grounded dispute derivation.
We now proceed to show that it satisfies the lemma.
It holds:

OSn = OSn−1 \ {S}
= {

Spm(Tp)|p ∈ OPTn−1
} \ {

Spm(T)
}

(induction hypothesis)

= {
Spm(Tp)|p ∈ OPTn

};
PSn = PSn−1 ⊕ {α}

= NSpm(PPTn−1) ⊕ MPTAn−1 ∪ {α} (induction hypothesis)

= NSpm(PPTn−1) ⊕ {α} ⊕ MPTAn

= NSpm(PPTn) ⊕ MPTAn

(3) The opponent expands at stage n an opponent ppa π = (T , h) ∈ OPTn−1 at a non-final leaf node
N ∈ T labeled by a non-assumption sentence σ resulting in:
PPTn = PPTn−1

PTAn = PTAn−1

OPTn = OPT0 ∪ OPT1 where OPT0 = OPTn−1 \ {π} and
OPT1 = {(T ′, h′)|T ′ ∈ CE(T , N), h′ = h.(T ′, n)}
From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1;
OSn−1 = {Spm(Tp)|p ∈ OPTn−1};
Let S = Spm(T) and
PSn = PSn−1 and

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 41

OSn = (OSn−1 \ {S}) ⊕ {(S \ {σ }) ⊕ bd(r)|hd(r) = σ }.
It is obvious that the sequence dd′, 〈PSn, OSn〉 is a flatten grounded dispute derivation.
We now proceed to show that it satisfies the lemma.
For T ′ = exp(T , N, r), it holds Spm(T ′) = (Spm(T) \ {σ }) ⊕ bd(r) = (S \ {σ }) ⊕ bd(r).
It holds obviously that

OSn = (
OSn−1 \ {S}) ⊕ {(

S \ {δ}) ⊕ bd(r)
∣∣hd(r) = δ

}
= {

Spm(Tp|p ∈ OPT0
} ⊕ {

Spm(Tp|p ∈ OPT1
}

= {
Spm(Tp)|p ∈ OPTn

}
PSn = PSn−1

= NSpm(PPTn−1) ∪ MPTAn−1 (induction hypothesis)

= NSpm(PPTn) ∪ MPTAn

(4) The opponent attacks an assumption α ∈ PTAn−1 resulting in:
PPTn = PPTn−1

PTAn = PTAn−1 − {α}
OPTn = OPTn−1 ∪ {π} where π = ([α], ([α], n))

From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1;
OSn−1 = {Spm(Tp)|p ∈ OPTn−1};
Let PSn = PSn−1 − {α} and
OSn = OSn−1 ⊕ {{α}}.
It is obvious that the sequence dd′, 〈PSn, OSn〉 is a flatten grounded dispute derivation.
We now proceed to show that it satisfies the lemma.
It holds obviously that

PSn = PSn−1 − {α}
= (

NSpm(PPTn−1) ⊕ MPTAn−1
) − {α} (induction hypothesis)

= NSpm(PPTn−1) ⊕ (
MPTAn−1 − {α})

= NSpm(PPTn) ⊕ MPTAn

OSn = OSn−1 ⊕ {{α}}
= {

Spm(Tp)|p ∈ OPTn−1
} ⊕ {{α}} (induction hypothesis)

= {
Spm(Tp)|p ∈ OPTn−1

} ⊕ {
Spm(Tπ)

}
= {

Spm(Tp)|p ∈ OPTn

}
�

A.5. Appendix: Proof of Lemma 20

Lemma. Let fdd = 〈PS0, OS0〉, . . . , 〈PSn, OSn〉 be a flatten grounded dispute derivation for δ.
There is a grounded dispute derivation dd = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn, PTAn, OPTn〉 for δ

such that for all 0 � i � n, the following properties hold:

42 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

• PSi = NSpm(PPT i) ⊕ MPTAi; and
• OSi = {Spm(Tp)|p ∈ OPT i};

where M(dd) = MPTA0, . . . , MPTAn.

