
Argument & Computation 7 (2016) 201–221 201
DOI 10.3233/AAC-160008
IOS Press

Firewall configuration: An application of
multiagent metalevel argumentation

Andy Applebaum a, Zimi Li b, Karl Levitt c, Simon Parsons d,∗,
Jeff Rowe c and Elizabeth I. Sklar d

a The MITRE Corporation, McLean, VA 22102, USA
b Department of Computer Science, The Graduate Center, City University of New York, New York,
NY 10016, USA
c Department of Computer Science, University of California, Davis, CA 95616, USA
d Department of Informatics, King’s College London, Strand, London WC2R 2LS, UK

Abstract. Firewalls are an important tool in the assurance of network security. Packet filtering firewalls are configured by pro-
viding a set of rules that identify how to handle individual data packets that arrive at the firewall. In large firewall configurations,
conflicts may arise between these rules. Argumentation provides a way of handling conflicts such that their origin is illumi-
nated, and hence can help a system administrator understand the effects of a given configuration. To show how argumentation
might help in this domain we examine the use of a system of metalevel argumentation for firewall configuration, showing how
it makes conflicts and their origins clear, and showing how different instantiations of a metalevel argumentation system provide
alternative ways to resolve conflicts.

Keywords: Metalevel argumentation, network security, firewall

1. Introduction

Assuring network security is a major problem today. It is a problem that is considered both in academic
computer science, which aims to come up with new techniques for securing networks, and in the practical
world of information technology, where system administrators struggle to prevent unauthorised users
from breaking into the networks that they manage. Firewalls, first introduced in 1987 [25], are one of
the core components of a network security implementation. A firewall is a combination of hardware and
software that isolates an organization’s internal network from the Internet at large, allowing some packets
to pass through and blocking others [27]. The decision about which packets to pass and which to block
is made according to some policy, and the configuration of a firewall is the business of implementing
this policy.

As we will discuss below, firewall policies are set by specifying a set of rules, and there are a number
of well-recognised problems in doing this. These problems relate to rules conflicting, having domains
that overlap, and include redundancy (where the effect of a policy differs from that intended because
some rules can never have any effect). Such anomalies arise from the complexity of setting up firewall
policies in complex environments such as large organisations, especially when different parts of the
overall firewall policy are set by different individuals.

*Corresponding author. E-mail: simon.parsons@kcl.ac.uk.

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial Li-
cense (CC BY-NC 4.0).

1946-2166/16/$35.00 © 2016 – IOS Press and the authors.

mailto:simon.parsons@kcl.ac.uk

202 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

In this paper, we discuss how an argumentation-based framework can be used to analyse a firewall
policy. In particular, we examine the use of the metalevel argumentation framework of [32], choosing
this system as the basis of our investigation because we believe that the metalevel reasoning about the
acceptability of arguments helps to make the reasons for conflict between policies especially clear, and
makes it easy to understand how different strategies for resolving such conflicts work.

The remainder of this paper is organised as follows. Section 2 provides a brief introduction to firewalls
and issues in their configuration. Section 3 introduces the specific metalevel argumentation system that
we employ. Section 4 describes several ways in which this metalevel system can be used to represent
firewall configurations and potentially resolve conflicts in the firewall rules. Section 5 discusses related
work. Then Section 6 concludes.

2. Problems in firewall configuration

There are different types of firewall which function in different ways – packet-filtering firewalls, appli-
cation/proxy firewalls, and network address translation. Packet-filtering firewalls operate at the network
layer, not allowing packets to pass through the firewall unless they match the established policy rule
set. Routers can provide a very common form of packet-filtering firewall. Packet-filtering usually makes
decisions based on the following characteristics:

• Source and/or destination IP1 addresses
• Source and/or destination port numbers
• Protocol types
• Other parameters within the IP header

A network administrator configures the firewall based on the policy, for example blocking and allow-
ing packets based on what protocol they match and which IP address they have as their destination.
A schematic of a packet-filtering firewall is given in Fig. 1. Here the firewall is implemented by router
R, which implements policy P . This inspects and filters incoming packets, aiming to remove any that at-
tempt to attack internal hosts, and outgoing packets, both preventing users from accessing unauthorised
resources outside the firewall and preventing attacks on external hosts from within the firewall.

Fig. 1. A packet-filtering firewall.

1Internet Protocol.

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 203

Application firewalls, as indicated by the name, work at the application layer. These devices act as
proxy machines for requested services. Requests are sent to a proxy machine, which then makes those
requests to the Internet on behalf of the local client. A proxy machine acts as a buffer between “bad”
remote users and the internal network client machines. Network address translation (NAT) also operates
at the network layer, providing the capability to change the source and/or destination IP address. This is
common when a private address space is used internally. The simplest type of NAT provides a one-to-
one relationship between inside and outside IP addresses. In this type of NAT, only the IP header related
to the IP address needs to be changed. The rest of the packet can be left unchanged. In the remainder
of this paper, we concentrate on packet-filtering firewalls, but we believe that the techniques developed
here could be applied to the other types we have listed above.

Table 1 lists some possible polices for a packet-filtering firewall and how they could be implemented.
In particular, each row of Table 1 presents a rule for a single packet. A set of such rules makes up a
firewall configuration. The first column in Table 1 numbers the rule for reference. The second column
states the policy that the rule is intended to implement. The third, fourth, fifth and sixth columns break
the policy implemented by a rule into the action that the firewall can perform (block or allow the packet)
and the data that is available about each packet (the protocol it relates to, the source IP address, and the
port the packet arrives at). The final column shows how a given rule would be implemented in the Linux
iptables utility.

If a firewall were to be implemented with this set of rules, when a packet comes in it would be
checked against rule 1. If rule 1 applied to that packet, then the action specified by rule 1 would be
taken. Otherwise, the packet would be compared to rule 2. This process is repeated until one of the rules
correctly specifies the packet; the first rule that does is the one that’s applied, ignoring all rules after
it. If no rule matches an incoming packet, some default rule (which might, for instance, be to let the
packet pass since there is no specific rule to block it), would be applied. Imagine a packet arriving that
uses TCP, coming from 55.55.55.55 on port 80. Rule 1 specifies blocking it, while rule 2 says to allow
it. Since rule 1 is positioned before rule 2, the ultimate action is to block, but it is clear that there is
some kind of a conflict occurring. As another example, a packet using UDP from 55.55.55.55 on port 53
would be blocked; while three of the rules say to block it, only the first one is actually “enforced”.

The situations highlighted in both of these examples could be considered problematic, and both are
what [2] calls an anomaly in a firewall policy. [2] defines four anomalies in terms of relations between
rules:

Shadowing Rule a is said to shadow rule b if a has higher-priority than b, a and b specify different
actions, and every packet that satisfies b also satisfies a.
In shadowing, the two rules are in conflict on every packet that the rules apply to.

Correlation Rule a and b are correlated if a and b specify different actions and some packets that satisfy
a also satisfy b and vice versa.
In correlation, the rules conflict on some packets that the rules apply to.

Redundancy Redundancy occurs in two cases. In the first case, redundancy occurs if two rules a and b

are such that all packets that satisfy a satisfy b, a and b specify the same action, and b is higher
priority than a.
In the second case, redundancy occurs if all packets that satisfy a also satisfy b, a and b specify
the same action, a is higher priority than b, and a is not involved in any correlation anomalies.
In both cases of redundancy, the lower priority rule will never be applied.

