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Abstract. Abstract solvers are a quite recent method to uniformly describe algorithms in a rigorous formal way via graphs. Com-
pared to traditional methods like pseudo-code descriptions, abstract solvers have several advantages. In particular, they provide
a uniform formal representation that allows for precise comparisons of different algorithms. Recently, this new methodology
has proven successful in declarative paradigms such as Propositional Satisfiability and Answer Set Programming. In this paper,
we apply this machinery to Dung’s abstract argumentation frameworks. We first provide descriptions of several advanced algo-
rithms for the preferred semantics in terms of abstract solvers. We also show how it is possible to obtain new abstract solutions
by “combining” concepts of existing algorithms by means of combining abstract solvers. Then, we implemented a new solving
procedure based on our findings in CEGARTIX, and call it CEGARTIX+. We finally show that CEGARTIX+ is competitive and
complementary in its performance to CEGARTIX on benchmarks of the first and second argumentation competition.
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1. Introduction

Dung’s concept of abstract argumentation [23] is nowadays a core formalism in Artificial Intelligence
[4,46]. The problem of solving certain reasoning tasks on such frameworks is the centerpiece of many
advanced higher-level argumentation systems. The problems to be solved can however be intractable
and might even be hard for the second level of the polynomial hierarchy [24,26]. Thus, efficient and
advanced algorithms have to be developed in order to deal with real-world size data within reasonable
performance bounds. The argumentation community is currently facing this challenge [17]: Already
the second edition [27] of the solver competition [50,51] was held in 2017. Thus, the number of new
algorithms and systems is steadily increasing, and we expect this to continue in the (near) future. Being
able to precisely analyze and compare already developed and new algorithms is a fundamental step in
order to understand the ideas behind such high-performance systems, and to build a new generation of
more efficient algorithms and solvers.

Usually, algorithms are presented by means of pseudo-code descriptions, but other communities have
experienced that analyzing such algorithms on this basis may not be fruitful. More formal descriptions,
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which allow, e.g. for a uniform representation, and are more amenable to comparison and to state formal
results, have thus been developed: a successful approach in this direction is the concept of abstract
solvers [44]. Hereby, one characterizes the possible states of computation as nodes of a graph, and the
techniques (i.e., the computation steps in the algorithms) as arcs between nodes. In this way, the whole
solving process amounts to a path in the graph. This concept proved successful for SAT [44], and also
has been applied to several variants of Answer Set Programming [6,36,37].

In this paper, we apply abstract solvers to certain problems in Dung’s argumentation frameworks.
In order to understand whether abstract solvers are well suited also for this domain, we consider quite
advanced algorithms for solving problems that are hard for the second level of the polynomial hierar-
chy – the considered algorithms range from dedicated [45] to reduction-based [13,25] approaches (see
[19] for a survey). We show that abstract solvers allow for convenient algorithms design resulting in a
clear and mathematically precise description. Moreover, formal properties of the algorithms (i.e. cor-
rectness) are easily specified by means of related graph properties (i.e. reachability). We then illustrate
how abstract solvers allow to highlight in a more clear way similarities and differences among solving
algorithms: This paves the way for a uniform view of the three solving algorithms mentioned above,
thus simplifying the combination of concepts implemented in different solvers in order to define new
abstract solutions. We propose one such combination and, in order to test its viability, we implemented
the outcome of this combination inside the well-known CEGARTIX solver [25] and show that the re-
sulting solver CEGARTIX+ is complementary in terms of performance w.r.t. CEGARTIX for certain tasks
under the preferred semantics. We do so by using benchmarks of the first and second argumentation
competition, as well as instances from earlier work. This is an interesting result which shows that a
combination based on abstract solvers is proven to be also useful in practice (for similar observations,
see [36,44]). We finally show (with focus on CEGARTIX), how reasoning tasks under further semantics,
other than preferred, can be solved with this framework, and demonstrate how optimizations are easily
added to our abstract solvers in a modular way.

To sum up, our main contributions are as follows:

• We provide a full formal description of recent algorithms [13,25,45] for reasoning tasks under the
preferred semantics in terms of abstract solvers, thus enabling a comparison of these approaches at
a formal level.

• We outline how our formal descriptions can be used to gain more insight into the algorithms, and
how certain combinations can pave the way for new solutions.

• We implement such a new solution inside CEGARTIX and analyze its performance.
• We show how other semantics and optimizations can be incorporated to our abstract solvers.

The paper is structured as follows. Section 2 introduces the required preliminaries about abstract ar-
gumentation frameworks and abstract solvers. Then, Section 3 shows how our target algorithms are
reformulated in terms of abstract solvers and introduces a new solving algorithm obtained from com-
bining concepts from the target algorithms. Implementation and experimental analysis of the combined
algorithm can be found in Section 4. Section 5 presents abstract solver representations of algorithms for
reasoning tasks under other semantics, and indicates how shortcuts can be easily and modularly added.
Section 6 provides a discussion of related research and Section 7 closes the paper with final remarks. We
only include the full proofs of representative lemmata and theorems in the main body of the paper. The
remaining proofs can be found in the Appendix.

The current paper extends and differs from an earlier version [8] as follows: (i) a new combination of
abstract solvers is presented, which is easier to understand and more amenable to be implemented than
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the one in [8], (ii) an implementation and experimental evaluation of the newly proposed algorithm are
discussed, (iii) we apply additional and modified transition rules of algorithms for other semantics and
optimizations (i.e. short-cuts) to the algorithms, with related formal results, and (iv) a detailed analysis
of related work is provided.

2. Preliminaries

In this section we first review (abstract) argumentation frameworks [23] and their semantics (see [1]
for an overview), and then introduce abstract solvers [44] on the concrete instance describing the Davis–
Putnam–Logemann–Loveland (DPLL) procedure for SAT solving [20].

2.1. Abstract argumentation frameworks

An argumentation framework (AF) is a pair F = (A, R) where A is a finite1 set of arguments and R ⊆
A × A is the attack relation. Semantics for argumentation frameworks assign to each AF F = (A, R) a
set σ(F ) ⊆ 2A of extensions. We consider here for σ the functions adm, com, and prf, which stand for
admissible, complete, and preferred semantics. Towards the definitions of the semantics we need some
formal concepts. For an AF F = (A, R), an argument a ∈ A is defended (in F ) by a set S ⊆ A if for
each b ∈ A such that (b, a) ∈ R, there is a c ∈ S, such that (c, b) ∈ R holds.

Definition 1. Let F = (A, R) be an AF. A set S ⊆ A is conflict-free (in F ), denoted S ∈ cf(F ), if there
are no a, b ∈ S such that (a, b) ∈ R. For S ∈ cf(F ), it holds that

• S ∈ adm(F ) iff each a ∈ S is defended by S;
• S ∈ com(F ) iff S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;
• S ∈ prf(F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S, or equivalently,
• S ∈ prf(F ) iff S ∈ com(F ) and there is no T ∈ com(F ) with T ⊃ S.

Example 1. Consider the AF F = ({a, b, c, d}, {(a, b), (b, c), (b, d), (c, d), (d, c)}) depicted in Fig. 1
where nodes of the graph represent arguments and edges represent attacks. The extensions of F un-
der admissible, complete, and preferred semantics are as follows: adm(F ) = {∅, {a}, {a, c}, {a, d}},
com(F ) = {{a}, {a, c}, {a, d}}, and prf(F ) = {{a, c}, {a, d}}.

Given an AF F = (A, R), an argument a ∈ A, and a semantics σ , the problem of skeptical acceptance
(Skeptσ ) asks whether it is the case that a is contained in all σ -extensions of F ; the problem of credulous

a b

c

d

Fig. 1. AF F with prf(F ) = {{a, c}, {a, d}}.

1In the literature also infinite AFs have been considered. We refer to [3] for the effects this has on semantics.
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acceptance (Credσ ) asks if a is contained in at least one σ -extension. While skeptical acceptance is trivial
for adm and decidable in polynomial time for com, it is �P

2 -complete2 for prf, see [21,23,24].

2.2. Abstract solvers for SAT

Most SAT solvers are based on the Davis–Putnam–Logemann–Loveland (DPLL) procedure [20]. We
give an abstract solver for DPLL following the work of Nieuwenhuis et al. [44]. The abstract solver is
described by assigning a graph to each instance of the problem, where nodes and edges represent states
and transitions of the actual solver, respectively. We start with basic notation for Boolean logic.

For a Conjunctive Normal Form (CNF) formula ϕ (resp. a set of literals M), we denote the set of
atoms occurring in ϕ (resp. in M) by atoms(ϕ) (resp. atoms(M)). A literal is an atom a or its negation
¬a. The complement l of literal l is defined as a = ¬a and ¬a = a. We identify a consistent set E of
literals (i.e. a set that does not contain a literal and its complement) with an assignment to atoms(E) as
follows: if a ∈ E then a maps to true, while if ¬a ∈ E then a maps to false. By Sat(ϕ) we refer to the
set of satisfying assignments of ϕ.

We now introduce an abstract procedure for deciding whether a CNF formula is satisfiable. A decision
literal is a literal annotated by d, as in ld . An annotated literal is a literal, a decision literal or the false
constant ⊥. For a set X of atoms, a record relative to X is a string E composed of annotated literals
over X without repetitions. For instance, ∅, ¬ad and a ¬ad are records relative to the set {a}. We say
that a record E is inconsistent if it contains ⊥ or both a literal l and its complement l, and consistent
otherwise. Moreover, by unsat we represent an inconsistent and decision-free record. We sometimes
identify a record with the set containing all its elements without annotations, i.e. with an assignment
to the atoms. For example, we identify the consistent record bd ¬a with the consistent set {¬a, b} of
literals, and so with the assignment which maps a to false and b to true. Finally, |E| denotes the number
of literals in record E.

Each CNF formula ϕ determines its DPLL graph DPϕ . The set of nodes (states) of DPϕ consists of
the records relative to atoms(ϕ) and two distinguished states Accept and Reject. The edges of the graph
DPϕ are specified by the transition rules presented in Fig. 2. A node in the graph is terminal if no edge
originates from it; in practice, the terminal nodes are Accept and Reject. The initial state of the abstract
solver is the empty record ∅. In solvers, generally the oracle rules are chosen with the preference order
according to the order in which they are stated in Fig. 2. An exception is the failing rule, which has a
higher priority than all the oracle rules.

Intuitively, every state of the DPLL graph represents some hypothetical state of the DPLL computation
whereas a path in the graph is a description of a process of search for a satisfying assignment of a given
CNF formula. The rule Decide asserts that we make an arbitrary decision to add a literal or, in other
words, to assign a value to an atom. Since this decision is arbitrary, we are allowed to backtrack at a
later point. The rule UnitPropagate asserts that we can add a literal that is a logical consequence of our
previous decisions and the given formula. The rule Backtrack asserts that the present state of computation
is failing but can be fixed: at some point in the past we added a decision literal whose value we can now
reverse. The rule Fail asserts that the current state of computation has failed and cannot be fixed. The
rule Succeed asserts that the current state of computation corresponds to a successful outcome.

2The class �P
2 = coNPNP denotes the class of problems P , such that the complementary problem P can be decided by a

nondeterministic polynomial time algorithm that has (unrestricted) access to an NP-oracle.
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Oracle rules

Backtrack EldE′′ ⇒ El if

{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagate E ⇒ El if

⎧⎨
⎩

l does not occur in E and
C ∨ l is a clause in ϕ and
all the literals of C occur in E

Decide E ⇒ Eld if

{
E is consistent and
neither l nor l occur in E

Failing rule
Fail E ⇒ Reject if

{
E is inconsistent and decision-free

Succeeding rule
Succeed E ⇒ Accept if

{
no other rule applies

Fig. 2. The transition rules of DPϕ .