Proof. By induction on n.
The lemma holds obviously for n = 0.
Suppose that the lemma holds for n − 1. We show that it also holds for n.
Let dd′ = 〈PPT0, PTA0, OPT0〉, . . . , 〈PPTn−1, PTAn−1, OPTn−1〉 be a grounded dispute derivation

for δ and M(dd′) = MPTA0, . . . , MPTAn−1. such that for all 0 � i � n − 1, the following properties
hold:

• PSi = NSpm(PPT i) ⊕ MPTAi ; and
• OSi = {Spm(Tp)|p ∈ OPT i};
We construct a triple 〈PPTn, PTAn, OPTn〉 such that dd = dd′, 〈PPTn, PTAn, OPTn〉 is a grounded

dispute derivation and PSn = NSpm(PPTn) ⊕ MPTAn and OSn = {Spm(Tp)|p ∈ OPTn} where MPTAn

is defined from MPTAn−1 as in Definition 20.
There are four cases:

(1) The proponent selects a non-assumption σ ∈ PSn−1, a rule r with hd(r) = σ and,
PSn = (PSn−1 \ {σ }) ⊕ bd(r)

OSn = OSn−1.
Since PSn−1 = NSpm(PPTn−1)⊕MPTAn−1 (from the induction hypothesis), it follows there exists
π = (T , h) ∈ PPTn−1 such that σ ∈ NSpm(T).
Let N be a leaf-node in T labeled by σ and T ′ = exp(T , N, r).
Let PPTn = (PPTn−1 \ {π}) ∪ {(T ′, h′)} where h′ = h.(T ′, n);
PTAn = PTAn−1 ∪ Ass(r)
OPTn = OPTn−1.
The sequence dd, 〈PPTn, PTAn, OPTn〉 is hence a grounded dispute derivation. We now proceed
to show that it satisfies the lemma.
It holds directly that OSn = OSn−1 = {Spm(Tp)|p ∈ OPTn−1} = {Spm(Tp)|p ∈ OPTn};
Let PPTX = PPTn−1 \ {π}.
It is easy to see that NSpm(T ′) = (NSpm(T) \ {σ }) ⊕ NAss(r). Therefore

PSn = (
PSn−1 \ {σ }) ⊕ bd(r)

= ((
NSpm(PPTn−1) ⊕ MPTAn−1

) \ {σ }) ⊕ bd(r) (from induction hypothesis)

= ((
NSpm(PPTX) ⊕ NSpm(T) ⊕ MPTAn−1

) \ {σ }) ⊕ (
Ass(r) ⊕ NAss(r)

)
= NSpm(PPTX) ⊕ ((

NSpm(T) \ {σ }) ⊕ NAss(r)
) ⊕ MPTAn−1 ⊕ Ass(r)

= NSpm(PPTX) ⊕ NSpm
(
T ′) ⊕ MPTAn−1 ⊕ Ass(r)

= NSpm(PPTn) ⊕ MPTAn.

(2) The proponent selects S ∈ OSn−1 and an assumption α ∈ S and,
PSn = PSn−1 ⊕ {α}
OSn = OSn−1 \ {S}

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 43

From OSn−1 = {Spm(Tp)|p ∈ OPTn−1} (induction hypothesis), there is π = (T , h) ∈ OPTn−1

such that Spm(T) = S. Hence α ∈ Ass(T).
Let PPTn = PPTn−1 ∪ {(T ′, h′)} where T ′ = [α] and h′ = ([α], n); and
PTAn = PTAn−1

OPTn = OPTn−1 \ {π}
The sequences dd, 〈PPTn, PTAn, OPTn〉 is hence a grounded dispute derivation. We now proceed
to show that it satisfies the lemma.
It holds:

OSn = OSn−1 \ {S}
= {

Spm(Tp)|p ∈ OPTn−1
} \ {

Spm(T
}

(induction hypothesis)

= {
Spm(Tp)|p ∈ OPTn

}
.