204
A

.A
pplebaum

etal./F
irew

allconfiguration:
A

n
application

ofm
ultiagentm

etalevelargum
entation

Table 1

Examples of firewall polices and corresponding filtering rules. Each row lists an example of what might be required of a firewall, the corresponding firewall settings,
and the implementation of these settings using the Linux iptable utility. The ∗ symbol indicates a wildcard, indicating any value is acceptable

Rule Policy Firewall setting Linux implementation
Action Protocol Source IP Source port

1 Block a malicious sender Block ∗ 55.55.55.55 ∗ iptables -A INPUT -p 0 -s 55.55.55.55 -j DROP
2 Allow Web services Allow TCP ∗ 80 iptables -A INPUT -p tcp -dport 80 -j ACCEPT
3 Block DNS services Block UDP ∗ 53 iptables -A INPUT -p udp -dport 53 -j DROP
4 Block all Block ∗ ∗ ∗ iptables -A INPUT -p 0 -j DROP
5 Allow FTP services Allow TCP ∗ 21 iptables -A INPUT -p tcp -dport 21 -j ACCEPT

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 205

Generalization Rule a is said to generalize rule b if b has higher priority than a, a and b specify
different actions, and every packet that satisfies b also satisfies a.
In generalization there is shadowing but the conflict is resolved by the priority.

In the example in Table 1, rule 4 shadows rule 5, since every instance of rule 5 is also an instance of
rule 4, and they specify different actions. Rule 1 and rule 2 are correlated, since a TCP packet from
55.55.55.55 on port 80 is an instance of both rule 1 and rule 2, and they specify different actions. Rule 4
generalizes rule 2, since every instance of rule 2 is also an instance of rule 4, and they specify different
actions. Rule 3 is redundant because every instance of rule 3 is also an instance of rule 4, and they
specify the same action.

Now, in a small set of firewall rules such as these, it is easy enough to detect and fix anomalies.
However, firewalls, especially in large organizations with many machines on a network, can include
many hundreds of rules. In such a case, detection and correction of anomalies is much harder. The
problem is even more complex when firewalls are composed of different components, each requiring
some part of a policy that is applied to a whole organisation, and as we shall discuss below, one can
easily imagine scenarios in which decisions about whether to accept or reject specific packets requires
complex reasons that need to combine information from a group of autonomous individuals. See [13]
for a similar scenario in the domain of B2B applications. It is the need to deal with these complicated
cases that is the reason we are using argumentation. In the remainder of the paper, we will describe how
this can be done. In particular, we will use the metalevel approach presented in [32] since it provides a
general approach to handling anomalies.

3. Metalevel argumentation

The metalevel argumentation framework of [32] is constructed on top of the standard Dung framework
[20]. The idea is to make the conditions under which arguments are classified – for example as justified,
rejected and defeated – and the definition of extensions – such as grounded, preferred and stable –
expressible in a logical language. The advantage of doing this is that it becomes possible not just to have
arguments about objects in some domain, but arguments (meta-arguments) about the status of those
arguments. In this section, we introduce enough of this material to apply it to our firewall scenario.
The description is an abbreviation of the presentation [32] with some minor modifications and additions
(though naturally any faults in the interpretation of the original are ours).

3.1. Argumentation

The formal structure, taken from [32] is as follows. As [32] points out, the formalization is based
not on Dung’s classic presentation, but on the more recent labelling approach [15,16,45,48] (nicely
summarised in [10]). The basic notion is that of a Dung argumentation framework, a tuple 〈A,R〉 where
A is a set of arguments and R ⊆ A×A is a binary relation on A that identifies which arguments attack
which other arguments.

In Dung’s approach, as in [32], arguments are taken to be completely abstract entities with no internal
structure, and the attack relation R is given. However, as a number of authors have pointed out – for
example [5,26,39] – it is possible to construct structured arguments from some logic, and use the rela-
tionship between arguments to determine what attacks what. For example, given some logical language
L and an inference relation �, we might follow [5] by defining an argument as a pair (S, p) where S is

206 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

a minimal set of formulae in L such that S � p. p is the conclusion of such an argument and S is its
support. In such a formulation, it is typical to say that one argument S � p attacks another S ′ � p′ if
either p ≡ ¬p′ or ¬p ∈ S ′. That is (S, p) attacks another (S ′, p′) if either the conclusions of the two
arguments disagree, or the conclusion of the attacking argument disagrees with a member of the support
of the attacked argument.2 A is then the set of all arguments that can be constructed from some set of
data �, and R is the set of all attacks between these arguments.

Given a set of arguments and attacks between them, the core of Dung’s idea is that not all arguments
are equal. It is possible to identify some arguments that we should consider acceptable – their conclu-
sions are valid given what we know – and some that are not. The labelling approach gives us a simple
way to determine whether an argument is acceptable or not. The approach can be described in terms
of a labelling function L which maps from arguments to a set of labels {IN,OUT,UNDEC}. We then
write in(L) to indicate all arguments that are labelled IN by L, out(L) to indicate all arguments that are
labelled OUT, and undec(L) to indicate all arguments that are labelled UNDEC.

Defined in this way, there is no relationship between a labelling and the attack relation over a set
of arguments. The two are combined through the idea of legality. For a labelling L, an argumentation
framework 〈A,R), and an argument x ∈ A:

1. x is legally IN iff x is labelled IN and every y ∈ A that attacks x is labelled OUT.
2. x is legally OUT iff x is labelled OUT and there is at least one y ∈ A that attacks x and is labelled

OUT.
3. x is legally UNDEC iff there is no y ∈ A that attacks x such that y is labelled IN, and there is at

least one y ∈ A that attacks x such that y is labelled UNDEC.

Note that the UNDEC state occurs when x cannot be labelled IN (because it has at least one attacker that
is not OUT), and cannot be labelled OUT (because it has no IN attacker). If an argument is not legally
labelled, it is said to be illegally labelled. More precisely, an argument is illegally labelled l, where
l ∈ {IN,OUT,UNDEC} if it is not legally labelled l.

With the notion of legality tying labellings to attack relations, it is possible to recover Dung’s idea
that extensions, sets of arguments that are somehow coherent, can be identified within an argumentation
framework. We do this through the notions of admissibility and completeness. An admissible labelling
has no arguments that are illegally IN, and no arguments that are illegally OUT. A complete labelling
is an admissible labelling that, in addition, has no arguments that are illegally UNDEC. Then, given a
complete labelling L, we have that:

1. L is a grounded labelling iff there is no complete labelling with a smaller set of IN arguments.
2. L is a preferred labelling iff there is no complete labelling with a larger set of IN arguments.
3. L is a stable labelling if it contains no UNDEC arguments.

If L is a grounded labelling, then every argument x which is labelled IN in L is in Dung’s grounded
extension, if L is a preferred labelling then every x which is labelled IN in L is in the preferred ex-
tension, and if L is a stable labelling then every x which is labelled IN in L is in the stable exten-
sion. The relationship between labellings (and hence extensions) is shown in Fig. 2, and note that other
notions of acceptability, such as semi-stable [18], can also be captured using the same labelling ap-
proach.

2We discuss a specific L and � later in the paper.

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 207

Fig. 2. The relationship between labellings.

Based on extension membership, we can then define the status of arguments. If x is in at least one
extension, then x is credulously justified; if x is in all extensions, then it is sceptically justified; and if x

is in no extensions, then it is rejected.