Initial state: ∅
Decide ⇒ ad

UnitPropagate ⇒ ad c

Decide ⇒ ad c bd

Succeed ⇒ Accept

Initial state: ∅
Decide ⇒ ad

Decide ⇒ ad cd (∗)

UnitPropagate ⇒ ad cd c

Backtrack ⇒ ad c

Decide ⇒ ad c bd

Succeed ⇒ Accept

Fig. 3. Examples of paths in DP{a∨b,a∨c}.

To decide the satisfiability of a CNF formula it is enough to find a path in DPϕ leading from state ∅
to a terminal state. If it is Accept, then the formula is satisfiable, and if it is Reject, then it is unsatisfi-
able. Since there is no infinite path, a terminal state is always reached. The following result states this
observation formally.

Theorem 2.1. For any CNF formula ϕ, the graph DPϕ is finite and acyclic; any terminal state of DPϕ

reachable from the initial state other than Reject is Accept; the record in the state preceding Accept
corresponds to satisfying assignment of ϕ; and Reject is reachable if and only if ϕ is unsatisfiable.

A proof of this theorem can be found in [36, Prop. 1] and (using a slightly different statement) in [44,
Lemma 2.9]. The fact that Accept is reachable from the initial state iff ϕ is satisfiable follows directly.

Figure 3 presents two paths in DPϕ from the initial state ∅ to the terminal state Accept. Every edge is
annotated on the left by the name of the transition rule that gives rise to this edge in DPϕ . Thus, Theo-
rem 2.1 asserts that ϕ is satisfiable; moreover, the record where the Succeed rule is applied corresponds
to a satisfying assignment of ϕ, i.e. {a, c, b}.

The difference between the paths in Fig. 3 is that only the path on the left will be indeed followed
by SAT solvers, given it adheres with the ordering followed by SAT solvers, while the path on the right
applies Decide (see (*)) where UnitPropagate is applicable.
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2.3. Abstract solvers for computing maximal satisfying assignments

We now define a modification of the graph presented in the previous sub-section that will be useful in
the definition of a new solving algorithm in Section 3.4.

The goal of this graph is to compute a maximal satisfying assignment of a CNF formula in the sense
that the set of atoms mapped to true is ⊆-maximal among all satisfying assignments. In order to do this
it is enough to modify the graph DPϕ such that Decide always assigns the decision literal to true by
default, i.e. to substitute rule Decide in Fig. 2 with the following rule Decide≺, where a represents an
atom instead of a literal:

Decide≺ E ⇒ Ead if

{
E is consistent and
neither a nor ¬a occur in E

Let us call the resulting graph DP≺
ϕ , whose nodes correspond to the nodes of DPϕ graph. We can state

the following theorem.

Theorem 2.2. For any CNF formula ϕ, the graph DP≺
ϕ is finite and acyclic; any terminal state of DP≺

ϕ

reachable from the initial state is either Reject or Accept; the record in the state preceding Accept corre-
sponds to a maximal satisfying assignment of ϕ, and Reject is reachable if and only if ϕ is unsatisfiable.

Proofs of this theorem can be found in [47, Theorem 2] and in [12, Prop. 1].

3. Algorithms for preferred semantics

In this section we first abstract two SAT-based algorithms for preferred semantics, namely PrefSat [13]
(implemented in the tool ARGSEMSAT [14]) for extension enumeration, and an algorithm for deciding
skeptical acceptance of CEGARTIX [25]. Moreover, we abstract the dedicated approach for enumeration
of [45]. Finally, in Section 3.4 we show how our graph representations can be used to develop a novel
algorithm, by combining parts of CEGARTIX and DP≺.

A key insight of the SAT-based algorithms is that preferred extensions can be found by iterative com-
putation of certain extensions of a base semantics (admissible or complete): first, any extension of the
base semantics is computed, and then, in each step, a strictly bigger (w.r.t. subset) one is computed. As
these subproblems are in NP, each step is delegated to a SAT solver. The direct approach from [45], on
the other hand, does not rely on external SAT solvers but uses a genuine procedure to compute preferred
extensions. What the algorithms have in common is that they maintain a list of already found preferred
extensions by which they constrain the search for new ones. All algorithms continue the search for new
extensions until none can be found, the algorithm for skeptical acceptance just adds the constraint that
the queried argument must not be contained.

We will present these algorithms in a uniform way via abstract solvers, abstracting from some minor
tool-specific details. By presenting algorithms in such a uniform way, the relation among these algo-
rithms becomes much clearer than by using, e.g. pseudo-code-based descriptions. In fact, common to all
algorithms is a conceptual two-level architecture of computation, similar to Answer Set Programming
solvers for disjunctive logic programs [6]. The lower level corresponds to a DPLL-like search subpro-
cedure, while the higher level part takes care of the specific theory and drives the overall algorithm.
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For PrefSat and CEGARTIX, the subprocedures actually are delegated to a SAT solver, while the dedi-
cated approach carries out a tailored search procedure. Such common architecture is difficult to spot by
looking at the related pseudo-code descriptions, while it will be clear by employing abstract solvers.

Each algorithm uses its own data structures, and, by slight abuse of notation, for a given AF F =
(A, R), the variables they use are denoted by atoms(F ). For this set it holds that A ⊆ atoms(F ), i.e.
there is an atom for each argument. The states of all the graph representations we will define are either

(1) an annotated triple (ε, E′, E)i where i ∈ {out, base, max}, ε ⊆ 2A is a set of sets of arguments,
and both E′ and E are records over atoms(F ); or

(2) Ok(ε) for ε ⊆ 2A; or
(3) a distinguished state Accept or Reject.

The intended meaning of a state (ε, E′, E)i is that ε is the set of already found preferred extensions of
F (visited part of the search space), E′ is a record representing the current candidate extension (which is
admissible or complete in F and, for the SAT-based algorithms, has to be extended in the next iteration),
E is a record that may be currently modified, and i refers to the current level of computation. Note that
both E and E′ are records, and they will be modified in the course of the computation; on the other hand
found preferred extensions will be translated to a set of arguments before being stored in ε, and perma-
nently left there unmodified. The annotation i denotes the current level of computation the procedure
is in. Both annotations base and max correspond to different lower level computations, typically SAT
calls, while out is used for states in which (simple) checks outside such procedures have to be made.
Transition rules reflecting the higher level of computation shift these annotations, e.g. a shift from a
out to base means that the algorithm is starting a call to a SAT solver. Transition rules mirroring rules
“inside” a SAT solver do not modify i. A path through a graph made up of such states, representing a run
of an algorithm, will then usually start in an out state, contain several subpaths consisting exclusively of
either base states or max states, and finally end in the state Ok(ε) (for enumeration algorithms) or in one
of the states Accept or Reject (for acceptance algorithms).

The remaining states denote terminated computation: Ok(ε) contains all solutions to the enumeration
problem, while Accept or Reject denote an answer to a decision problem.

The SAT-based algorithms construct formulas by a function f s.t. A ⊆ atoms(f (ε, E, F, α)) ⊆
atoms(F ) for all possible arguments of f . The formulas f (ε, E, F, α) are adapted from [5]. The argu-
ment α is relevant only for CEGARTIX to decide skeptical acceptance of α. Finally, we use e(E) = E∩A

to project the arguments from a record E on the set of arguments A.
We now define a strict partial order on states, that will be used to show acyclicity of graphs later

in this section. First, we define a particular representation of records used for lexicographic compari-
son.

Definition 2. Let E be a record. E can be written as L0l1L1 . . . lpLp where L0, . . . , Lp are strings of
non-decision literals and l1, . . . , lp are all the decision literals of E. We define the sequence representa-
tion of E as s(E) = |L0||L1| . . . |Lp|. For two sequence representations of records s(E1) = x1 x2 . . . xk1

and s(E2) = y1 y2 . . . yk2 , we say that s(E1) is lexicographically smaller than s(E2), s(E1) <lex s(E2),
if xn < yn for the first index n where xn and yn differ with n � min(k1, k2), or if k1 < k2 and for all
n � min(k1, k2) we have xn = yn.

Example 2. Consider the records E1 = ¬bcd , E2 = ¬bcddd , and E1 = bcd¬d. The sequence repre-
sentations of these records are given by s(E1) = 1 0, s(E2) = 1 0 0, and s(E3) = 1 1. The lexicographic
ordering is s(E1) <lex s(E2) <lex s(E3).
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The orders on states are now defined in a way that the graphs produced by the abstract solvers pre-
sented in this section only feature edges between states ς1 and ς2 such that ς1 < ς2.

Definition 3. Let ε1, ε2 be sets of sets of arguments, E1, E2, E′
1, E′

2 be records, and i1, i2 ∈
{base, max, out}. We define the following strict partial orders (i.e. irreflexive and transitive binary re-
lations):

<ε : ε1 <ε ε2 iff ε1 ⊂ ε2.
<E′ : E′

1 <E′ E′
2 iff e(E′

1) ⊂ e(E′
2).

<E: E1 <E E2 iff s(E1) <lex s(E2), where <lex is the lexicographic order.
<i : base <i max <i out.

The strict partial order < on states is defined such that for any two states ς1 = (ε1, E
′
1, E1)i1 and

ς2 = (ε2, E
′
2, E2)i2 , ς1 < ς2 iff

(i) ε1 <ε ε2, or
(ii) ε1 = ε2 and i1 <i i2, or

(iii) ε1 = ε2 and i1 = i2 and E′
1 <E′ E′

2, or
(iv) ε1 = ε2 and i1 = i2 and E′

1 = E′
2 and E1 <E E2.

Example 3. Consider the states ς1 = (∅, out, cd, bd¬d), ς2 = ({{a}}, base, cd, bd¬d), ς3 =
({{a}}, max, b¬c, bd¬d), ς4 = ({{a}}, max, bdd, ¬bcd), and ς5 = ({{a}}, max, bdd, ¬bcddd). It holds
that ς1 < ς2 < ς3 < ς4 < ς5. First, ς1 < ς2 holds due to ∅ ⊂ {{a}}. Moreover, ς2 < ς3 is be-
cause of base <i max. Furthermore, ς3 < ς4 holds since e(b¬c) = {b} ⊂ {b, d} = e(bdd). Finally,
observe that ¬bcddd can be written, in the spirit of Definition 2, as ¬b cd ∅ dd ∅, where ∅ denotes the
empty string. Hence we obtain s(¬bcddd) = 1 0 0 and similarly s(¬bcd) = 1 0. We get ς4 < ς5 since
s(¬bcd) = 1 0 <lex 1 0 0 = s(¬bcddd).

One can check that all orders on elements are transitive and irreflexive. Therefore the construction of
< also ensures these properties for the order on states.

3.1. SAT-based algorithm for enumeration

PrefSat (Algorithm 1 of [13]) is a SAT-based algorithm for finding all preferred extensions of a given
AF. The algorithm maintains a list of visited preferred extensions. It first searches for a complete exten-
sion not contained in previously found preferred extensions. If such an extension is found, it is iteratively
extended until we reach a subset-maximal complete extension, which is a preferred extension by defini-
tion. This preferred extension is stored, and we repeat the process.

This algorithm is realized by two subprocedures that are delegated to a SAT solver. The first has to
generate a complete extension not contained in one of the enumerated preferred extensions, and the
second searches for a complete extension that is a strict superset of a given one.