PSn = PSn−1 ⊕ {α}
= NSpm(PPTn−1) ⊕ MPTAn−1 ⊕ {α} (induction hypothesis)

= NSpm(PPTn) ⊕ MPTAn

(3) The opponent selects S ∈ OSn−1 and a non-assumption σ ∈ S and proceeds as follows:
PSn = PSn−1

OSn = (OSn−1 \ {S}) ⊕ {(S \ {σ }) ⊕ bd(r)|hd(r) = σ }.
From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1; and
OSn−1 = {Spm(Tp)|p ∈ OPTn−1}.
Therefore there is π ∈ OPTn−1 such that Spm(Tπ) = S. Further let Nσ be a non-final leaf node in
Tπ labeled by σ .
Let PPTn = PPTn−1

PTAn = PTAn−1

OPTn = (OPTn−1 \ {π}) ∪ {(T ′, h′)|T ′ ∈ CE(Tπ, Nσ), h′ = h.(T ′, n)}
The sequences dd, 〈PPTn, PTAn, OPTn〉 is hence a grounded dispute derivation. We now proceed
to show that it satisfies the lemma.
It holds
OSn = (OSn−1 \ {S}) ⊕ {(S \ {σ }) ⊕ bd(r)|hd(r) = σ }

= {Spm(Tp)|p ∈ OPTn−1 \ {π}} ⊕ {(S \ {σ }) ⊕ bd(r)|hd(r) = σ }
= {Spm(Tp)|p ∈ OPTn−1 \ {π}} ⊕ {Spm(exp(Tπ, Nσ , r))|hd(r) = σ } 35

= {Spm(Tp)|p ∈ OPTn−1 \ {π}} ⊕ {Spm(T ′)|T ′ ∈ CE(Tπ, Nσ)}.
= {Spm(Tp)|p ∈ OPTn}.

Further, we have:

PSn = PSn−1

= NSpm(PPTn−1) ⊕ MPTAn−1 (induction hypothesis)

= NSpm(PPTn) ⊕ MPTAn;
35Note that (S \ {σ }) ⊕ bd(r) = Spm(exp(Tπ , Nσ , r)).

44 P.M. Dung et al. / ω-Groundedness of argumentation and completeness

(4) The opponent selects an assumption α ∈ PSn−1 and,
PSn = PSn−1 − {α}
OSn = OSn−1 ⊕ {{α}}
Let PPTn = PPTn−1

PTAn = PTAn−1 \ {α}
OPTn = OPTn−1 ∪ {(T , h)} where T = [α] and h = ([α], n)

The sequences dd, 〈PPTn, PTAn, OPTn〉 is hence a grounded dispute derivation. We now proceed
to show that it satisfies the lemma.
From the induction hypothesis, we have
PSn−1 = NSpm(PPTn−1) ⊕ MPTAn−1;
OSn−1 = {Spm(Tp)|p ∈ OPTn−1};
It holds

OSn = OSn−1 ⊕ {{α}}
= {

Spm(Tp)|p ∈ OPTn−1
} ⊕ {{α}} (induction hypothesis)

= {
Spm(Tp)|p ∈ OPTn

}
PSn = PSn−1 − {α}

= (
NSpm(PPTn−1) ⊕ MPTAn−1

) − {α}
= NSpm(PPTn−1) ⊕ (

MPTAn−1 − {α})
= NSpm(PPTn) ⊕ MPTAn �

References

[1] O. Arieli and C. Straßer, Logical argumentation by dynamic proof systems, Theoretical Computer Science 781 (2019),
63–91, https://www.sciencedirect.com/science/article/pii/S0304397519301252. doi:10.1016/j.tcs.2019.02.019.

[2] A. Arioua and M. Croitoru, A dialectical proof theory for universal acceptance in coherent logic-based argumentation
frameworks, in: Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016, 2016, pp. 55–63,
http://liris.cnrs.fr/~aarioua/papers/ECAI2016.pdf.

[3] R. Baumann and C. Spanring, in: Infinite Argumentation Frameworks, 2015, pp. 281–295. ISBN 978-3-319-14725-3.
doi:10.1007/978-3-319-14726-0_19.

[4] F. Belardinelli, D. Grossi and N. Maudet, Formal analysis of dialogues on infinite argumentation frameworks, in: Pro-
ceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 861–867. ISBN
9781577357384.