3.2. Metalevel argumentation

In [32], a metalevel argumentation framework is defined3 as a tuple:

〈A,R,AM,RM, C,LC,D〉

where A is a set of arguments and R is an attack relation on object level arguments as in the previous
section, and AM and RM are sets of arguments and attacks at the metalevel. C is a set of claims about the
arguments in AM, that is a mapping from A to statements, LC is the language in which the claims are
made, and D is a set of constraints on the attack relation AM that are determined by the claims. As an
example, [32] gives a metalevel argumentation framework that captures Dung’s original argumentation
system. In this system, LC includes a set of constants and a set of predicates. The set of constants C

includes �x� for every x ∈ A (it is common practice to quote object level symbols in this way to make
them constants at the metalevel). The set of predicates is:

{justified, defeat, rejected}

and LC has a set of well-formed formulae W defined by the following rules:

1. If �x� ∈ C, then �x� ∈ W

2. If �x�, �y� ∈ W , then (�x�, �y�) ∈ WR, WR ⊂ W

3. If �x� ∈ W and �x� /∈ WR, then justified(�x�) ∈ W

4. If �x� ∈ W and �x� /∈ WR, then rejected(�x�) ∈ W

5. If �x�, �y� ∈ W and �x�, �y� /∈ WR, then defeat(�x�, �y�) ∈ W

In other words, the language LC allows us to talk about any of the constants (which will represent ar-
guments in A), attacks between the arguments, whether arguments are justified or rejected, and whether
one argument defeats another. The notion of defeat is necessary because exactly the kind of thing we
want to capture is when there is an attack between two arguments, but there is something at the metalevel
which overrides the attack. The labelling of arguments thus depends on defeats not on attacks.

3This is a less general subset of the system presented in [32], but sufficient for our purposes.

208 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

We next need to define AM, which is the union of AM1, AM2 and AM3 where:

α ∈ AM1, C(α) = justified(�x�) iff x ∈ A
β ∈ AM2, C(β) = rejected(�x�) iff x ∈ A
γ ∈ AM3, C(γ) = defeat(�x�, �y�) iff (x, y) ∈ R

so that arguments in AM are statements about arguments in A being justified, rejected and defeating one
another. Then the set of constraints on claims, D contains:

D1 if C(α) = defeat(X, Y) and C(β) = justified(Y) then (α, β) ∈ RM,
D2 if C(α) = defeat(X, Y) and C(β) = rejected(X) then (β, α) ∈ RM,
D3 if C(α) = justified(X) and C(β) = rejected(X) then (α, β) ∈ RM,

which together define the contents of RM. For example, the first of these says that a claim that X defeats
Y is an attack on the claim that Y is justified. As [32] shows, computing the justified arguments in AM

will identify the justified arguments in A consistently across the different definitions of extensions.
As presented so far, and as described in [32], this metalevel argumentation system, just like Dung’s

system [20], has an abstract notion of an argument. The members of AM have no internal structure.
However, one can (and we will below) construct the members of AM from a set of statements �M in
some language LM using an inference mechanism �M. When this is done, LM, like LC , will contain
constants �x� for every x ∈ A since LM will be statements about these arguments. For example, a
sentence in LM might describe how one argument is preferred to another, and an argument in AM that is
constructed from such statements might describe how an attack from R is not a defeat because of this
preference. The attacks between these arguments then populate RM.

4. Arguing about firewall policies

Having introduced some of the issues in firewall configuration, and the metalevel argumentation ap-
proach of [32], in this section we discuss how the latter can be used to model some aspects of firewall
configuration in order to illuminate anomalies and potentially provide a means to support system admin-
istrators in solving them.

4.1. Scenario

We consider a simple scenario in which an organization operates a hierarchical network of routers
(see Fig. 1 again). The root node, R, is the master router which ultimately implements the firewall policy
for the organization. The child nodes, R1 and R2, are gateways to different departments within the
organization which have different requirements. R1 and R2 are stakeholders in the implemented policy
and send their preferred policies to R. R then combines these policies to create the overall policy P for
the organization. If the policies put forward by R1 and R2 conflict, R must resolve the conflict in order
to create this overall policy.

Currently this merging of policies would be done by hand. In the simplest case, this is done by just
concatenating the firewall rules. It is not hard, though, to imagine the process being automated with
the routers being under the control of software agents. AR is the agent controlling R and AR1 and AR2

are the agents controlling R1 and R2 respectively. Indeed, a process that implements a software-based

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 209

packet filtering firewall would meet the description of a basic reactive agent [50], receiving a sequence
of percepts in the form of data about incoming packets, and making a sequence of “accept”/“block”
decisions. The policies for R1 and R2 are set by system administrators in the relevant departments,
AR1 and AR2 , and these advocate for their policies with AR. This agent (AR) merges the policies and the
combined policy is set by the system administrator with overall responsibility for the whole organization,
based on information provided by the agent controlling R.

The model of structured argumentation that we use in the following examples is that of [28], which
is a defeasible subset of ASPIC+ [33]. In terms of the element introduced above, L contains a set of
propositions pi , their negations ¬pi , and a set of defeasible rules p1, . . . , pn ⇒ pn+1. Inference in this
system is achieved by the application of:

p1, . . . , pn p1, . . . , pn ⇒ pn+1
pn+1

If p follows from a set of formulae S using this inference rule alone, we denote this by S � p, and, if
S is minimal, (S, p) is an argument. Note that all we are doing here is to make it possible to use the
metalevel argumentation model from [32] with structured arguments. Our intention is not to propose a
new model of argumentation; we are just using an existing model of metalevel argumentation with a
subset of the well-known ASPIC+ system.

4.2. A simple metalevel model of a firewall

Now suppose that R1 has a policy to deny all DNS traffic in order to enhance system security, while
R2 has a policy to allow HTTP traffic in order to support web services. We can model R1’s policy as:

secure_system
secure_system ⇒ ¬allow_DNS
¬allow_DNS ⇒ ¬allow_UDP

In addition to the justification of R1’s policy, this captures the fact that one approach to disallowing
DNS traffic is to block all UDP traffic since DNS runs over UDP. (Such an approach would obviously
block other protocols and applications that use UDP, and so this might be considered rather heavy-
handed.) From this set of policy information, it is possible for AR1 to construct the argument:

({secure_system, secure_system ⇒ ¬allow_DNS, ¬allow_DNS ⇒ ¬allow_UDP},
¬allow_UDP

)
(1)

which has the conclusion to block UDP traffic. We will call this argument n since it concerns name
resolution. Similarly, R2’s policy can be modelled as:

allow_WS
allow_WS ⇒ allow_TCP

giving AR2 the argument:

({allow_WS, allow_WS ⇒ allow_TCP}, allow_TCP
)

210 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

with the conclusion that TCP traffic should be allowed. We will call this argument t .
We can imagine that AR engages both AR1 and AR2 in an inquiry dialogue [49] to discover their

requirements (for example following the protocol in [38]), a process that results in both n and t (including
all the information on which they are based) being passed to AR. In addition, AR knows that:

allow_WS ⇒ allow_DNS
allow_DNS ⇒ allow_UDP

since web services require name resolution and hence require UDP. In addition to n and t , AR can thus
construct an argument w (an argument about the requirements of web services):

({allow_WS, allow_WS ⇒ allow_DNS, allow_DNS ⇒ allow_UDP}, allow_UDP
)

Clearly w and n attack one another.4 In the formulation given above, we then have:

A = {w, n, t},
R = {

(w, n), (n, w)
}

which has a single grounded extension {t} which does not specify what to do about UDP traffic. Before
we consider how we can use argumentation to represent different solutions to this scenario, let’s work
through the full metalevel formulation. The previous section gave a metalevel formulation of a standard
Dung framework. In this, the set of metalevel arguments includes statements about the justification and
defeat of every argument in A, and statements about defeat for every attack in R. Thus we have:

AM = {
defeat(�w�, �n�), defeat(�n�, �w�),

justified(�w�), justified(�n�), justified(�t�),
rejected(�w�), rejected(�n�), rejected(�t�)

}

The constraints on claims then result in the following set of attacks:

RM = {(
defeat(�n�, �w�), justified(�w�)

)
,
(
justified(�w�), rejected(�w�)

)
,

(
rejected(�w�), defeat(�w�, �n�)

)
,
(
defeat(�w�, �n�), justified(�n�)

)
,

(
justified(�n�), rejected(�n�)

)
,
(
rejected(�n�), defeat(�n�, �w�)

)
,

(
justified(�t�), rejected(�t�)

)}

The first six of these attack relations form a cycle in the argument graph5 shown in Fig. 3, which has
no consistent labelling. The last pair of arguments listed in RM can be labelled consistently so that t is
justified. The result, then, is the single stable extension:

E = {
justified(�t�)

}

4The form of attack here is a rebut, an attack between the conclusions of arguments. While rebuts can be problematic in some
argumentation systems [17], they do not cause problems when arguments are, as here, chains of defeasible rules [28].

5This is the weather example from [32, p. 19] without the preference argument.

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 211

Fig. 3. The metalevel argument graph for the basic firewall example. Each argument corresponds to an argument or an attack at
the object level. A box is drawn around arguments that can legally be labelled IN.

and the corresponding single stable extension of the object level (as we already identified just considering
the object level system) is {t}.

An understandable question to ask at this point is what the metalevel framework brings over a for-
mulation of the problem using a standard Dung framework, or a structured argumentation system like
ASPIC+, which builds a Dung framework from a knowledge base. In terms of what can be represented,
and what can be formally concluded, the metalevel approach brings nothing. As [32] clearly shows, the
metalevel approach it suggests, the one we have used here, captures precisely what a Dung framework
can capture, and draws exactly the same conclusions. We are, of course, using a structured argumenta-
tion framework to generate the arguments, but these could be generated by ASPIC+. Indeed, given that
we are using a structured argumentation system which is a subset of ASPIC+, one might argue that we
are using ASPIC+. However, to focus on what can be represented and what conclusions are drawn is to
miss the point. The point of using the metalevel approach lies in what is computed along the way.

In a standard Dung framework, the output is a set of labellings, telling us which arguments are justified
(IN) and which are not. Frequently, in implementations, this is presented to the user in the form of an
argument graph, colour-coded to indicate which arguments are IN, OUT, and UNDEC. Such an output is
clear about what the conclusions are, but not why. Even in systems such as ArgTrust [37], which present
views of structured arguments, a user who wants to understand why has to reconstruct the inference pro-
cess for themselves. The metalevel approach, both in the way it is presented in [32] and the way we are
using it here, is one way to address the explanation of why. In the same way that a Dung argument graph
makes clear the relationship between arguments, the metalevel argument graph exposes the relationship
between the status of arguments and thus the reasoning process that leads to the labelling attached to
each argument. We believe that this means that the metalevel approach can be of service in situations,
like network security, where the users of argumentation technology are unlikely to also be experts in
argumentation. In this particular case, we see that the advantage of AR using a metalevel framework,
rather than a standard Dung framework (which would enable it to reach the same conclusion), is that
AR can use the metalevel framework to explain the resulting policy to the administrator with overall
responsibility for the organization. For example, the argument graph that results in this case is given in
Fig. 3. This makes it clear that the fact there is no justified argument for w or n is the symmetry between
them. Each attacks the other, and there is no reason to privilege one attack over the other.

4.3. A metalevel model using preferences

While the resolution of the conflicting policies achieved above is correct from the perspective of
argumentation theory, it is not very satisfying from an application point of view – the resulting policy
is unhelpful since it provides no decision on UDP traffic. A natural way to improve the situation is to
express some kind of preference between web services and security (in our case) to resolve the conflict

212 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

between w and n one way or the other. This is not a new idea, having been introduced at the object level
in argumentation systems such as [4,40].

As discussed in [32], preferences can easily be introduced into a metalevel argumentation framework.
If we follow the approach described in [32], we consider that stating a preference w �P n – that the
argument in favor of allowing UDP to support web services is strictly preferred to the argument in favor
of blocking UDP to enhance security – is equivalent to stating a metalevel argument that n does not
defeat w.

The formal description of the metalevel system is that of the previous section, with the same set of
arguments and attacks at the object level:

A = {w, n, t},
R = {

(w, n), (n, w)
}

but with an additional argument – the argument that w is preferred to n at the metalevel (we assume that
the claim language LC contains an additional predicate preferred(·, ·) to express this preference):

AM = {
defeat(�w�, �n�), defeat(�n�, �w�),

justified(�w�), justified(�n�), justified(�t�),
rejected(�w�), rejected(�n�), rejected(�t�),
preferred(�w�, �n�)

}
.

The set of metalevel attacks also has an additional member, the attack of preferred(�w�, �n�) on
defeat(�n�, �w�):

RM = {(
defeat(�n�, �w�), justified(�w�)

)
,
(
justified(�w�), rejected(�w�)

)
,

(
rejected(�w�), defeat(�w�, �n�)

)
,
(
defeat(�w�, �n�), justified(�n�)

)
,

(
justified(�n�), rejected(�n�)

)
, (rejected(�n�),

(
defeat(�n�, �w�)

)
,

(
preferred(�w�, �n�), defeat(�n�, �w�)

)
,

(
justified(�t�), rejected(�t�)

)}

As Fig. 4 shows, this additional attack now breaks the cycle6 and we have a single stable extension at
the metalevel:

E = {
justified(�w�), defeat(�w�, �n�), rejected(�n�), (preferred(�w�, �n�), justified(�t�)

}

with the corresponding object level extension {w, t}, with a policy that allows TCP and UDP.
Again, we believe that this metalevel structure provides a means to explain the outcome to the ad-

ministrator. Comparing Fig. 4 and Fig. 3, it is clear that the preference for w over n “fixes” the cycle of
arguments so that defeat(�n�, �w�) does not hold, resulting in w being justified.

6This section of the argument graph is now exactly the weather example from [32, p. 19].

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 213

Fig. 4. The metalevel argument graph for the firewall example with preferences. Each argument corresponds to an argument or
an attack at the object level. A box is drawn around arguments that can legally be labelled IN.

4.4. A metalevel model using values

Metalevel argumentation can capture more than just the application of preferences. In this section,
we briefly consider how we can use the same metalevel argumentation framework to apply ideas from
value-based argumentation [12] to capture a situation in which different parties have different views
about which policy to adopt.

In a Value-based Argumentation Framework (VAF), we are concerned with values promoted by each
attack and their relative strengths. This is necessarily subjective and audience dependent [12,32] and
provides a way for R to reason about implementing policies specific to R1 and R2. To see how this might
work, consider a variation on the example discussed above, where the network is that of a research
university.7 R1 belongs to a research computing facility (IT) which uses BitTorrent (BT) to provide
updates to the host machines. This is deemed to be mission-critical by IT. R2 belongs to the Chancellor’s
office (CO), which has deemed BitTorrent to be a legal liability and thus seeks to deny any BT traffic.