We now represent PrefSat as an abstract solver. The graph ENUMF

f
for an AF F and a vector of

functions f = (f com
base , f

com
max ) is defined by the states over atoms(F ) and the transition rules presented

in Fig. 4. Its initial state is (∅, ∅, ∅)base. We assume the functions f com
base and f com

max that generate CNF
formulas for ε ⊆ 2A, a record E, and an argument α ∈ A such that:

{
e(M) | M ∈ Sat

(
f com

base(ε, E, F, α)
)} = {

S ∈ com(F ) | ¬∃S ′ ∈ ε : S ⊆ S ′};{
e(M) | M ∈ Sat

(
f com

max (ε, E, F, α)
)} = {

S ∈ com(F ) | e(E) ⊂ S
}
.
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i-oracle rules (i ∈ {base, max})
Backtracki (ε, E′, EldE′′)i ⇒ (ε, E′, El)i if

{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagatei

(
ε, E′, E

)
i

⇒ (
ε, E′, El

)
i

if

⎧⎨
⎩

l does not occur in E and
C ∨ l is a clause in f com

i (ε, E′, F, α) and
all the literals of C occur in E

Decidei

(
ε, E′, E

)
i

⇒ (
ε, E′, Eld

)
i

if

{
E is consistent and
neither l nor l occur in E

Failing rules
Failbase

(
ε, E′, E

)
base ⇒ Ok(ε) if

{
E is inconsistent and decision-free

Failmax
(
ε, E′, E

)
max ⇒ (

ε ∪ {
e
(
E′)},∅,∅)

base if
{
E is inconsistent and decision-free

Succeeding rules
Succeedbase

(
ε, E′, E

)
base ⇒ (ε, E,∅)max if

{
no other rule applies

Succeedmax
(
ε, E′, E

)
max ⇒ (ε, E,∅)max if

{
no other rule applies

Fig. 4. The rules of ENUMF

f
.

In words, the models of the formula f com
base(ε, E, F, α) represent the complete extensions of F such

that no superset is contained in ε. Moreover, the models of f com
max (ε, E, F, α) represent the complete

extensions of F strictly extending the extension represented by E. Hence, these are the formulas that are
handed to a SAT solver in PrefSat in order to solve the necessary subprocedures.

We remark that α is not relevant for enumeration of extensions and only used for acceptance later on.
In the interest of uniformity we keep it as parameter of the functions throughout the paper. Recall that
in a state (ε, E′, E)i the set ε represents preferred extensions found as of now, E′ is a record for the
complete extension found in the previous oracle run and E is a record for the complete extension that
the current oracle is trying to build. The annotation i ∈ {base, max} corresponds to different kinds of
SAT calls.

As the oracle rules with annotation i ∈ {base, max} coincide with the ones of DPϕ (cf. Fig. 2), their
role is to search for a satisfying assignment of f com

i . That is, if a Faili rule is applied to the state
(ε, E′, E)i for i, the formula f com

i (ε, E′, F, α) is unsatisfiable. Conversely, when a Succeedi rule is
applied from that state, the formula f com

i (ε, E′, F, α) is satisfied by E. Notice that Faili and Succeedi

might shift i to reflect a change of type of SAT calls. When i = base, the oracle searches for a complete
extension that is not contained in a preferred extension that has been found before. In case of failure
all the preferred extensions have been found. In case of success, it is necessary to search whether there
are strictly larger complete extensions than the one found. This is handled by the computation within
states annotated by max. In case of success, Succeedmax is applied and the procedure is repeated, since
the current complete extension might still not be maximal. Failure by Failmax means we have found a
preferred extension.

Example 4. Again consider the AF F depicted in Fig. 1. We have seen in Example 1 that F has two
preferred extensions, namely {a, c} and {a, d}. Figure 5 shows a possible path in the graph ENUMF

f
. As

expected, the computation terminates in the state Ok({{a, d}, {a, c}}). Note that we abbreviate the parts
of the path where we are “inside” the SAT-solver. Also, we only show literals over arguments of F , and
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Initial state: (∅,∅,∅)base

base-oracle: (∅,∅, E1 ⊇ {a,¬b,¬c,¬d})base

Succeedbase: (∅, E1,∅)max

max-oracle: (∅, E1, E2 ⊇ {a,¬b,¬c, d})max

Succeedmax: (∅, E2,∅)max

max-oracle: (∅, E2, unsat)max

Failmax: ({{a, d}},∅,∅)base

base-oracle: ({{a, d}},∅, E3 ⊇ {a,¬b, c,¬d})base

Succeedbase: ({{a, d}}, E3,∅)max

max-oracle: ({{a, d}}, E3, unsat)max

Failmax: ({{a, d}, {a, c}},∅,∅)base

base-oracle: ({{a, d}, {a, c}},∅, unsat)base

Failbase: Ok({{a, d}, {a, c}})
Fig. 5. Path in ENUMF

f
where F is the AF from Fig. 1.

do not state the extra literals that may have been assigned during the call to the SAT-solver. Recall that
by unsat we represent an inconsistent and decision-free record.

It remains to show correctness of ENUMF

f
by showing that we reach a terminal state containing all

preferred extensions of F . First observe that the oracle rules are exactly taken from DPϕ of Fig. 2,
working on the third element of the state-triple. Moreover, this working record is always initialized with
∅ when a transition rule outside the oracle rules is applied. Therefore, we can immediately follow from
Theorem 2.1:

Lemma 3.1. For any AF F and i ∈ {base, max}, if Succeedi is applied from state (ε, E′, E)i in the
graph ENUMF

(f com
base ,f

com
max ) then E ∈ Sat(f com

i (ε, E′, F, α)); if Faili is applied then f com
i (ε, E′, F, α) is

unsatisfiable.

We continue with a lemma stating that only preferred extensions which have not been found at this
point are added to ε.

Lemma 3.2. For any AF F , if the rule Failmax is applied from state (ε, E′, E)max in the graph
ENUMF

(f com
base ,f

com
max ) then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Proof. Let (ε1, E
′
1, E1)max be the state from which Failmax is applied. This means, by Lemma 3.1, that

f com
max (ε1, E

′
1, F, α) is unsatisfiable, hence, by the definition of formula f com

max , there is no S ∈ com(F ) with
S ⊃ e(E′

1). To get e(E′
1) ∈ prf(F ) it remains to show that e(E′

1) ∈ com(F ). Observe that Succeedbase is
applied at least once, since every AF has a complete extension. Moreover, the value of E′

1 is only updated
by applications of Succeedbase or Succeedmax. In both cases e(E′

1) corresponds to a complete extension
of F , due to the definitions of the formula f com

base or f com
max , respectively, and Lemma 3.1. Therefore e(E′

1)

is a complete extension of F .
Since the initial state is (∅, ∅, ∅)base, an application of Succeedbase must precede Failmax. From this

application of Succeedbase it follows from Lemma 3.1 that there is a record E′ such that ¬∃S ∈ ε :
e(E′) ⊆ S. Moreover every application of Succeedmax updates E′ by a proper superset of itself. Therefore
e(E′

1) ⊇ e(E′) and also ¬∃S ∈ ε : e(E′
1) ⊆ S, in particular e(E′

1) /∈ ε. �

Now we are ready to show correctness of ENUMF

f
.
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Theorem 3.3. For any AF F , the graph ENUMF
(f com

base ,f
com
max ) is finite, acyclic and the only terminal state

reachable from the initial state is Ok(ε) where ε = prf(F ).

Proof. In order to show that ENUMF

f
is finite, consider some state (ε, E′, E)i of ENUMF

f
. Since both E

and E′ are records over atoms(F ), and F is finite by definition, the number of possible records E and
E′ is finite. Similarly, there is only a finite number of sets of sets of arguments ε. Finally, ENUMF

f
only

contains states with i ∈ {base, max}. Thus the number of states is finite in the graph ENUMF

f
.

In order to show that it is acyclic recall the strict partial order < on states from Definition 3. We show
that each transition rule is increasing w.r.t. < by referring to the conditions (i) to (iv) from Definition 3.
To this end consider two states ς1 = (ε1, E

′
1, E1)i1 and ς2 = (ε2, E

′
2, E2)i2 representing the states before

and after the application of a rule. First of all, the i-oracle rules (i.e. Backtracki , UnitPropagatei , and
Decidei) fulfill ς1 < ς2 because of (iv). For all of these rules ε1 = ε2, E′

1 = E′
2 and i1 = i2, but s(E1)

is lexicographically smaller than s(E2), therefore E1 <E E2. Moreover, Failmax fulfills ς1 < ς2 due to
(i) since e(E′

1) /∈ ε1 by Lemma 3.2. Succeedbase guarantees ς1 < ς2 because of (ii). Finally, Succeedmax

fulfills ς1 < ς2 due to (iii), since the max-oracle rules work on the formula f com
max and the extension

associated with a satisfying assignment E1 = E′
2 of that formula must be a proper superset of e(E′

1).
Therefore, by transitivity of <, or any two states ς1 and ςn such that ςn is reachable from ς1 in ENUMF

f

it holds that ς1 < ςn, showing that the graph is acyclic.
The only terminal state reachable from the initial state is Ok(ε) (via rule Failbase) for some ε ⊆ 2A

since all states (ε, E, E′)i of ENUMF

f
have i ∈ {base, max} and for each i ∈ {base, max} there is a rule

Succeedi with the condition “no other rule applies”. It remains to show that, when state Ok(ε) is reached,
ε coincides with prf(F ). Since elements are only added to ε by application of the rule Failmax we know
from Lemma 3.2 that for each T ∈ ε it holds that T ∈ prf(F ). To reach Ok(ε), the rule Failbase must
have been applied from a state (ε, E′, E)base. This means, by the definition of f com

base and Lemma 3.1, that
for each complete extension S of F there is some T ∈ ε such that S ⊆ T . Hence ε = prf(F ). �

3.2. SAT-based algorithm for acceptance

CEGARTIX [25] is a SAT-based tool for deciding several acceptance questions for AFs. Here we focus
on Algorithm 1 of [25] for deciding skeptical acceptance w.r.t. preferred semantics of an argument α.
Similarly to PrefSat, CEGARTIX traverses the search space of a certain semantics, generates candidate
extensions not contained in already visited preferred extensions, and maximizes the candidate until a pre-
ferred extension is found. The main differences to PrefSat are (1) the parametrized use of base semantics
σ (the search space), which can be either admissible or complete semantics, and (2) the incorporation of
the queried argument α. To prune the search space, α must not be contained in the candidate σ -extension
before maximization. Again, we have two kinds of SAT-calls.

The graph SKEPT-PRF
F,α

f
for an AF F , an argument α and a vector of functions f = (f σ

base, f
σ
max) is

defined by the states over atoms(F ) and the rules in Fig. 4 replacing the rules Faili for i ∈ {base, max}
and adding the rules Failout and Succeedout as depicted in Fig. 6. The initial state is (∅, ∅, ∅)base. For
σ ∈ {adm, com} we assume the functions f σ

base and f σ
max such that:

{
e(M) | M ∈ Sat

(
f σ

base(ε, E, F, α)
)} = {

S ∈ σ(F ) | α /∈ S ∧ ¬∃S ′ ∈ ε : S ⊆ S ′};{
e(M) | M ∈ Sat

(
f σ

max(ε, E, F, α)
)} = {

S ∈ σ(F ) | e(E) ⊂ S
}
.
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Failing rules
Failbase (ε, E′, E)base ⇒ Accept if

{
E is inconsistent and decision-free

Failmax
(
ε, E′, E

)
max ⇒ (

ε, E′,∅)
out if

{
E is inconsistent and decision-free

Failout
(
ε, E′, E

)
out ⇒ (

ε ∪ {
e
(
E′)},∅,∅)

base if
{
α ∈ e(E′)

Succeeding rules
Succeedout

(
ε, E′, E

)
out ⇒ Reject if

{
α /∈ e(E′)

Fig. 6. Changed transition rules for SKEPT-PRF
F,α

f
.

Initial state: (∅,∅,∅)base

base-oracle: (∅,∅, E1 ⊇ {a,¬b,¬c,¬d})base

Succeedbase: (∅, E1,∅)max

max-oracle: (∅, E1, E2 ⊇ {a,¬b, c,¬d})max

Succeedmax: (∅, E2,∅)max

max-oracle: (∅, E2, unsat)max

Failmax: (∅, E2,∅)out

Failout: ({{a, c}},∅,∅)base

base-oracle: ({{a, c}},∅, E3 ⊇ {a,¬b,¬c, d})base

Succeedbase: ({{a, c}}, E3,∅)max

max-oracle: ({{a, c}}, E3, unsat)max

Failmax: ({{a, c}}, E3,∅)out

Succeedout: Reject

Fig. 7. Reject-path for argument c in SKEPT-PRF
F,c

f
.