[5] W.D. Blizard, Multiset theory, Notre Dame Journal of Formal Logic 30(1) (1988), 36–66. doi:10.1305/ndjfl/1093634995.
[6] A. Bondarenko, P.M. Dung, R.A. Kowalski and F. Toni, An abstract, argumentation-theoretic approach to default reason-

ing, Artif. Intell. 93 (1997), 63–101. doi:10.1016/S0004-3702(97)00015-5.
[7] C. Cayrol, C. Devred and M.-C. Lagasquie-Schiex, Dialectical proofs accounting for strength of attacks in argumentation

systems, in: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, Vol. 1, 2010, pp. 207–214,
ISSN 2375-0197. doi:10.1109/ICTAI.2010.36.

[8] C. Cayrol, S. Doutre and J. Mengin, On decision problems related to the preferred semantics for argumentation frame-
works, J. Log. Comput. 13(3) (2003), 377–403. doi:10.1093/logcom/13.3.377.

[9] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, 2nd edn, Cambridge University Press, 2002.
[10] M. Denecker and E. Ternovska, A logic of nonmonotone inductive definitions, ACM Trans. Comput. Logic 9(2) (2008).

doi:10.1145/1342991.1342998.
[11] N. Dershowitz and Z. Manna, Proving termination with multiset orderings, in: Automata, Languages and Programming,

Springer, Berlin Heidelberg, 1979, pp. 188–202. doi:10.1007/3-540-09510-1_15.

https://www.sciencedirect.com/science/article/pii/S0304397519301252
https://doi.org/10.1016/j.tcs.2019.02.019
http://liris.cnrs.fr/~aarioua/papers/ECAI2016.pdf
https://doi.org/10.1007/978-3-319-14726-0_19
https://doi.org/10.1305/ndjfl/1093634995
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1109/ICTAI.2010.36
https://doi.org/10.1093/logcom/13.3.377
https://doi.org/10.1145/1342991.1342998
https://doi.org/10.1007/3-540-09510-1_15

P.M. Dung et al. / ω-Groundedness of argumentation and completeness 45

[12] P.M. Dung, Negation by hypothesis, an abductive foundation of logic programming, in: 8th International Conference on
Logic Programming, The MIT Press, Cambridge, and Massachusetts, 1991, pp. 3–17.

[13] P.M. Dung, Logic programming as dialogue games, Technical report, Division of Computer Science, Asian Institute of
Technology, Thailand (submitted to LPNMR 1993), 1993.

[14] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming,
in: Proceedings of the 13th International Joint Conference in Artificial Intelligence (IJCAI), 1993, pp. 852–857.

[15] P.M. Dung, An argumentation theoretic foundation for logic programming, Journal of Logic Programming 22 (1995),
151–177. doi:10.1016/0743-1066(95)94697-X.

[16] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artif. Intell. 77(2) (1995), 321–358. doi:10.1016/0004-3702(94)00041-X.

[17] P.M. Dung, R.A. Kowalski and F. Toni, Dialectic proof procedures for assumption-based, admissible argumentation, Artif.
Intell. 170(2) (2006), 114–159. doi:10.1016/j.artint.2005.07.002.

[18] P.M. Dung, R.A. Kowalski and F. Toni, Assumption-based argumentation, in: Argumentation in AI, Springer-Verlag, 2009.
[19] P.M. Dung, P. Mancarella and F. Toni, Computing ideal sceptical argumentation, Artif. Intell. 171(10–15) (2007), 642–674.

doi:10.1016/j.artint.2007.05.003.
[20] P.M. Dung and P.M. Thang, A modular framework for dialectical dispute in argumentation, in: Proc of IJCAI, 2009.
[21] P.E. Dunne and T.J.M. Bench-Capon, Two party immediate response disputes: Properties and efficiency, Artif. Intell.