Let c denote the policy “Deny BitTorrent” and a denote the policy “Allow BitTorrent”. As in the
examples in Section 4, we have a situation in which there are mutual attacks between the arguments. In a
value-based framework, we can annotate the policies to introduce values associated with the arguments
by different parties. For example, “Deny BitTorrent” may be associated with the “Preventing Piracy”
(p) value, while “Allow BitTorrent” may be associated with the “Allowing Mission Critical Services”
(m) value. R may use reasoning specific to audiences pertinent to R1 and R2. If R1 serves research-
related computing facilities, the relevant audience is the advocate for the corresponding policy, IT (r1).
And if R2 is controlling access to student dormitories, then the relevant audience is the advocate for
the corresponding policy, CO (r2). Further, each audience indicates which values are more important: r1

prefers p to m, while r2 prefers m to p.
We can formulate this as a value-based argumentation framework in the language of metalevel argu-

mentation as (following [32]):

(
A = {c, a},R = {

(c, a), (a, c)
}
,V = {p, m}, {val(c) = p, val(a) = m

}
,

P = {
r1 = {

(m, p)
}
, r2 = {

(p, m)
}})

which leads to two audience-specific VAFs for r1 and r2. Our set of claims then includes the values,
val(c) = p and val(a) = m, and the preferences over values, preferredr1

(m, p) and preferredr2
(p, m).

7This is, of course, a fictional university and bears no ressemblance to any institution at which any of the authors work or
may have worked.

214 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

We can then formulate the audience-specific metalevel argumentation framework for r1 as follows.

A = {c, a},
R = {(c, a), (c, a)},

AM = {defeat(�c�, �a�), defeat(�c�, �a�), justified(�c�),
justified(�a�), rejected(�c�), rejected(�a�),
preferredr1

(�m�, �p�)
RM = {(preferredr1

(�m�, �p�), defeat(�c�, �a�)),
(defeat(�c�, �a�), justified(�a�)),
(justified(�a�), rejected(�a�)),
(rejected(�a�), defeat(�a�, �c�)),
(defeat(�a�, �c�), justified(�c�)),
(justified(�c�), rejected(�c�)),
(rejected(�c�), (defeat(�c�, �a�))}.

A corresponding metalevel argumentation framework can be formulated for r2. This leads to two audi-
ence specific frameworks for r1 and r2. The preferred extensions, for each audience, are:

Er1 = {
preferredr1

(m, p), justified(a), defeat(a, c), rejected(c)
}

and

Er2 = {
preferredr2

(p, m), justified(c), defeat(c, a), rejected(a)
}
.

With the audience-specific extensions, the system administrator may reason that the CO prefers val-
ues promoted by preventing piracy over allowing mission critical services, while the IT prefers values
promoted by allowing mission critical services over preventing piracy.

4.5. Structured reasoning at the metalevel

As noted above, the idea of using preferences to resolve conflicting arguments is not new, and the
same is true of values. The new aspect that the metalevel approach brings is the ability to clearly see
what the preferences and values are doing, that is how they resolve the conflict. Examining the metalevel
arguments and attacks in the example of Section 4.3, it is clear that the preferences are behind the
resolution of the conflict by defeating defeat(n, w), and in turn preventing that argument from making w

unjustified. Similarly, looking at the metalevel arguments and attacks in the example of Section 4.4, it is
clear how the different preferred extensions relate to the two audiences R1 and R2. In applications such
as ours, where the justification for using argumentation is to be able to explain to users the structure of
the problem and how to reason about it, this ability to use the metalevel system to explain how arguments
are resolved at the object level is a powerful feature.

However, the models that we have discussed so far do not fully exploit the power of the metalevel
framework. The astute reader will have spotted that though we have described how structured arguments
can be used at the object level to connect firewall rules to arguments – as in the argument labelled (1) for
example – we have yet to explore the construction of arguments at the metalevel. Allowing reasoning
at this level allows us to construct arbitrary arguments at the metalevel that can resolve conflicts at the
object level.

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 215

Consider, as an example, this variation on the use of preferences, where AR has the following infor-
mation in its �M:

prefer(promote_WS, be_secure)

achieves(�w�, promote_WS)

achieves(�n�, be_secure)

prefer(X, Y), achieves(Z, X), achieves(W, Y) ⇒ preferred(Z, W)

preferred(Z, W), (W, Z) ∈ R ⇒ (
preferred(Z, W), defeat(W, Z)

)

where X, Y , Z and W are variables and achieves is a predicate that captures the relationship between
an object level argument and a metalevel proposition. This is metalevel information about a preference
for arguments about firewall policies that promote web services over security, about the specific policies
supported by the object level arguments w and n, about how to combine preferences and information
about arguments in general (if you prefer one policy to another, then you prefer the argument that sup-
ports it), and about how preference relates to defeat.

From this information, it is clear that AR can construct an argument for

(
preferred(�w�, �n�), defeat(�n�, �w�)

)

which of course is the crucial piece in the use of preferences to resolve the circle of attacks in the
metalevel representation of the conflict between w and n (see Fig. 4 again). Abstracting from this, we
have a general mechanism by which we can program AR to figure out how to resolve conflicts in object
level arguments – we provide it with knowledge in �M from which it can construct metalevel arguments
about which attacks are themselves defeated. The same mechanism could be used in our values example,
to side with a particular audience and therefore rule out one of the preferred extensions.

One kind of reasoning that one might perform at this level that is of particular interest to us is reasoning
about trust. AR might wish to resolve the conflict between w and n based on what it knows about the
trustworthiness of AR1 and AR2 . In [36], we described an argumentation system that could be used to
infer the degree of trust between agents, and how this derived information could be combined with
beliefs from those agents. Such reasoning could be employed in the metalevel argumentation framework
to identify attacks on defeat(�n�, �w�) or defeat(�w�, �n�). To give a very simple example:

trust(self , AR1)

¬trust(self , AR2)

trust(self , X), ¬trust(self , Y) ⇒ more_trustworthy(X, Y)

source(�n�, AR1)

source(�w�, AR2)

source(X, Y), source(W, Z), more_trustworthy(Y, Z) ⇒ preferred(X, W)

from which AR could, using elements from the previous example, construct an argument for:

(
preferred(�n�, �w�), defeat(�w�, �n�)

)

216 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

which would provide an alternative way to resolve the object level conflict between w and n – the fact
that n is provided by a more trustworthy source than w is an argument against w defeating n.

4.6. Discussion

The examples in the previous section have demonstrated how metalevel argumentation can be used
to represent firewall policies in such a way that a conflict in the rules is exposed at the metalevel. They
have further shown how metalevel argumentation can capture the way that existing approaches, such as
preference-based and value-based reasoning, can be used to resolve such conflicts. The key advantage
that we see to using metalevel argumentation is that conflicts and their resolution are exposed at the
metalevel, rather than being buried in the computation of justified arguments. The metalevel approach
does not provide any reasoning that is not provided by existing approaches, but by handling arguments
at the metalevel as objects that can be themselves the subject of arguments, reasoning about those ar-
guments, and the conflicts between them, becomes explicit. In firewall configuration, the final decision
about how to set the firewall up is going to be taken by a human system administrator – someone who
is probably not an expert in argumentation – and our hypothesis is that any additional clarity will make
their job much easier. We already have some evidence that providing arguments for and against decision
options helps users to become more confident in their decisions [43], albeit in the domain of intelligence
analysis rather than firewall configuration. More recent work [1], provides some support for the use of
argumentation in maintaining secure services. In particular, this latter work showed that using argumen-
tation to support the definition of firewall policies provided more complete and correct policies at the
cost of some additional effort. However, we do not yet have any empirical evidence concerning the use
of metalevel argumentation in handling firewall policies.