The graph SKEPT-PRF
F,α

f
is similar to ENUMF

f
. Again, the models of the formulas f com

base(ε, E, F, α)

and f com
max (ε, E, F, α) represent the complete extensions of F which are not contained in any element

of ε and extending the extension represented by E, respectively. In addition, the query argument α is
required not to be contained in the extensions represented by the models of f com

base(ε, E, F, α). The graph
differs in case of failure in a state annotated by base or max. When all the preferred extensions have been
enumerated, i.e. the base-oracle ends with an application of Failbase, we can report a positive outcome
with Accept, since we have ensured that α belongs to all of them. If we arrive at Failmax, i.e. when a
preferred extension has been found, it is necessary to check whether α belongs to it, and this is done via
rules Succeedout and Failout that either lead to Reject or give the control to the base level.

Example 5. Again consider the AF F from Fig. 1 and note that skeptical acceptance of argument c

is rejected as c is not contained in the preferred extension {a, d} of F . Accordingly, the possible path
of the graph SKEPT-PRF

F,c

f
which is depicted in Fig. 7 (with base semantics adm) terminates in the

Reject-state.
On the other hand, argument a is skeptically accepted w.r.t. preferred semantics in F as it belongs to

all preferred extensions enumerated in {{a, d}, {a, c}}. For checking whether a is skeptically accepted in
F , a possible path in the graph SKEPT-PRF

F,a

f
(again with base semantics adm) is shown in Fig. 8. As

expected, the path terminates in the state Accept.

Again, we get the following from Theorem 2.1:
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Initial state: (∅,∅,∅)base

base-oracle: (∅,∅, E1 ⊇ {¬a,¬b,¬c,¬d})base

Succeedbase: (∅, E1,∅)max

max-oracle: (∅, E1, E2 ⊇ {a,¬b,¬c,¬d})max

Succeedmax: (∅, E2,∅)max

max-oracle: (∅, E2, E3 ⊇ {a,¬b,¬c, d})max

Succeedmax: (∅, E3,∅)max

max-oracle: (∅, E3, unsat)max

Failmax: (∅, E3,∅)out

Failout : ({{a, d}},∅,∅)base

base-oracle: ({{a, d}},∅, unsat)base

Failbase: Accept

Fig. 8. Accept-path for argument a in SKEPT-PRF
F,a

f
.

Lemma 3.4. For any AF F = (A, R), argument α ∈ A, σ ∈ {adm, com}, and i ∈ {base, max}, if
Succeedi is applied from state (ε, E′, E)i in the graph SKEPT-PRF

F,α

f
then E ∈ Sat(f σ

i (ε, E′, F, α)); if

Faili is applied then f σ
i (ε, E′, F, α) is unsatisfiable.

The proof of the following results is almost identical to the ones of Lemma 3.2 and Theorem 3.3 and
can be found in the Appendix.

Lemma 3.5. For any AF F , if the rule Failout is applied from state (ε, E′, E)out in the graph
SKEPT-PRF

F,α

(f σ
base,f

σ
max)

with σ ∈ {adm, com} then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Theorem 3.6. For any AF F = (A, R), argument α ∈ A, and σ ∈ {adm, com}, the graph
SKEPT-PRF

F,α

(f σ
base,f

σ
max)

is finite, acyclic and any terminal state reachable from the initial state is either
Accept or Reject; Reject is reachable iff α is not skeptically accepted in F w.r.t. prf.

Finally note that from Theorem 3.6 it follows that Accept is reachable from the initial state if and only
if α is skeptically accepted by F , which completes the correctness statement for SKEPT-PRF

F,α

f
.

3.3. Dedicated approach for enumeration

Algorithm 1 of [45] presents a direct approach for enumerating preferred extensions. One function
is important for this algorithm, which is called IN-TRANS. Given an AF F = (A, R), it marks an
argument a ∈ A as belonging to the currently built extension, and marks all attackers {b | (b, a) ∈ R}
and all attacked arguments {b | (a, b) ∈ R} as outside of this extension. Intuitively, IN-TRANS decides
to accept a, and then propagates the immediate consequences to the neighboring nodes. It actually
does an additional task. It labels the attacked arguments as “attacked”, and the attackers that are not yet
labelled as attacked as “to be attacked”: this allows later to easily check the admissibility of the extension
by just looking whether there is any argument “to be attacked”.

The algorithm is recursive, and stores the admissible extensions in a global variable. First, it checks
whether all the arguments are marked as either belonging to or being outside the extension, and if so it
returns after adding the extension to the global variable if the extension is actually admissible. Second,
it applies the function IN-TRANS to some unmarked argument and calls itself recursively. Third, it
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Oracle rules

Backtrack′
max (ε,∅, EadE′′)max ⇒ (ε,∅, E¬a)max if

{
EadE′′ is inconsistent and
E′′ contains no decision literal

Propagate′
max (ε,∅, E)max ⇒ (ε,∅, E¬a)max if

{
e(E) attacks a or a attacks e(E) and
¬a does not occur in E

Decide′
max (ε,∅, E)max ⇒ (

ε,∅, Ead
)

max if

⎧⎨
⎩

E is consistent and
neither a nor ¬a occur in E and
Propagate′

max does not apply

Succeeding and failing rules
Failmax (ε,∅, E)max ⇒ Ok(ε) if

{
E is incons. and decision-free

Succeedmax (ε,∅, E)max ⇒ (ε,∅, E)out if
{

no other rule applies

Failout (ε,∅, E)out ⇒ (ε,∅, E⊥)max if

⎧⎨
⎩

∃E′ ∈ ε : E ⊆ E′ or
there is an argument a s.t.
e(E) does not attack a and a attacks e(E)

Succeedout (ε,∅, E)out ⇒ (
ε ∪ {

e(E)
}
,∅, E⊥)

max if
{

no other rule applies

Fig. 9. The rules of the graph DIRECTF .

reverts the effects of IN-TRANS, marks the argument it chose as outside of this extension, and calls
itself recursively.

We have defined an equivalent representation of this algorithm that follows the framework of abstract
solvers with binary logics as previously used in this article. Binary truth values are sufficient to represent
the arguments marked, but we see the labels “attacked” and “to be attacked” as an optimization as they
can be easily recovered at the end of the algorithm. Indeed, they correspond to the condition “there is an
argument a such that e(E) does not attack a and a attacks e(E)” of the rule Failout.

The graph DIRECTF for an AF F is defined by the states over atoms(F ) and the transition rules
presented in Fig. 9. Its initial state is (∅, ∅, ∅)max. The structure of the graph is similar to that of ENUMF

f
.

It differs from this graph in two ways. First, it has only one lower level of computation. Second, the rules
of the oracle differ from the previous oracle rules since they are not a call to a SAT solver; we primed
them to emphasize the difference.

More precisely, among the oracle rules, propagation (through Propagate′
max rule) now only occurs

so as to negatively add an atom if it attacks or is attacked by an atom of the extension being built.
The Decide′

max rule only adds atoms positively, which is useful in Algorithm 2 of [45] as it ensures
maximality of final assignments. When a record assigning all arguments is found, the rule Succeedmax is
applied so as to allow the test of the outer rules to be carried on. Differently to the algorithms presented
so far, the extension associated to this record is only guaranteed to be conflict-free at this point and not
admissible (or complete, depending on the chosen base semantics). When the record corresponds to a
preferred extension, it is stored through Succeedout, and the process continues. In both Succeedout and
Failout, the use of one of the rules Backtrack′

max or Failmax is forced by making the record inconsistent.
This way the process of browsing records is forced to continue.

A final comment is related to one of the main advantages of using abstract solvers, i.e. the fact that
they allow to highlight in a more clear way similarities and differences among solving algorithms, as
mentioned in Section 1. It is evident that our reformulation of the direct approach has allowed to present
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Initial state: (∅,∅,∅)max

Decide′
max: (∅,∅, cd)max

Propagate′
max: (∅,∅, cd¬b¬d)max

Decide′
max: (∅,∅, cd¬b¬dad)max

Succeedmax: (∅,∅, cd¬b¬dad)out

Succeedout: ({{a, c}},∅, cd¬b¬dad⊥)max

Backtrack′
max: ({{a, c}},∅, cd¬b¬d¬a)max

Succeedmax: ({{a, c}},∅, cd¬b¬d¬a)out

Failout: ({{a, c}},∅, cd¬b¬d¬a⊥)max

Backtrack′
max: ({{a, c}},∅,¬c)max

Decide′
max: ({{a, c}},∅,¬cad)max

Propagate′
max: ({{a, c}},∅,¬cad¬b)max

Decide′
max: ({{a, c}},∅,¬cad¬bdd)max

Succeedmax: ({{a, c}},∅,¬cad¬bdd)out

Succeedout: ({{a, c}, {a, d}},∅,¬cad¬bdd⊥)max

Backtrack′
max: ({{a, c}, {a, d}},∅,¬cad¬b¬d)max

Succeedmax: ({{a, c}, {a, d}},∅,¬cad¬b¬d)out

Failout: ({{a, c}, {a, d}},∅,¬cad¬b¬d⊥)max

Backtrack′
max: ({{a, c}, {a, d}},∅,¬c¬a)max

Decide′
max: ({{a, c}, {a, d}},∅,¬c¬abd)max

Propagate′
max: ({{a, c}, {a, d}},∅,¬c¬abd¬d)max

Succeedmax: ({{a, c}, {a, d}},∅,¬c¬abd¬d)out

Failout: ({{a, c}, {a, d}},∅,¬c¬abd¬d⊥)max

Backtrack′
max: ({{a, c}, {a, d}},∅,¬c¬a¬b)max

Decide′
max: ({{a, c}, {a, d}},∅,¬c¬a¬bdd)max

Succeedmax: ({{a, c}, {a, d}},∅,¬c¬a¬bdd)out

Failout: ({{a, c}, {a, d}},∅,¬c¬a¬bdd⊥)max

Backtrack′
max: ({{a, c}, {a, d}},∅,¬c¬a¬b¬d)max

Succeedmax: ({{a, c}, {a, d}},∅,¬c¬a¬b¬d)out

Failout: ({{a, c}, {a, d}},∅,¬c¬a¬b¬d⊥)max

Failmax: Ok({{a, d}, {a, c}})
Fig. 10. Path in DIRECTF where F is the AF from Fig. 1.

this algorithm by modification of the previous two solving procedures, by explicitly viewing it in the light
of a backtrack-search process in a search space, more similar to a SAT-based procedure. This would not
be obvious by considering, e.g. the pseudo-code description of the direct approach.

Example 6. A possible path in the graph DIRECTF for the AF F in Fig. 1 is shown in Fig. 10. One dif-
ference can be seen by the fact that the result of the modified oracle rules may be contained in an already
found preferred extension. Then ⊥ is added to the current record by Failout, followed by backtracking
to the last decision literal, if any. Moreover note that in Fig. 10 we explicitly write the state transitions
due to modified oracle rules, in order to emphasize the difference to the SAT oracle rules used in the
previous graphs.

We give the correctness statement of the abstract solver representing the direct approach after provid-
ing an intermediate lemma; proofs can again be found in the Appendix.
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Lemma 3.7. For any AF F , if the rule Succeedout is applied from state (ε, ∅, E)out in the graph DIRECTF

then e(E) ∈ prf(F ) and e(E) /∈ ε.

Theorem 3.8. For any AF F , the graph DIRECTF is finite, acyclic and the only terminal state reachable
from its initial state is Ok(ε) where ε = prf(F ).

