Argument and Computation, 2013 Taylor & Francis
Vol. 4, No. 2, 151-179, http://dx.doi.org/10.1080/19462166.2013.764927 Taylor & Francis Group

Strategies for question selection in argumentative dialogues about plans

Rolando Medellin-Gasque®*, Katie Atkinson?, Trevor Bench-Capon® and Peter McBurney®

“Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK;
bDepartment of Informatics, King’s College London, London, WC2R 2LS, UK

(Received 23 July 2012; final version received 2 January 2013)

In this article, we present a proposal to enable agents to discuss the suitability of plans based
on an argumentation scheme and associated critical questions. Agents coordinate their beliefs,
intentions and preferences using a dialogue game based on this argumentation scheme and
its critical questions. The detail encompassed by the argumentation scheme means that there
is a large number of critical questions, and so dialogues may in principle be very lengthy.
To improve the efficiency of dialogues, we present two strategies for selecting questions. We
have implemented the system and, here, presented results showing how both strategies are
effective in reducing the number of questions required to reach agreement, although their
relative effectiveness is dependent on characteristics of the problem domain.

Keywords: argumentation-based dialogues; dialogue games; agent co-operation; argumenta-
tion schemes; critical questions

1. Introduction

The complexity of distributed systems limits the use of single-agent planning strategies in dis-
tributed problems because the local beliefs of an agent are often not sufficient to generate a
satisfactory plan. A common assumption in traditional artificial intelligence (AI) planning is that
the planner has accurate and complete knowledge of the world and the capabilities of other agents
(Durfee 2001). Since this assumption is rarely satisfied when using multi-agent systems, struc-
tured argumentative dialogues have been proposed to co-ordinate plan-related tasks. In this article,
we consider the problem of selecting from a large set of critical questions in dialogues about the
refinement and selection of a plan. A strategy is necessary to provide autonomous agents with
a mechanism to identify, prioritise and present relevant critical questions in an argumentative
dialogue.

In the approach presented, agents coordinate their beliefs and intentions with the use of a
strategy using a dialogue game based on an argumentation scheme and a set of related critical
questions for plan proposals. We use the argumentation scheme for plan proposals presented in
Medellin-Gasque, Atkinson, McBurney, and Bench-Capon (2011) and the related critical questions
presented in Medellin-Gasque, Atkinson, and Bench-Capon (2012b).

The scheme has a large number of elements, and consequently the set of critical questions is
necessarily large, so choosing an appropriate question in the dialogue becomes an important issue
in terms of dialogue and cooperation efficiency. We will empirically demonstrate that selecting
questions according to an appropriate strategy leads agents to cooperate more effectively. When
selecting questions, agents consider several factors, including the context in which the dialogue
develops and the nature of the questions. Our understanding of an appropriate question is one
that is valid according to the protocol rules, and contributes either to the defeat of an existing

*Corresponding author. Email: medellin @liverpool.ac.uk

© 2013 Taylor & Francis

152 R. Medellin-Gasque et al.

argument or leads to new information needed to reach agreement. Using these principles, agents
can pose and resolve critical questions in a descending order of priority to promote efficiency
while maintaining focus and relevance.

The critical questions draw attention to potential inconsistencies in the proposal, and other
alternative ways of reaching the goal. The analysis identified 65 critical questions that match the
argumentation scheme where each question represents a way to question and/or attack the plan
proposal. The large number of questions is necessary to cover the potentially many differing details
(such as current circumstances, possible actions, their effects and timing, relation between actions
and their timing, preferences) that make planning such an intricate, fine-grained process.

The need to cover all aspects of planning, especially durative actions and their combinations
mean that the scheme needs many components and consequently there are many questions. In a
given application, it is possible to make simplifying assumptions which will reduce the number of
questions, but different applications will require different assumptions, and so the full list should
be available.

Different questions become relevant at different times in the dialogue; for example, a question
may presuppose a particular answer to a previous question. We identify here some of the factors
that make questions relevant at some point in a dialogue and construct two strategies based on
these factors. To establish the relevance of our approach, we implement two agents that engage
in a dialogue where agents have different views of the world and use the strategies to select their
critical questions.