149(2) (2003), 221–250. doi:10.1016/S0004-3702(03)00076-6.
[22] K. Eshghi and R.A. Kowalski, Abduction compared with negation by failure, in: Logic Programming: Proceedings of the

Sixth International Conference, The MIT Press, Cambridge, and Massachusetts, 1989, pp. 234–254.
[23] X. Fan and F. Toni, A general framework for sound assumption-based argumentation dialogues, Artif. Intell. 216(1) (2014),

20–54. doi:10.1016/j.artint.2014.06.001.
[24] D. Gaertner and F. Toni, Computing arguments and attacks in assumption-based argumentation, IEEE Intelligent Systems

22(6) (2007), 24–33. doi:10.1109/MIS.2007.105.
[25] Z. Manna and R. Waldinger, The Logical Basis for Computer Programming, Addison–Wesley Professional, 1985.
[26] S. Modgil and M. Caminada, Proof theories and algorithms for abstract argumentation, in: Argumentation in AI, Springer

Verlag, 2009.
[27] S. Modgil and H. Prakken, A general account of argumentation with preferences, Artificial Intelligence 195 (2013),

361–397, https://www.sciencedirect.com/science/article/pii/S0004370212001361. doi:10.1016/j.artint.2012.10.008.
[28] H. Prakken, An abstract framework for argumentation with structured arguments, Argument & Computation 1 (2010),

93–124. doi:10.1080/19462160903564592.
[29] C. Spanring, Set- and graph-theoretic investigations in abstract argumentation, PhD thesis, University of Liverpool, UK,

2017.
[30] P.M. Thang and P.M. Dung, Tribute to Guillermo Simari: Infinite Arguments and Semantics of Assumption-Based Argu-

mentation, College Publication, 2019.
[31] P.M. Thang, P.M. Dung and J. Pooksook, Infinite arguments and semantics of dialectical proof procedure, J. Arguments

and Computation 170(2) (2020), 114–159.
[32] F. Toni, A generalised framework for dispute derivations in assumption-based argumentation, Artif. Intell. 195 (2013),

1–43. doi:10.1016/j.artint.2012.09.010.
[33] F. Toni, A tutorial on assumption-based argumentation, Journal of Arguments and Computation (2013).
[34] B. Verheij, A labeling approach to the computation of credulous acceptance in argumentation, in: JCAI 2007, M. Veloso,

ed., Morgan Kaufmann, 2007, pp. 623–628.
[35] G. Vreeswijk and H. Prakken, Credulous and sceptical argument games for preferred semantics, in: JELIA 2000, M. Ojeda-

Aciego, I.P. de Guzmán, G. Brewka and L.M. Pereira, eds, Lecture Notes in Computer Science, Vol. 1919, Springer, 2000,
pp. 239–253.

[36] J. Wielemaker, T. Schrijvers, M. Triska and T. Lager, SWI-prolog, Theory and Practice of Logic Programming 12(1–2)
(2012), 67–96. doi:10.1017/S1471068411000494.

https://doi.org/10.1016/0743-1066(95)94697-X
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/j.artint.2005.07.002
https://doi.org/10.1016/j.artint.2007.05.003
https://doi.org/10.1016/S0004-3702(03)00076-6
https://doi.org/10.1016/j.artint.2014.06.001
https://doi.org/10.1109/MIS.2007.105
https://www.sciencedirect.com/science/article/pii/S0004370212001361
https://doi.org/10.1016/j.artint.2012.10.008
https://doi.org/10.1080/19462160903564592
https://doi.org/10.1016/j.artint.2012.09.010
https://doi.org/10.1017/S1471068411000494

	Introduction
	Preliminaries: Argumentation with infinite arguments
	Abstract argumentation
	Assumption-based argumentation

	omega-Groundedness of argumentation frameworks
	omega-Grounded argumentation frameworks
	Finitary ABA frameworks are finitary-defensible and omega-grounded

	Grounded dispute derivations
	Soundness of grounded dispute derivation
	Completeness of grounded proof procedure
	Proof of completeness theorem

	Flatten dispute derivation
	Discussion
	Appendix
	Appendix: Multisets
	Appendix: Execution of programs on SWI-prolog
	Appendix: Proofs of lemmas supporting soundness theorem
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Appendix: Proof of Lemma 19
	Appendix: Proof of Lemma 20

	References