3.4. Combining algorithms

We now use the insights gained by the graph representations of the algorithms from the literature to
define a new algorithm for skeptical acceptance w.r.t. preferred semantics. We do so by defining a new
abstract solver which incorporates the modified DPLL (cf. Section 2.3) into the graph representation of
CEGARTIX (cf. Section 3.2). This gives rise to a new algorithm which is not only of theoretical interest,
but also leads to a more efficient solving procedure, as we will show in Section 4.

Now recall that, in PrefSat and CEGARTIX, the two SAT calls annotated with i ∈ {base, max} basically
amount to finding a maximal satisfying assignment, i.e. a preferred extension. This is done by iteratively
extending the satisfying assignment found by the SAT call annotated with base (which must not contain
the queried argument), by means of a series of further SAT calls annotated with max.

But, given our result in Section 2.3, the “inner loop” of SAT calls for maximization is not strictly
needed, and the two types of SAT calls can be substituted by a single modified call. More specifically, we
replace base by base′ by abstaining from the condition that the queried argument must not be contained
in the σ -extension. Hence, a single modified SAT call to base′ returns a preferred extension which has
not been found already.

Given an AF F , an argument α and a base semantics σ ∈ {adm, com}, the graph MIX-PRF
F,α

f σ
base′

repre-

senting the new algorithm for deciding skeptical acceptance of α in F w.r.t. prf is defined by the states of
atoms(F ) and the transition rules presented in Fig. 11. Its initial state is (∅, ∅, ∅)base′ . As we can see, the
graph describes exactly the intuition behind the new proposal. A new label base′ is employed to clearly
differentiate with the other two-level architectures. Of course, in order to guarantee that the outcome of
the modified SAT call is a preferred extension, we must assume the function f σ

base′(ε, E, F, α) such that:

{
e(M) | M ∈ Sat

(
f σ

base′(ε, E, F, α)
)} = {

S ∈ σ(F ) | ¬∃S ′ ∈ ε : S ⊆ S ′}.
Then, the outcome of the base′ rules is treated similarly, through the out rules, to the graph

SKEPT-PRF
F,α

f
presented in Section 3.2.

Considering the fact that the new solution always adds positive atoms to the current assignment, it
looks similar to the direct approach; but there is a notable difference between the new algorithm and the
direct approach. The outcome of the oracle-rules of the direct approach (cf. Fig. 9) is a conflict-free set
which is not necessarily maximal (and in other rules admissibility and maximality is checked), whereas
the outcome of the oracle-rules in the new algorithm modifying SKEPT-PRF

F,α

f
is guaranteed to be an

admissible (and preferred) set.
From Theorem 2.2 we know that the base′-oracle rules give a maximal satisfying assignment of

f σ
base′(ε, E′, F, α):

Lemma 3.9. For any AF F = (A, R), argument α ∈ A, and σ ∈ {adm, com}, if Succeedbase′ is
applied from state (ε, E′, E)base′ in the graph MIX-PRF

F,α

f σ
base′

then E ∈ Sat(f σ
base′(ε, E′, F, α)) and

¬∃M ∈ Sat(f σ
max(ε, E

′, F, α)) with M ⊃ E; if Failbase′ is applied then f σ
base′(ε, E′, F, α) is unsatis-

fiable.
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base′-oracle rules

Backtrackbase′ (ε,∅, EldE′′)base′ ⇒ (ε,∅, El)base′ if

{
EldE′′ is inconsistent and
E′′ contains no decision literal

UnitPropagatebase′ (ε,∅, E)base′ ⇒ (ε,∅, El)base′ if

⎧⎨
⎩

l does not occur in E and
C ∨ l is a clause in f σ

base′(ε, E′, F, α) and
all the literals of C occur in E

Decide≺
base′ (ε,∅, E)base′ ⇒ (

ε,∅, Ead
)

base′ if

{
E is consistent and
neither a nor ¬a occur in E

Failing rules
Failbase′ (ε,∅, E)base′ ⇒ Accept if

{
E is inconsistent and decision-free

Failout
(
ε, E′, E

)
out ⇒ (

ε ∪ {
e
(
E′)},∅,∅)

base′ if
{
α ∈ e(E′)

Succeeding rules
Succeedbase′ (ε,∅, E)base′ ⇒ (ε, E,∅)out if

{
no other rule applies

Succeedout
(
ε, E′, E

)
out ⇒ Reject if

{
α /∈ e(E′)

Fig. 11. The rules of MIX-PRF
F,α

f
.

To be sure that maximal satisfying assignments correspond to preferred extensions, it has to hold that
the atoms occurring in f σ

base′ which do not correspond to arguments of the AF do not affect maximality.
To this end we make the following assumption.

Assumption 1. Given an AF F = (A, R), a set of sets of arguments ε, a record E relative to atoms(F ),
and an argument α ∈ A, for each M1, M2 ∈ Sat(f σ

base(ε, E, F, α)), where σ ∈ {adm, com}, it holds that
M1 ⊆ M2 iff e(M1) ⊆ e(M2).

It is important to note that the concrete formulas used in CEGARTIX fulfill Assumption 1. Taking the
assumption for granted in the rest of the paper, we are able to show correctness of the abstract solver
representing the combined approach.

Lemma 3.10. For any AF F , if the rule Failout is applied from state (ε, E′, E)out in the graph
MIX-PRF

F,α

f σ
base′

with σ ∈ {adm, com} then e(E′) ∈ prf(F ) and e(E′) /∈ ε.

Theorem 3.11. For any AF F = (A, R), argument α ∈ A, and σ ∈ {adm, com}, the graph MIX-PRF
F,α

f σ
base′

is finite, acyclic and any terminal state reachable from the initial state is either Accept or Reject; Reject
is reachable iff α is not skeptically accepted in F w.r.t. prf.

Proof. (1) MIX-PRF
F,α

f σ
base′

is finite and acyclic: Finiteness follows in the same way as in Theorem 3.3.

In order to show acyclicity we show that each transition rule is increasing w.r.t. the strict partial order
< from Definition 3 (with base replaced by base′). Consider two states ς1 = (ε1, E

′
1, E1)i1 and ς2 =

(ε2, E
′
2, E2)i2 representing the states before and after the application of a rule. First of all, the base′-

oracle rules (i.e. Backtrackbase′ , UnitPropagatebase′ , and Decide≺
base′) fulfill ς1 < ς2 because of (iv). For

all of these rules ε1 = ε2, E′
1 = E′

2 and i1 = i2, but s(E1) is lexicographically smaller than s(E2),
therefore E1 <E E2. Moreover, Failout fulfills ς1 < ς2 due to (i) since e(E′

1) /∈ ε1 by Lemma 3.10.
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Succeedbase guarantees ς1 < ς2 because of (ii). Finally, Succeedbase′ fulfills ς1 < ς2 due to (ii), since
base <i out, and Succeedout and Failbase′ result in terminal states. Therefore, by transitivity of <, or any
two states ς1 and ςn such that ςn is reachable from ς1 in ENUMF

f
it holds that ς1 < ςn, showing that the

graph is acyclic.
(2) Any terminal state of MIX-PRF

F,α

f σ
base′

reachable from the initial state is either Reject or Accept: This

is immediate by the existence of the rule Succeedbase′ with condition “no other rule applied” and the fact
that the rules Failout and Succeedout are complete in the sense that if one rule does not apply the other
rule applies and vice versa.

(3) Reject is reachable from the initial state iff α is not skeptically accepted by F w.r.t. prf.

(⇒): Assume Reject is reachable. Hence also (ε, E′, E)out with α /∈ e(E′) is reachable. More-
over Succeedbase′ was applied at a state (ε, E′′, E′)base′ , meaning, by Lemma 3.9, that E′ ∈
Sat(f σ

base′(ε, E′′, F, α)) and ¬∃E′′′ ∈ Sat(f σ
max(ε, E

′′, F, α)) with E′′′ ⊃ E′. Taking into ac-
count Assumption 1 this means, by the definition of f σ

base′ , that e(E′) is a ⊆-maximal σ -
extension, i.e. a preferred extension. Since α /∈ e(E′) we get that α is not skeptically accepted.

(⇐): Assume α is not skeptically accepted by F w.r.t. prf. Hence there is some T ∈ prf(F ) with
α /∈ T . Now assume, towards a contradiction, that Reject is not reachable. This means by (1)
and (2), that Accept is reachable. Hence Failbase′ is applicable from a state (ε, E′, E)base′ . By
the definition of f σ

base′ and Lemma 3.9, this means that there is no σ -extension S of F such
that ¬∃S ′ ∈ ε : S ⊆ S ′. Now note that Failout is the only rule where elements are added to ε.
Moreover, by Lemma 3.10, we know that elements added are preferred extensions of F . But
therefore for each S ∈ σ(F ) it holds that ∃T ∈ prf(F ) : S ⊆ T ∧ α ∈ T , a contradiction. �

Again it is important to note that from Theorem 3.11 it follows that Accept is reachable from the
initial state if and only if α is skeptically accepted by F , which completes the correctness statement for
MIX-PRF

F,α

f σ
base′

.

Example 7. For the AF F from Fig. 1, a possible path in MIX-PRF
F,c

f σ
base′

is depicted in Fig. 12. It correctly

results in Reject, as c is not skeptically accepted in F w.r.t. prf. Figure 13, on the other hand, shows a
possible path in MIX-PRF

F,a

f σ
base′

. Note that both paths are shorter than the ones of SKEPT-PRF
F,α

f
in Figs 7

and 8, respectively.

Of course, in principle it is not clear whether the new abstract solution leads to computational advan-
tages (see, e.g. [30,31] for a related discussion); however, the experimental analysis in Section 4 shows
that this is the case.

Initial state: (∅,∅,∅)base′
base′-oracle: (∅,∅, E1 ⊇ {a,¬b, c,¬d})base′
Succeedbase′ : (∅, E1,∅)out

Failout: ({{a, c}},∅,∅)base′
base′-oracle: ({{a, c}},∅, E2 ⊇ {a,¬b,¬c, d})base′
Succeedbase′ : ({{a, c}}, E2,∅)out

Succeedout : Reject

Fig. 12. Reject-path for argument c in MIX-PRF
F,c

f σ
base′

.
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Initial state: (∅,∅,∅)base′
base′-oracle: (∅,∅, E1 ⊇ {a,¬b,¬c, d})base′
Succeedbase′ : (∅, E1,∅)out

Failout: ({{a, d}},∅,∅)base′
base′-oracle: ({{a, d}},∅, E2 ⊇ {a,¬b, c,¬d})base′
Succeedbase′ : ({{a, d}}, E2,∅)out

Failout: ({{a, d}, {a, c}},∅,∅)base′
base′-oracle: ({{a, d}, {a, c}},∅, unsat)base′
Failbase′ : Accept

Fig. 13. Accept-path for argument a in MIX-PRF
F,a

f σ
base′

.

4. Experiments

In order to test the viability of our proposed combination as introduced in Section 3.4, we have im-
plemented an alternative version of CEGARTIX following the new approach. The choice of CEGARTIX

is motivated by the fact that it has been one of the best AF solvers in both editions of the argumen-
tation competition (http://argumentationcompetition.org). In particular, in the reasoning task of interest
(skeptical acceptance under preferred semantics as in Section 3.2), CEGARTIX was 2nd out of 11 solvers
entering the track in the first competition, and highly competitive also in the second event.3

4.1. Implementation

The main change done in CEGARTIX was thus replacing the two inner SAT calls with a single call
to a SAT solver with modified heuristics, and we obtained this by changing the internal heuristics of
the CLASP solver used by CEGARTIX in the 2015 competition. CLASP [29] is an ASP solver, but can
act also as SAT solver with excellent results as shown in past SAT competitions, starting from 2009 to
the most recent editions (see, e.g. http://www.satcompetition.org/). Moreover, for efficiency reasons, the
implementation of CEGARTIX slightly differs from the algorithm in Section 3.2, given that the condition
α /∈ S is conjunctively added to e(E) ⊂ S for f σ

max(ε, E, F, α), with the idea of guiding the search
through counterexamples. Consequently, for comparing the two alternatives on the same implementation
basis, the same is done for f σ

base′(ε, E, F, α).
The variants of CEGARTIX considered in our experiments are:

(1) ceg: version with com as a base semantics, which was the setting employed in both editions of
the competition. Past experiments ([25], on different benchmark graphs) overall showed similar or
better performance of this version compared to that with adm as a base semantics.