We also note that we started by discussing four kinds of anomaly in firewall rules – shadowing, cor-
relation, redundancy and generalization. Our examples are all instances of shadowing. Before we can
claim that metalevel argumentation can, in general, help with detecting and resolving firewall anomalies
we must first also demonstrate that the approach can deal with the other forms of anomaly.

Finally, we point out a further extension of the approach we have been detailing in this paper. In [35],
we identified a number of argumentation schemes for reasoning about trust. In particular, we identified
two broad classes of scheme: schemes for deriving trust and schemes for propagating trust. The schemes
for deriving trust are exemplified by the scheme for direct experience: if A has previous successful
interactions with B, then that is the basis of an argument that A should trust B in future integrations.
The schemes for propagating trust are exemplified by transitivity: if A trusts B and B trusts C, then that
forms the basis for an argument that A should trust C. Of course, both these schemes can be flawed, and
[35] captures these flaws as critical questions. These identify situations in which the argument generated
by the scheme is not sound. For example, direct experience can be questioned if B is not known to be
the same individual with whom A has interacted in the past. Similarly, transitivity can be questioned if
the context in which A trusts B is not the same as the context in which B trusts C.

These trust schemes and the relevant critical questions could be implemented in the same metalevel
argumentation framework that we have been discussing. At the object level we encode the schemes as
defeasible rules that allow the relevant arguments to be constructed, for example capturing transitivity
with the rule:

trust(X, Y), trust(Y, Z) ⇒ trust(X, Z)

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 217

Then we capture the critical questions at the metalevel. For example, the critical question about context
can be captured in a very similar way to that in which we captured trustworthiness in the previous section.
In this case, we need metalevel knowledge about the context in which trust exists between agents, and
a rule to identify if transitivity was used in the construction of an argument at the object level, and to
ensure that the object-level argument is defeated if contexts do not match:

trust_context(self , teacher, childcare)

trust_context(teacher, mechanic, car_repair)

�trust(X, Y), trust(Y, Z) ⇒ trust(X, Z)� ∈ Support(�a�),
trust_context(X, Y, C), trust_context(Y, Z, D), C = D ⇒ defeat(CQcontext, �a�)

where the symbol CQcontext identifies the critical question about context. This is close to the approach
adopted by [34], though the latter paper captures critical questions though the use of undercutting [39]
rules, which (in our example) would deny the applicability of the transitivity rule rather than (as we
do) ensuring that the argument generated using the rule is defeated. Of course, undercutting attacks are
implicitly a metalevel notion.

Now, one important difference between the example above, and that in Section 4.5, is that in the
latter example, reasoning about trust was at the metalevel, and in our example here it is at the object
level. There need be no conflict between the two approaches. As [51] points out, it is possible to have
many levels of metalevel reasoning. We can easily construct a system in which arguments about policy
happen at level 0, then level 1 contains rules, facts and arguments making inferences about trust, just
as in Section 4.5. These level 1 arguments treat arguments at level 0 as object level arguments. Level 2
then contains fact rules and arguments about the applicability of arguments about trust (capturing critical
questions about the schemes that generated level 1 arguments), and treating level 1 arguments as object
level elements to be manipulated.

5. Related work

Given the importance of security, the central role that firewalls play in ensuring security, and the
complexity of configuring firewalls, there has been considerable work on approaches to support firewall
configuration. [2] implemented a set of algorithms in “Firewall Policy Advisor”, a user-friendly tool.
These algorithms use a firewall policy tree to deal with centralized and distributed firewalls [3]. [52]
introduced FIREMAN, a static analysis toolkit to check anomalies in individual firewalls as well as among
distributed firewalls.

Similar work has been carried out based on the use of formal logic. [22] proposed a formal logic for
reasoning about the meaning of the firewall rules. Logic may be used to prove properties of a rule set
and to detect a number of anomalies within a rule set. [23,24] used ordered binary decision diagrams
(BDD’s) to represent rule sets as a boolean expressions, again proving a means to analyze the rule sets.
However, the system does not allow the definition of rules using a logic programming syntax. In contrast,
[21] presented a tool based on constraint logic programming (CLP) for analyzing firewall rules. This tool
was implemented using Eclipse CLP, which makes it easy to express and extend the knowledge base of
the system. [11] used a related approach, modelling firewall policies using a spatio-temporal logic that
makes it possible to use model checking to find anomalies.

218 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

Argumentation-based firewall configuration has been studied by several authors. [8] described a tech-
nique based on Argumentation for Logic Programming with Priorities, allowing administrators to use
high-level abstractions in specifying their network security requirements. In [9], this work was extended
to automatically generate firewall policies from higher-level requirements; and in previous work, we
[6,42] have discussed how to use argumentation to handle firewall anomalies and, more generally, to
address cyber-security. [41] applied Defeasible Logic Programming (DeLP) for validation and reconfig-
uration of a firewall, while [14] used and argument-based logic programming engine to enforce security
requirements dynamically. Similarly, [29] showed how to analyze security systems using abstract argu-
mentation framework.

More work associated with firewall configuration has been published that goes beyind the use of logic.
[19] developed models for policy conflict analysis, taking into account semantic information about pol-
icy specifications. [53] proposed a policy algebra framework for security policy enforcement in hybrid
firewalls, making use of the basic algebra used in rule sets, such as addition, conjunction, subtraction and
summation. [30] presented a firewall analysis engine named Fang, based on a combination of a graph
algorithms and a rule-base simulator.

Our use of metalevel argumentation sets our work apart from all of the work cited. All approaches to
reasoning about firewall rules yet published have concentrated on object level reasoning. Our work is the
first we are aware of to look at reasoning about firewall rules at the metalevel. Indeed, there is very little
that has been written on metalevel argumentation. As already mentioned, metalevel argumentation was
formally introduced in [32], and the idea of metalevel argumentation has been used [31] to provide an
abstract integration of accrual and dialectical argumentation and to integrate argumentation-based rea-
soning about preferences with the object level arguments. [44] presented an argumentation-based model
of social interaction integrating both object-level and metalevel argumentation, and, as already men-
tioned, [34] integrated structured argumentation and metalevel argumentation to express argumentation
schemes. Both these latter papers are a close fit with what we discuss here, though neither addresses our
firewall domain.

Finally, where our work touches on the idea of bringing in reasoning about trust at the metalevel, we
are clearly beginning to overlap with the work of Villata et al. [46,47] who have written quite extensively
about how to represent and resolve arguments that attack arguments about the trustworthiness of agents.
If this kind of reasoning were to be incorporated into our framework, it would require a second level
of metareasoning – the first metalevel would be used to make statements about the trustworthiness of
arguments and the effect of such statements on object-level defeats, and the second metalevel would
make statements attacking these statements of trustworthiness. Resolving arguments at the second level
would then inform which statements hold at the first level, and hence what arguments were preferred at
the object level.