(2) ceg+-com: new version implementing the combination in Section 3.4 with com as a base semantics.
(3) ceg+-adm: new version implementing the combination in Section 3.4 with adm as a base seman-

tics.

In our experiments, these three variants of CEGARTIX were run with the same parameters.
The version of CEGARTIX entering the competition included shortcuts, i.e. specific conditions that can

lead the solver to find solutions earlier, before entering the main solving algorithm. Details for shortcuts
will be presented in the next section. For this analysis, given the main goal is to test the new solution

3Comparisons of the performance of CEGARTIX and other solvers can be found in [18,50].

http://argumentationcompetition.org
http://www.satcompetition.org/
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which applies to the core part of the algorithm and shortcuts could obfuscate the differences between
algorithms, shortcuts have been disabled. Note, however, that the new variants can make use of the very
same shortcuts. Therefore, it has to be noted that final implementations of the respective algorithms
might show smaller gaps in performance, since they will all use the same shortcuts in the first place.

4.2. Benchmarks

For benchmarks, i.e., instances comprising of an AF and an argument for which one has to check
skeptical acceptance under preferred semantics, we considered the following three benchmark sets4

• ICCMA’15: These are 192 AFs with three arguments to be queried for, from the competition in the
year 2015 [50]. After cleaning this dataset from trivial queries (queried arguments not among the
set of arguments in the AF), this resulted in 537 instances.

• ICCMA’17: In this dataset, from the competition in the year 2017 [27], we have 300 AFs, divided
into four categories (according to expected difficulty), which were used to compare solvers for the
task of checking skeptical acceptance under preferred semantics (this set is called set “A” in the
competition). The hardest category has two arguments to be queried for per AF, while all other
three categories have one query argument. This results in 350 instances.

• CLIMA: This is a set of AFs from our earlier work [53], which we included since it comprises of
several AFs that were hard to solve by an earlier version of CEGARTIX. Here we have 320 AFs and
one query argument per AF. The AFs F = (A, R) were created as randomly generated digraphs,
with a fixed set of arguments A ∈ {100, 150, 200, 225, 250, 300, 325, 350} and a probability to in-
clude an attack (a, b) for each a, b ∈ A with probability p ∈ {0.1, 0.2, 0.3, 0.4}. For each parameter
choice 10 AFs were created.

For each of the three benchmark sets, the AFs were given in the original dataset, while the arguments
to be queried for were only given for ICCMA’15 and ICCMA’17. For the set CLIMA, we chose
one argument in the AF to query at random, with uniform probability for each argument. Overall, this
resulted in 1207 instances (AF and query).

4.3. Results

Experiments have been run on an AMD Opteron Processor 6308 3.5 GHz with 2 processors with each
2 physical cores; every of these cores puts at disposal 2 logical cores, for a sum of 192 GB (12 × 16 GB)
of RAM. In our experiments we set a per-instance timeout of 600 sec.

We first show general runtime statistics in Table 1. More concretely, the table depicts median runtimes
over the considered benchmark sets, as well as timeouts encountered in the runs. The last two columns
list the number of instances that were uniquely solved by ceg or by the union of solved instances of
ceg+-com and ceg+-adm, i.e., whether the original approach or the new approaches could contribute to
uniquely solved instances.

This table indicates that, regarding median runtime and timeouts, the new approaches generally do not
fare (much) better than the original version of CEGARTIX. In fact, median runtimes and timeouts overall
increased when comparing new and original approaches, except for median running time of ceg+-com on

4Archives of the benchmark sets can be found at http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip,
http://www.dbai.tuwien.ac.at/iccma17/benchmarks/A.tar.gz, and http://www.dbai.tuwien.ac.at/research/project/argumentation/
cegartix/files/clima.zip.

http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip
http://www.dbai.tuwien.ac.at/iccma17/benchmarks/A.tar.gz
http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/files/clima.zip
http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/files/clima.zip
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Table 1

General runtime statistics from experiments

Median runtime Timeouts Uniquely solved
Benchmark ceg ceg+-com ceg+-adm ceg ceg+-com ceg+-adm by ceg by ceg+-com or ceg+-adm
All 1.01 1.14 1.28 57 61 71 6 11
ICCMA’15 0.77 0.93 0.76 0 0 0 0 0
ICCMA’17 9.75 7.96 23.30 45 47 60 5 8
CLIMA 1.04 1.1 0.99 12 14 11 1 3

benchmark ICCMA’17 and, to a small extent, ceg+-adm on benchmark CLIMA. A further observation
is that the instances from benchmark ICCMA’15 are rather easy to solve.

Nevertheless, the uniquely solved instances indicate differences of the approaches w.r.t. runtime per-
formance. Looking closer at these uniquely solved instances, when ceg+-com or ceg+-adm could solve
an instance within the timeout limit and ceg could not, it was always the case that ceg+-adm solved the
instance, while this was only sometimes the case for ceg+-com. That is, ceg+-adm contributes to all of
the uniquely solved instances, while ceg+-com only to five of the eleven instances.

We next illustrate, via Fig. 14, the different runtime behaviors of the three CEGARTIX implementations
via scatter plots. In Fig. 14(a), the scatter plot between ceg and ceg+-adm is shown, while in Fig. 14(b),
ceg is compared to ceg+-com and, finally, in Fig. 14(c), the scatter plot of the two new solvers is shown.
Such plots show the running time of two solvers (on x and y axes) on each individual instance. A runtime
directly on the diagonal implies the same runtime for both solvers on that instance.

Closer inspection of the figures suggests that the solver ceg and the two solvers ceg+-com and ceg+-
adm are rather complementary in their runtime behavior on many (non-easy) instances. That is, apart
from the uniquely solved instances (these are the ones on the “timeout” lines for one of the solvers), also
several further instances showed different runtime behavior: in both Fig. 14(a) and Fig. 14(b) several
instances can be seen below or above the diagonal.

We hypothesize that a reason for the different runtimes, for original ceg and novel ceg+-com and ceg+-
adm, stems from difficulties of ceg to find non-trivial (i.e., non-empty) admissible sets. To investigate
towards this end, we have marked each instance of each scatter plot, in Figs 14(a)–(c), whether the
corresponding AF has a non-empty grounded extension or not. When an AF has an empty grounded
extension the corresponding symbol in the figure is a black circle, otherwise a red cross. An AF having
a non-empty grounded extension can be seen as a kind of approximation of whether one can (easily)
find a non-trivial admissible set. In Fig. 14(a) and Fig. 14(b), this categorization of the instances is,
to some extent, reflected in the runtimes: many times when a novel solver outperformed ceg it is the
case when the grounded extension is empty. When looking at Fig. 14(c), comparing running times of
ceg+-com and ceg+-adm, the results suggest that on AFs with an empty grounded extension, ceg+-
adm tends to be better w.r.t. running time, yet on AFs with a non-empty grounded extension, many
instances, on that figure, are either in the diagonal or, in fact, trivial for ceg+-com, but not for ceg+-
adm.

Although further research is needed, the characteristic of an AF having a (non-)empty grounded ex-
tension gives an indicator whether ceg or ceg+-com and ceg+-adm might be better to use for solving.
This insight can be used, for instance, when compiling an algorithm selection for CEGARTIX, in line with
techniques studied in [15], to first compute the grounded extension, and then choose which heuristic to
apply.
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Fig. 14. Scatter plots of our experimental analysis. Black circles indicate instances with an AF that has an empty grounded
extension, while a red cross indicates a non-empty grounded extension.

5. Extensions to the framework

In Section 3 we have analyzed three prominent algorithms from the literature dealing with preferred
semantics. In this section we show that the modularity of the abstract solver approach allows us to give
the graph representation of related algorithms with little effort. First, we abstract the algorithms from



R. Brochenin et al. / Abstract solvers for Dung’s argumentation frameworks 63

Table 2

Complexity of decision problems for AFs

σ Credσ Skeptσ
prf NP-c �P

2 -c
sem �P

2 -c �P
2 -c

stg �P
2 -c �P

2 -c

[25] deciding skeptical (resp. credulous) acceptance w.r.t. other, namely stage [52] and semi-stable [11],
semantics, and then we exemplify how to incorporate shortcuts into the graph-representations for the
algorithms of the same paper.

5.1. Core algorithms for semi-stable and stage semantics

Other semantics involving reasoning tasks lying in the second level of the polynomial hierarchy are
stage and semi-stable (cf. Table 2). Their definitions make use of the concept of the range of a set of
arguments S ⊆ A in an AF F = (A, R), defined as S+

F = S ∪ {a ∈ A | ∃b ∈ S : (b, a) ∈ R}, i.e. S

together with all arguments it attacks. Stage (stg) and semi-stable (sem) semantics are then defined as
follows:

Definition 4. Given an AF F ,

• S ∈ stg(F ), if S ∈ cf(F ) and there is no T ∈ cf(F ) such that T +
F ⊃ S+

F ;
• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) such that T +

F ⊃ S+
F , or equivalently,

• S ∈ sem(F ), if S ∈ com(F ) and there is no T ∈ com(F ) such that T +
F ⊃ S+

F .

For semi-stable semantics the possible base semantics coincide with the ones for preferred semantics,
that is admissible and complete, while stage semantics (yielding range-maximal conflict-free sets) uses
conflict-free as base semantics. In other words, for the pairs (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)},
a uniform characterization of θ is as follows: Given an AF F , S ∈ θ(F ) iff S ∈ σ(F ) and there is no
T ∈ σ(F ) such that T +

F ⊃ S+
F .

Algorithms for skeptical (resp. credulous) acceptance w.r.t. these semantics are presented in Algo-
rithms 2 and 3 of [25] by adaptation of the algorithm for skeptical acceptance w.r.t. preferred semantics
described in Section 3.2. Similar to the algorithm for preferred semantics, the general skeptical accep-
tance procedure for semantics θ and base semantics σ first makes use of two SAT oracles to find a
range-maximal σ -extension. The main difference to the algorithm for preferred semantics is that the
maximization is concerned with the range of extensions instead of the extensions themselves. Moreover,
since there can be different σ -extensions with the same range, another oracle has to be consulted in order
to check whether there is a σ -extension with a range equal to the maximal one found before, which does
not contain the queried argument. If such an extension exists, the algorithm returns with a negative an-
swer to the skeptical acceptance problem w.r.t. θ . For credulous acceptance, the algorithm returns with
a positive answer if the oracle call finds such a σ -extension which does contain the queried argument.

The graph SKEPT-θF,α

f
for a semantics θ ∈ {sem, stg}, an AF F , and argument α, and a vector of func-

tions f is defined by states over atoms(F ) and the transition rules of SKEPT-PRF
F,α

f
(Figs 4 and 6) with

additional oracle rules for index out (i.e. we have i ∈ {base, max, out} for Backtracki , UnitPropagatei ,
and Decidei now) and the rules Failout and Succeedout changed according to Fig. 15. In contrast to the
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Failing rules
Failout (ε, E′, E)out ⇒ (ε ∪ {(e(E′))+F },∅,∅)base if

{
E is inconsistent and decision-free

Succeeding rules
Succeedout

(
ε, E′, E

)
out ⇒ Reject if

{
no other rule applies

Fig. 15. The transition rules of the graph SKEPT-θF,α

f
that differ from SKEPT-PRF

F,α

f
.

graphs presented so far, ε now contains the ranges of the extensions already found. Moreover, the de-
cision whether to add the range of the current extension and continue the search or to reject the given
instance is based on another set of oracle rules – the ones indexed by out.

The initial state of SKEPT-θF,α

f
is (∅, ∅, ∅)base. For σ ∈ {adm, com, cf} we assume functions f σ

base,
f σ

max and f σ
out such that:

{
e(M) | M ∈ Sat

(
f σ

base(ε, E, F, α)
)} = {

S ∈ σ(F ) | α /∈ S ∧ ¬∃S ′ ∈ ε : S+
F ⊆ S ′};{

e(M) | M ∈ Sat
(
f σ

max(ε, E, F, α)
)} = {

S ∈ σ(F ) | (
e(E)

)+
F

⊂ S+
F

};
{
e(M) | M ∈ Sat

(
f σ

out(ε, E, F, α)
)} = {

S ∈ σ(F ) | (
e(E)

)+
F

= S+
F ∧ α /∈ S

}
.

Functions f σ
base and f σ

max coincide with the ones for preferred semantics, except that they compare
ranges of extensions. The new function f σ

out does the additional check described above.
Likewise, the graph CRED-θF,α

f
abstracting the CEGARTIX-algorithm for credulous acceptance w.r.t.

semi-stable and stage semantics coincides with SKEPT-θF,α

f
with the exception that the outcomes of

the rules Failbase and Succeedout are swapped, i.e. the application of Failbase leads to Reject and the
application of Succeedout leads to Accept. That is since a found witness (a θ -extension containing α)
means that α is credulously accepted, while if exhaustive search does not reveal such a witness, it α is
not credulously accepted. As the algorithm searches for extensions containing the queried argument α,
two functions have to differ; we assume gσ

base and gσ
out, which contain the condition α ∈ S instead of

α /∈ S compared to the functions f θ
base and f θ

out for skeptical acceptance:

{
e(M) | M ∈ Sat

(
gσ

base(ε, E, F, α)
)} = {

S ∈ σ(F ) | α ∈ S ∧ ¬∃S ′ ∈ ε : S+
F ⊆ S ′};{

e(M) | M ∈ Sat
(
gσ

out(ε, E, F, α)
)} = {

S ∈ σ(F ) | (
e(E)

)+
F

= S+
F ∧ α ∈ S

}
.

The following results show correctness of the abstract solvers for acceptance problems w.r.t. semi-
stable and stage semantics described in this section. The proofs, which follow the same structure as
previous proofs, can be found in the Appendix.

Lemma 5.1. For (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)}, any AF F = (A, R) and an argu-
ment α ∈ A, if one of the rules Failout or Succeedout is applied from state (ε, E′, E)out in the graph
SKEPT-θF,α

(f σ
out,f

σ
max,f

σ
base)

(resp. CRED-θF,α

(gσ
out,f

σ
max,g

σ
base)

) then e(E′) ∈ θ(F ) and (e(E′))+
F /∈ ε.

Theorem 5.2. For (σ, θ) ∈ {(adm, sem), (com, sem), (cf, stg)}, any AF F = (A, R) and α ∈ A, the
graph SKEPT-θF,α

(f σ
out,f

σ
max,f

σ
base)

(resp. CRED-θF,α

(gσ
out,f

σ
max,g

σ
base)

) is finite, acyclic and any terminal state reach-
able from the initial state is either Accept or Reject; Reject is reachable from the initial state iff α is not
skeptically accepted (resp. not credulously accepted) in F w.r.t. prf.
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Failing rules
Failpre (ε, E′, E)pre ⇒ (∅,∅,∅)base if

{
E is inconsistent and decision-free

Succeeding rules
Succeedpre

(
ε, E′, E

)
pre ⇒ Reject if

{
no other rule applies

Fig. 16. The transition rules of the graph FULL-SKEPT-PRF
F,α

f
added to SKEPT-PRF

F,α

f
.

Finally note again that from Theorem 5.2 it follows that Accept is reachable from the initial state if
and only if α is skeptically accepted (resp. credulously accepted) in F , which completes the correctness
statement for SKEPT-θF,α

f
(resp. CRED-θF,α

g ).

5.2. Shortcuts for CEGARTIX-algorithms

When defining abstract solvers for the algorithms of CEGARTIX in previous sections we restricted our
attention to the core of the algorithm. In this section we show that the graphs presented so far can be
easily extended in a modular way to capture the full algorithms.

We do so by abstracting the full Algorithm 1 of [25] for skeptical acceptance w.r.t. preferred seman-
tics, including the shortcut computation performed at the beginning of the algorithm. By this shortcut,
the algorithm immediately returns with a negative answer for the skeptical acceptance problem w.r.t.
preferred semantics, if there is a σ -extension (σ ∈ {adm, com}) attacking the queried argument. To this
end we define FULL-SKEPT-PRF

F,α

f
for a given AF F = (A, R), an argument α ∈ A and a vector of

oracle functions f as the graph SKEPT-PRF
F,α

f
from Section 3.2 with the following modifications:

• We add the transition rules presented in Fig. 16.
• Moreover, there is a set of oracle rules with index pre. For σ ∈ {adm, com} we assume a function

f σ
pre such that

{
e(M) | M ∈ Sat

(
f σ

pre(ε, E, F, α)
)} = {

S ∈ σ(F ) | S attacks α
}
.

• The initial state is (∅, ∅, ∅)pre.

To represent the shortcut, a third level has been added, which precedes levels base and max, so that we
call this level pre. Note that ε and E′ are always ∅ at level pre. If the oracle rules with index pre lead to a
record corresponding to a satisfying assignment of f σ

pre (i.e. a σ -extension attacking α), the application
of Succeedpre leads to rejection; otherwise Failpre leads to the state (∅, ∅, ∅)base, which means we have
arrived at SKEPT-PRF

F,α

f
. The resulting graph represents the full Algorithm 1 of [25].

Theorem 5.3. For any AF F = (A, R), argument α ∈ A, and σ ∈ {adm, com}, the graph
FULL-SKEPT-PRF

F,α

(f σ
base,f

σ
max,f

σ
pre)

is finite, acyclic and any terminal state reachable from the initial state is

either Accept or Reject; Accept is reachable iff α is skeptically accepted in F w.r.t. prf.

6. Related work

The use of abstract solvers was initiated by Nieuwenhuis et al. [44]. In that work the authors first pre-
sented an abstract solver for SAT, similar to our introduction of abstract solvers in Section 2.2. Then, they
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presented two extensions: (i) a description of Conflict-Driven Clause Learning SAT solving, i.e. involv-
ing backjumping and learning techniques, by means of modular addition of transition rules, but also by
changing the definition of states to account for learned clauses, and (ii) they considered also Satisfiability
Modulo Theories (SMT) problems with certain logics via a lazy approach [48], i.e. where the SAT calls
are made to provide satisfying assignments of the Boolean abstraction of the SMT problem that are then
checked for “SMT consistency”. Lierler [35] imported this methodology to Answer Set Programming
(ASP), by first designing abstract solvers for some backtracking-based ASP solvers for non-disjunctive
ASP solving, and then enhancing her approach to include backjumping and learning techniques [36].
Another extension for describing CASP solvers, i.e. systems able to deal with a combination of ASP
and constraint programming, a language useful to represent and reason on hybrid domains, has been put
forward in [37]. Other works on abstract solvers are [38], where solvers for different formalisms, e.g.
ASP and SAT with Inductive Definitions, are compared by means of comparison of the related graphs,
and the following series of papers where, starting from a developed concept of modularity in answer set
solving [39], abstract modeling of solvers for multi-logic systems are presented [40–42].

If we turn our attention to the usage of abstract solvers for dealing with reasoning tasks beyond NP,
the situation is less developed and only very recently few works have been put forward. Abstract solvers
for certain disjunctive answer set solvers implementing basic backtracking have been introduced by
Brochenin et al. [6] and are studied in a more general way in [7]. Even more recently, abstract solvers
for satisfiability of Quantified Boolean Formulas [9] and cautious reasoning in ASP [10] have been
presented.

Only few of the aforementioned works [36,44] have already aimed for the implementation of combi-
nations of algorithms based on abstract solvers; thus, our practical results are particularly remarkable.

As far as other algorithms for the preferred semantics in the literature are concerned, we mention [22,
43], where a labelling-based approach is employed. These algorithms differ in the initial labellings and
how transitions are applied to argument labels. Moreover, [43] includes other semantics than preferred
and also argument-based proof theories, another way to characterize an algorithm’s behavior but whose
goal is not to be the basis for an implementation.

The argumentation solver competition 2015 [51] had eleven participating systems in the task of de-
ciding skeptical acceptance of an argument w.r.t. preferred semantics. The first two places were taken
by ArgSemSAT and CEGARTIX, whose algorithms are described in terms of abstract solvers in Sec-
tions 3.1 and 3.2, respectively. The other solvers in the top five were LabSATSolver, ASPARTIX-V
[28] and CoQuiAAS [32] (system descriptions of all participating solvers can be found in [49]). While
LabSATSolver uses the same algorithm as ArgSemSAT for this particular task, ASPARTIX-V and Co-
QuiAAS are reduction-based approaches, using translations to ASP and a particular variant of Max-SAT,
respectively. Thus, being based on reduction, their modeling via abstract solvers is less interesting for
the abstract argumentation community, given that this would boil down to modeling, respectively, ASP
and Max-SAT search algorithms. For this reason, they have not been considered in this paper.

7. Conclusions

In this paper we have shown the applicability and the advantages of using a rigorous formal way
for describing certain algorithms for solving decision problems for abstract argumentation frameworks
through graph-based abstract solvers instead of, e.g. pseudo-code-based descriptions. Both SAT-based
and dedicated approaches for solving hard problems have been analyzed and compared, with focus
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on algorithms for the preferred semantics. Moreover, by combining abstract solvers, we have obtained a
novel algorithm for skeptical acceptance. The algorithm has been implemented taking CEGARTIX [25] as
a starting point. An experimental analysis on the benchmark graphs of the first and second argumentation
competition, as well as on graphs from earlier work, shows that the new algorithm is complementary
to an existing algorithm in CEGARTIX. The above analysis has focused, as said, on the well-studied
preferred semantics, and on core algorithms. We have then shown how the machinery can be employed
to describe algorithms for different semantics, e.g. semi-stable and stage semantics, as employed in
CEGARTIX, and for taking into account specific optimization techniques by means of modular addition
of transition rules to the graphs describing the core parts of the algorithms.

As future work, we want to apply the concept of abstract solvers to other promising algorithms and
optimization techniques for reasoning tasks in abstract argumentation. In particular, we plan to study
certain approaches to the decomposition of AFs [2,16,33,34]. Moreover, we plan to extend our experi-
mental analysis for the new version of CEGARTIX by studying on which classes of AFs the new version
is performing better than existing algorithms.
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Appendix. Proofs

Proof of Lemma 3.5. Let Sout = (ε, E′, E)out be the state from which Failout is applied. The state
Sout must have been achieved by the application of Failmax from a state (ε, E′, ∅)max. This means, by the
definition of formula f σ

max and Lemma 3.4, that there is no S ∈ σ(F ) with S ⊃ e(E′). For e(E′) ∈ prf(F )

it remains to show that e(E′) ∈ σ(F ). Observe that an update of the value of E′ is only done by an
application of Succeedbase or Succeedmax. In both cases e(E′) corresponds to a σ -extension of F , since
it is a satisfying assignment of one of the formulas f σ

base and f σ
max and therefore guaranteed to be a

σ -extension of F .
Since the initial state is (∅, ∅, ∅)base, an application of Succeedbase must precede Failout. From this

application of Succeedbase it follows that there is some record E′′ such that ¬∃S ∈ ε : e(E′′) ⊆ S

holds. Moreover every application of Succeedmax updates E′′ by a proper superset of itself. Therefore
e(E′) ⊇ e(E′′) and also ¬∃S ∈ ε : e(E′) ⊆ S, in particular e(E′) /∈ ε. �

Proof of Theorem 3.6. (1) SKEPT-PRF
F,α

f
is finite and acyclic: In order to show finiteness note that the

states (ε, E′, E)i of SKEPT-PRF
F,α

f
coincide with the states of ENUMF

f
, there is just an additional option

out for i. Hence finiteness follows from Theorem 3.3. In order to show that SKEPT-PRF
F,α

f
is acyclic

we have to show that the rules that differ in SKEPT-PRF
F,α

f
from ENUMF

f
(i.e. the ones listed in Fig. 6)

are increasing with respect to the ordering < from Definition 3: Failout fulfills ς1 < ς2 due to (i) by
Lemma 3.5, Failmax guarantees ς1 < ς2 because of (ii), and Failbase and Succeedout end in terminal
states.
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(2) Any terminal state of SKEPT-PRF
F,α

f
reachable from the initial state is either Reject or Accept:

Consider the state ς = (ε, E, E′)i . If i ∈ {base, max} then there is a rule Succeedi with the condition
“no other rule applies”, hence ς cannot be a terminal state. If i = out, the rules Failout and Succeedout

are complete in the sense that if one rule does not apply the other rule applies and vice versa. Therefore
only Reject and Accept can be terminal states.