6. Conclusions

This paper has discussed the application of metalevel argumentation to the problem of modelling
firewall configurations. In particular, we have shown how to use the metalevel argumentation system of
[32] such that object level arguments are concerned with which packets to accept and block in a firewall,
and the metalevel arguments identify – and potentially resolve – conflicts between these object level
arguments due to shadowing anomalies in the firewall rules. We have argued that since a human system
administrator will ultimately have to set the firewall policy, the use of a metalevel formalism – which

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 219

makes explicit the (metalevel) arguments that explain why conflicts in rules arise and how they may be
resolved – is appropriate. Since the initial version of this paper was published [7], we have conducted
human subject experiments [1,43] which show that using argumentation can be advantageous in complex
tasks, giving some initial support for this contention. However, further experiments will be required to
confirm this advantage in the firewall configuration domain.

Acknowledgements

Research was partially funded by the National Science Foundation, under grant CNS 1117761 and
Army Research Laboratory and Cooperative Agreement Number W911NF-09-2-0053. The views and
conclusions contained in this document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the Army Research Laboratory, the National
Science Foundation, or the U.S. Government.

Thanks to Sanjay Modgil and the anonymous reviewers for their helpful comments on the paper.

References

[1] N. Ajmeri, C.-W. Hang, S. Parsons and M. Singh, Aragorn: Eliciting and maintaining secure service policies, 2016 (in
submission).

[2] E. Al-Shaer and H. Hamed, Firewall policy advisor for anomaly discovery and rule editing, in: Integrated Network
Management, 2003. IFIP/IEEE Eighth International Symposium on, IEEE, 2003, pp. 17–30. doi:10.1109/INM.2003.
1194157.

[3] E. Al-Shaer and H. Hamed, Discovery of policy anomalies in distributed firewalls, in: INFOCOM 2004. Twenty-Third
AnnualJoint Conference of the IEEE Computer and Communications Societies, Vol. 4, IEEE, 2004, pp. 2605–2616.

[4] L. Amgoud and C. Cayrol, On the acceptability of arguments in preference-based argumentation framework, in: Proceed-
ings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998, pp. 1–7.

[5] L. Amgoud and C. Cayrol, A reasoning model based on the production of acceptable arguments, Annals of Mathematics
and Artifical Intelligence 34(3) (2002), 197–215. doi:10.1023/A:1014490210693.

[6] A. Applebaum, K.N. Levitt, J. Rowe and S. Parsons, Arguing about firewall policy, in: Proceedings of the 4th International
Conference on Computational Models of Argument, IOS Press, Vienna, Austria, 2012, pp. 91–102.

[7] A. Applebaum, Z. Li, A.R. Syed, K. Levitt, S. Parsons, J. Rowe and E.I. Sklar, Firewall configuration: An application of
multiagent metalevel argumentation, in: Proceedings of the Workshop on Argumentation in Multiagent Systems (ArgMAS)
at Autonomous Agents and MultiAgent Systems (AAMAS), Valencia, Spain, 2012.

[8] A. Bandara, A. Kakas, E. Lupu and A. Russo, Using argumentation logic for firewall policy specification and analysis, in:
Large Scale Management of Distributed Systems, 2006, pp. 185–196. doi:10.1007/11907466_16.

[9] A. Bandara, A. Kakas, E. Lupu and A. Russo, Using argumentation logic for firewall configuration management, in:
Integrated Network Management, 2009. IM’09. IFIP/IEEE International Symposium on, IEEE, 2009, pp. 180–187.
doi:10.1109/INM.2009.5188808.

[10] P. Baroni, M. Caminada and M. Giacomin, An introduction to argumentation semantics, The Knowledge Engineering
Review (2011).

[11] N. Basumatary and S.M. Hazarika, Model checking a firewall for anomalies, in: Emerging Trends and Applications in
Computer Science (ICETACS), 2013 1st International Conference on, IEEE, 2013, pp. 92–96. doi:10.1109/ICETACS.
2013.6691402.

[12] T.J.M. Bench-Capon, Persuasion in practical argument using value-based argumentation frameworks, Journal of Logic
and Computation 13(3) (2003), 429–448. doi:10.1093/logcom/13.3.429.

[13] J. Bentahar, R. Alam, Z. Maamar and N.C. Narendra, Using argumentation to model and deploy agent-based B2B appli-
cations, Knowledge-Based Systems 23(7) (2010), 677–692. doi:10.1016/j.knosys.2010.01.005.

[14] T. Bouyahia, M.S. Idrees, N. Cuppens-Boulahia, F. Cuppens and F. Autrel, Metric for security activities assisted by
argumentative logic, in: Data Privacy Management, Autonomous Spontaneous Security, and Security Assurance, Springer,
2015, pp. 183–197.

[15] M.W.A. Caminada, On the issue of reinstatement in argumentation, in: Proceedings of the 10th European Conference on
Logic in Artificial Intelligence, Liverpool, UK, 2006, pp. 111–123. doi:10.1007/11853886_11.

http://dx.doi.org/10.1109/INM.2003.1194157
http://dx.doi.org/10.1109/INM.2003.1194157
http://dx.doi.org/10.1023/A:1014490210693
http://dx.doi.org/10.1007/11907466_16
http://dx.doi.org/10.1109/INM.2009.5188808
http://dx.doi.org/10.1109/ICETACS.2013.6691402
http://dx.doi.org/10.1109/ICETACS.2013.6691402
http://dx.doi.org/10.1093/logcom/13.3.429
http://dx.doi.org/10.1016/j.knosys.2010.01.005
http://dx.doi.org/10.1007/11853886_11

220 A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation

[16] M.W.A. Caminada, An algorithm for computing semi-stable semantics, in: Proceedings of the 9th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Verona, Italy, 2007, pp. 222–234. doi:10.1007/
978-3-540-75256-1_22.

[17] M.W.A. Caminada and L. Amgoud, On the evaluation of argumentation formalisms, Artificial Intelligence 171(5–6)
(2007), 286–310. doi:10.1016/j.artint.2007.02.003.

[18] M.W.A. Caminada, W.A. Carnielli and P.E. Dunne, Semi-stable semantics, Journal of Logic and Computation 22 (2012),
1207–1254. doi:10.1093/logcom/exr033.

[19] S. Davy and B. Jennings, Harnessing models for policy conflict analysis, Inter-Domain Management (2007), 176–179.
doi:10.1007/978-3-540-72986-0_19.

[20] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artificial Intelligence 77 (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.

[21] P. Eronen and J. Zitting, An expert system for analyzing firewall rules, in: Proceedings of the 6th Nordic Workshop on
Secure IT Systems (NordSec 2001), 2001, pp. 100–107.

[22] J. Govaerts, A. Bandara and K. Curran, A formal logic approach to firewall packet filtering analysis and generation,
Artificial Intelligence Review 29(3) (2008), 223–248. doi:10.1007/s10462-009-9147-0.

[23] S. Hazelhurst, Algorithms for analysing firewall and router access lists, Technical report, Department of Computer Sci-
ence, University of the Witwatersrand, 2000.

[24] S. Hazelhurst, A. Fatti and A. Henwood, Binary decision diagram representations of firewall and router access lists,
Technical report, Department of Computer Science, University of the Witwatersrand, 1998.