(3) Reject is reachable from the initial state iff α is not skeptically accepted in F w.r.t. prf: (⇒):
Assume Reject is reachable. Hence also (ε, E′, E)out with α /∈ e(E′) is reachable. Moreover Failmax

was applied at a state (ε, E′, E′′)max, meaning, by Lemma 3.4, that f σ
max(ε, E

′, F, α) is unsatisfiable,
i.e. there is no σ -extension S with S ⊃ e(E′). It remains to show that e(E′) ∈ σ(F ). That is by the
fact that there must be a preceding application of the rule Succeedbase from some state (ε, E′′′, E′)base

with e(E′) being a σ -extension of F by the definition of f σ
base and Lemma 3.4. Now as e(E′) ∈ σ(F ),

¬∃S ⊃ e(E′) : S ∈ σ(F ), and α /∈ e(E′), we have that α is not skeptically accepted by F w.r.t.
prf. (⇐): Assume α is not skeptically accepted by F w.r.t. prf. Hence there is some T ∈ prf(F ) with
α /∈ T . Now assume, towards a contradiction, that Reject is not reachable. This means by (1) and (2),
that Accept is reachable. Hence Failbase is applicable from a state (ε, E′, E)base. By the definition of f σ

base
and Lemma 3.4, this means that there is no σ -extension S of F with α /∈ S and ¬∃S ′ ∈ ε : S ⊆ S ′. Now
note that Failout is the only rule where elements are added to ε. Moreover, by Lemma 3.5, we know that
elements added are preferred extensions of F . But therefore for each S ∈ σ(F ) with α /∈ S it holds that
∃T ∈ prf(F ) : S ⊆ T ∧ α ∈ T , a contradiction. �

Proof of Lemma 3.7. The application of Succeedout from state ςout = (ε, ∅, E)out must have been pre-
ceded by Succeedmax from the state ςmax = (ε, ∅, E)max which only differs from ςout in i. We now
analyze the record E as it is constructed by the rules Decide′

max, Propagate′
max and Backtrack′

max. The ap-
plication of Decide′

max adds literal a, literal ¬b is added by Propagate′
max for all b being in conflict with

a in F . Therefore e(E) is conflict-free in F . Moreover e(E) is admissible since if “there is an argument
α such that e(E) does not attack α and α attacks e(E)”, then Failout is applied instead of Succeedout. To
get e(E) ∈ prf(F ) it remains to show that there is no S ∈ adm(F ) with S ⊃ e(E). Assume there is
such an S ∈ adm(F ). Then there must be some a ∈ S with a /∈ e(E). Now observe that the graph first
adds a to the record and afterwards ¬a. Therefore S must have been discovered in advance. But then
∃S ∈ ε : e(E) ⊆ S, hence Failout is applied instead of Succeedout. �

Proof of Theorem 3.8. Since states of DIRECTF consist of the same elements as states of ENUMF

f
,

finiteness of DIRECTF follows in the same way as in Theorem 3.3.
To show that DIRECTF is acyclic we will, again as in the proof of Theorem 3.3, show that each

transition rule of DIRECTF is increasing w.r.t. a strict partial order on states. To this end we define the
strict partial order <D such that for any two states ς1 = (ε1, ∅, E1)i1 and ς2 = (ε2, ∅, E2)i2 , ς1 <D ς2

iff

(i) ε1 <ε ε2, or
(ii) ε1 = ε2 and E1 <E E2, or

(iii) ε1 = ε2 and E1 = E2 and i1 <i i2,

where <ε , <E and <i are the orderings from Definition 3. First of all, the oracle rules (i.e. Backtrack′
max,

UnitPropagate′
max, and Decide′

max) and Failout fulfill ς1 <D ς2 because of (ii). For all of these rules
ε1 = ε2, but s(E1) is lexicographically smaller than s(E2), therefore E1 <E E2. Moreover, Succeedout
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fulfills ς1 <D ς2 due to (i) since e(E1) /∈ ε1 by Lemma 3.7. Succeedmax guarantees ς1 <D ς2 because of
(iii).

The only terminal state reachable from the initial state is Ok(ε) since all states (ε, ∅, E′)i of DIRECTF

have i ∈ {max, out} and for each i ∈ {max, out} there is a rule Succeedi with the condition “no other
rule applies”. It remains to show that, when state Ok(ε) is reached, ε is the set of preferred extensions
of F . Since elements are only added to ε by rule Succeedout we know from Lemma 3.7 that for each
T ∈ ε it holds that T ∈ prf(F ). On the other hand, the oracle rules guarantee that each conflict-free set
S of F a set (ε, ∅, E)out with e(E) = S is reached. If S is then admissible and maximal w.r.t. ε (which
contains only preferred extensions of F as observed before), S is added to ε. Therefore each T ∈ prf(F )

is contained in ε. �

Proof of Lemma 3.10. Let Sout = (ε, E′, E)out be the state from which Failout is applied. The state Sout

must have been achieved by the application of Succeedbase′ from a state (ε, E′′, E′)base′ This means, by
the definition of formula f σ

base′ , Assumption 1, and Lemma 3.9, that e(E′) ∈ σ(F ), ¬∃S ∈ ε : e(E′) ⊆ S,
and e(E′) is maximal with these properties. Since ε is initially empty and, as we argue, only preferred
extensions of F are added, it follows that e(E′) ∈ prf(F ) and e(E′) /∈ ε. �

Proof of Lemma 5.1. Let (ε, E′, E0)out be the state from which Failout or Succeedout is applied. Other
rules of index out have not changed E0, hence (ε, E′, ∅)out was the outcome of the application of Failmax.
By definition of f σ

max this means that ¬∃S ∈ σ(F ) : S+
F ⊃ (e(E′))+

F . To get e(E′) ∈ θ(F ) it remains
to show that e(E′) ∈ σ(F ). Observe that Succeedbase is applied at least once, since every AF has a
σ -extension. Moreover, the value of E′ is only updated by applications of Succeedbase or Succeedmax. In
both cases e(E′) corresponds to a σ -extension of F , since E′ is a satisfying assignment of the formula
f σ

base or f σ
max, respectively. Therefore e(E′) ∈ σ(F ).

Since the initial state is (∅, ∅, ∅)base, an application of Succeedbase must precede Failout. From this ap-
plication of Succeedbase it follows that there is a record E′′ such that ¬∃S ∈ ε : (e(E′′))+

F ⊆ S. Moreover
every application of Succeedmax updates E′′ by a proper superset of itself. At some point, Failmax must
be applied, leading to a state (ε, E′, ∅)out with E′ ⊇ E′′, hence again ¬∃S ∈ ε : (e(E′))+

F ⊆ S. Finally,
oracle rules with index out do not change E′′, hence when Failout is applied from state (ε, E′, E)out it
holds that (e(E′))+

F /∈ ε. �

Proof of Theorem 5.2. We show the result for SKEPT-θF,α

f
, the proof for CRED-θF,α

g very similar.

(1) SKEPT-θF,α

f
is finite and acyclic: Finiteness is immediate by Theorem 3.6, since SKEPT-θF,α

f
is

defined over the same states as SKEPT-PRF
F,α

f
– with the only exception of containing a set of extension-

ranges instead of extensions, which makes no difference in this matter. For acyclicity all rules have to be
increasing w.r.t. <. This was already shown for the rules in Figs 4 and 6. It also follows for the oracle
rules for index out as the fact that oracle rules are increasing w.r.t. < is independent from the index.
Finally, the rule Failout is increasing due to condition (i) in Definition 3 by Lemma 5.1 and Succeedout

leads to a terminal state.
(2) Any terminal state of SKEPT-θF,α

f
reachable from the initial state is either Reject or Accept: For

any possible state ς = (ε, E, E′)i with i ∈ {base, max, out} there is a rule Succeedi with the condition
“no other rule applies”, hence ς cannot be a terminal state. Therefore only Reject and Accept can be
terminal states.
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(3) Reject is reachable from the initial state iff α is not skeptically accepted in F w.r.t. θ : (⇒): Assume
Reject is reachable. It must have been reached by application of Succeedout from a state (ε, E′, E)out.
By definition of f σ

out this means that e(E) ∈ σ(F ), α /∈ e(E) and (e(E))+
F = (e(E′))+

F . Moreover
we know from Lemma 5.1 that e(E′) ∈ θ(F ), i.e. that there is no S ∈ σ(F ) with S+

F ⊃ (e(E′))+
F

and therefore also not with S+
F ⊃ (e(E))+

F . Hence E ∈ θ(F ) and since α /∈ E, we conclude that
α is not skeptically accepted in F w.r.t. θ . (⇐): Assume α is not skeptically accepted in F w.r.t. θ .
Hence there is some T ∈ θ(F ) with α /∈ T . Now assume, towards a contradiction, that Reject is not
reachable, meaning, by (1) and (2), that Accept is reachable. Hence Failbase is applicable from a state
(ε, E′, E)base. By the definition of f σ

base, this means that there is no σ -extension S of F such that α /∈ S

and ¬∃S ′ ∈ ε : S+
F ⊆ S ′. Now note that Failout is the only rule where elements are added to ε. By

Lemma 5.1, such elements are ranges of θ -extensions of F . But therefore for each S ∈ σ(F ) with α /∈ S

it holds that ∃T ∈ θ(F ) : S+
F ⊆ T +

F ∧ α ∈ T , a contradiction to α not being skeptically accepted in F

w.r.t. θ . �

Proof of Theorem 5.3. Finiteness is inherited from SKEPT-PRF
F,α

f
. For acyclicity we consider < from

Definition 3, but extending <i by adding pre <i j for j ∈ {base, max, out}. With this, Failpre is in-
creasing due to (ii) as the set of extensions ε will stay empty during the application of rules of index pre.
Succeedpre results in a terminal state and finally, also the oracle rules are increasing, as this is independent
from the index.

A pre-state cannot be terminal since if “no other rule applies”, Succeedpre is applied, resulting in
Reject. Hence any terminal state reachable from the initial state is either Accept or Reject.

Since the shortcut can only reject instances it follows from Theorem 3.6 that if Accept is reachable
then α is skeptically accepted in F w.r.t. prf. If, on the other hand, Accept is not reachable, then Reject
is reached either by application of Succeedout or by application of Succeedpre. In the first case we again
know from Theorem 3.6 that α is not skeptically accepted (note that Failpre leads to state (∅, ∅, ∅)base,
which is just the initial state of SKEPT-PRF

F,α

f
). In the second case there is some S ∈ σ(F ) which attacks

α, therefore also a T ∈ prf(F ) which attacks α, hence α /∈ T . Again α is not skeptically accepted in F

w.r.t. prf. �
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