[25] K. Ingham and S. Forrest, Network firewalls, in: Enhancing Computer Security with Smart Technology, 2006, pp. 9–40.
[26] P. Krause, S. Ambler, M. Elvang-Gørannson and J. Fox, A logic of argumentation for reasoning under uncertainty, Com-

putational Intelligence 11(1) (1995), 113–131. doi:10.1111/j.1467-8640.1995.tb00025.x.
[27] J. Kurose and K. Ross, Computer Networking: A Top-down Approach, Addison-Wesley, 2010.
[28] Z. Li and S. Parsons, On argumentation with purely defeasible rules, in: 9th International Conference on Scaleable

Uncertainty Management, Quebec City, 2015.
[29] F. Martinelli, F. Santini and A. Yautsiukhin, Network security supported by arguments, in: Privacy, Security and Trust

(PST), 2015 13th Annual Conference on, IEEE, 2015, pp. 165–172. doi:10.1109/PST.2015.7232969.
[30] A. Mayer, A. Wool and E. Ziskind, Fang: A firewall analysis engine, in: Security and Privacy, 2000. S&P 2000. Proceed-

ings. 2000 IEEE Symposium on, IEEE, 2000, pp. 177–187. doi:10.1109/SECPRI.2000.848455.
[31] S. Modgil and T.J. Bench-Capon, Integrating dialectical and accrual modes of argumentation, COMMA 216 (2010), 335–

346.
[32] S. Modgil and T.J.M. Bench-Capon, Metalevel argumentation, Journal of Logic and Computation 6(21) (2011), 959–1003.

doi:10.1093/logcom/exq054.
[33] S. Modgil and H. Prakken, A general account of argumentation with preferences, Artificial Intelligence 195 (2013), 361–

397. doi:10.1016/j.artint.2012.10.008.
[34] J. Müller, A. Hunter and P. Taylor, Meta-level argumentation with argument schemes, in: Scalable Uncertainty Manage-

ment, Springer, 2013, pp. 92–105. doi:10.1007/978-3-642-40381-1_8.
[35] S. Parsons, K. Atkinson, Z. Li, P. McBurney, E.I. Sklar, M. Singh, K. Haigh, K. Levitt and J. Rowe, Argument schemes

for reasoning about trust, Argumentation & Computation 5(2–3) (2014), 160–190. doi:10.1080/19462166.2014.913075.
[36] S. Parsons, E.I. Sklar and P. McBurney, Using argumentation to reason with and about trust, in: Proceedings of the 8th

International Workshop on Argumentation in Multiagent Systems, Taipei, Taiwan, 2011.
[37] S. Parsons, E.I. Sklar, J. Salvit, H. Wall and Z. Li, ArgTrust: Decision making with information from sources of vary-

ing trustworthiness (Demonstration), in: Proceedings of the 12th International Conference on Autonomous Agents and
Multiagent Systems, St Paul, MN, 2013.

[38] S. Parsons, M. Wooldridge and L. Amgoud, Properties and complexity of formal inter-agent dialogues, Journal of Logic
and Computation 13(3) (2003), 347–376. doi:10.1093/logcom/13.3.347.

[39] H. Prakken, An abstract framework for argumentation with structured arguments, Argument and Computation 1 (2010),
93–124. doi:10.1080/19462160903564592.

[40] H. Prakken and G. Sartor, Argument-based logic programming with defeasible priorities, Journal of Applied Non-classical
Logics (1997).

[41] P. Rajkhowa, S.M. Hazarika and G.R. Simari, An application of defeasible logic programming for firewall verification and
reconfiguration, in: Quality, Reliability, Security and Robustness in Heterogeneous Networks, Springer, 2013, pp. 527–
542. doi:10.1007/978-3-642-37949-9_47.

[42] J. Rowe, K. Levitt, S. Parsons, E.I. Sklar, A. Applebaum and S. Jalal, Argumentation logic to assist in security ad-
ministration, in: Proceedings of the 2012 Workshop on New Security Paradigms, ACM, 2012, pp. 43–52. doi:10.1145/
2413296.2413301.

http://dx.doi.org/10.1007/978-3-540-75256-1_22
http://dx.doi.org/10.1007/978-3-540-75256-1_22
http://dx.doi.org/10.1016/j.artint.2007.02.003
http://dx.doi.org/10.1093/logcom/exr033
http://dx.doi.org/10.1007/978-3-540-72986-0_19
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.1007/s10462-009-9147-0
http://dx.doi.org/10.1111/j.1467-8640.1995.tb00025.x
http://dx.doi.org/10.1109/PST.2015.7232969
http://dx.doi.org/10.1109/SECPRI.2000.848455
http://dx.doi.org/10.1093/logcom/exq054
http://dx.doi.org/10.1016/j.artint.2012.10.008
http://dx.doi.org/10.1007/978-3-642-40381-1_8
http://dx.doi.org/10.1080/19462166.2014.913075
http://dx.doi.org/10.1093/logcom/13.3.347
http://dx.doi.org/10.1080/19462160903564592
http://dx.doi.org/10.1007/978-3-642-37949-9_47
http://dx.doi.org/10.1145/2413296.2413301
http://dx.doi.org/10.1145/2413296.2413301

A. Applebaum et al. / Firewall configuration: An application of multiagent metalevel argumentation 221

[43] E.I. Sklar, S. Parsons, Z. Li, J. Salvit, S. Perumal, H. Wall and J. Mangels, Evaluation of a trust-modulated argumentation-
based interactive decision-making tool, Journal of Autonomous Agents and Multi-Agent Systems 30(1) (2016), 136–173.
doi:10.1007/s10458-015-9289-1.

[44] E.I. Sklar, S. Parsons and M.P. Singh, Towards an argumentation-based model of social interaction, in: Proceedings of
the Workshop on Argumentation in Multiagent Systems (ArgMAS) at the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), St. Paul, MN, 2013.

[45] B. Verheij, A labeling approach to the computation of credulous acceptance in argumentation, in: Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007, pp. 623–628.

[46] S. Villata, G. Boella, D.M. Gabbay and L. van der Torre, Arguing about trust in multiagent systems, in: Proceedings of
the 11th Symposium on Artificial Intelligence of the Italian Association for Artificial Intelligence, Brescia, Italy, 2010.

[47] S. Villata, G. Boella, D.M. Gabbay and L. van der Torre, Arguing about the trustworthiness of the information sources,
in: Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
Belfast, UK, 2011.

[48] G. Vreeswijk, An algorithm to compute minimally grounded and admissible defence sets in argument systems, in: Pro-
ceedings of the First International Conference on Computational Models of Argument, Liverpool, UK, 2006, pp. 109–
120.

[49] D.N. Walton and E.C.W. Krabbe, Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning, State University
of New York Press, Albany, NY, USA, 1995.

[50] M. Wooldridge, An Introduction to Multiagent Systems, 2nd edn, Wiley, 2009.
[51] M.J. Wooldridge, S. Parsons and P. McBurney, The meta-logic of arguments, in: Proceedings of the 4th International

Conference on Autonomous Agents and Multi-Agent Systems, Utrecht, the Netherlands, 2005.
[52] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su and P. Mohapatra, Fireman: A toolkit for firewall modeling and analysis, in:

Security and Privacy, 2006 IEEE Symposium on, IEEE, 2006, pp. 1–15. doi:10.1109/SP.2006.16.
[53] H. Zhao and S. Bellovin, Policy algebras for hybrid firewalls, in: Annual Conference of ITA (ACITA), Vol. 2007, 2007.

http://dx.doi.org/10.1007/s10458-015-9289-1
http://dx.doi.org/10.1109/SP.2006.16

	Introduction
	Problems in firewall configuration
	Metalevel argumentation
	Argumentation
	Metalevel argumentation

	Arguing about firewall policies
	Scenario
	A simple metalevel model of a firewall
	A metalevel model using preferences
	A metalevel model using values
	Structured reasoning at the metalevel
	Discussion

	Related work
	Conclusions
	Acknowledgements
	References