The main contribution of this article is that we show how critical questions implemented in
a dialogue game, together with a strategy to choose relevant questions, is beneficial both to the
quality of the dialogue and the plan which results from it. In contrast to existing work that is
largely theoretical, our novel implementation enables us to produce empirical results showing the
benefits of our approach in teasing out the points of disagreement to come to an agreement on the
best plan.

The remainder of the article is structured as follows: Section 2 describes a representative
scenario where we believe this approach is applicable and the formal plan proposal used with
examples of critical questions that match the scheme. Section 3 presents an overview of the
dialogue game we have developed on the basis of this scheme with an example of the syntax and
semantics of the protocol. Section 4 presents two strategies to select critical questions. Section 5
presents an example to illustrate our approach and gives details of the implementation of the
dialogue game and the strategies. In Section 6, we present the results of our experiments together
with an analysis of the results. Section 7 discusses some related work and we conclude in Section 8.

2. Argumentative approach to plan proposals

Complex, real-world domains require traditional approaches to Al planning to be rethought.
Cooperative distributed planning focuses on how planning can be extended into a distributed envi-
ronment, where the process of creating and executing a plan can involve actions and interactions of
anumber of participants (desJardins, Durfee, Ortiz, and Wolverton 2000). Co-operative distributed
planning is typically carried out by agents which have shared objectives and representations of
the environment but may differ in their beliefs and preferences.

An approach to distributed Al planning is presented in Figure 1, where agents first merge their
knowledge bases through an inquiry or deliberation dialogue and then create a plan. Once the
knowledge bases have been merged, the planning can be done as if there were a single agent until
the point where the agents need to consider preferences over actions. Therefore, in this approach,
distribution is not relevant to the specific task of plan creation and preferences are not placed in
the dialogue in a natural way.

Argument and Computation 153

Agent 1 \ / Agent 2
Knowledge Knowledge
Base Base
) Inquiry or
Dialogue Deliberation dialogue
Knowledge
Base + S S Merged Knowledge Base
Planner
Plan selection
l <— Preferences applied here
Final Plan

Figure 1. A distributed Al approach to planning.

Some research in the distributed planning has been focused on mechanisms for plan coordina-
tion (Durfee 2001); we propose here the use of argumentation-based dialogues to critique plans.
Plan critique has been discussed in, for example, Wilkins and Myers (1998), where the critiques
are part of a level in a hierarchical task network but preferences are not part of the critique.

Our dialogue approach focuses on critiquing plans, taking into account that agents have dif-
ferent beliefs about the world and different preferences. Preferences over plans are used to try
to identify the best-possible plan taking into account the interests of both agents. In distributed
planning techniques, there is no clear agreement as to where and when agents apply preferences
over actions or plans. We believe that our approach presents an advantage because the preferences
are applied in the dialogue together with the mechanism to evaluate and select the plans rather
than as a separate process. Figure 2 presents a high-level schema of our approach in which the
distribution remains important during the planning process itself.

Al has become increasingly interested in argumentation schemes due to their potential for mak-
ing significant improvements in the reasoning capabilities of artificial agents and for automation
of agent interactions (Bench-Capon and Dunne 2007) by guiding dialogue protocols. In essence,
argumentation is a system for resolving conflicts in terms of the acceptability of the arguments
that support the conflicting statements.

Argumentation schemes are stereotypical patterns of defeasible reasoning where arguments
are presented as general inference rules from which, given a set of premises, a conclusion can be
presumptively drawn (Prakken 2010). We extend research on practical reasoning using argumen-
tation schemes and critical questions (Atkinson, Bench-Capon, and McBurney 2006) and extend
it to plans. We build from the practical reasoning scheme for action proposals in Atkinson et al.
(2006) to justify plan proposals. Based on this model, we develop a plan critique based on the
elements of the scheme so as to give an added value to the process of selecting a plan. The added
value is based on the fact that agents use their preferences to agree on a plan and the use of a

154 R. Medellin-Gasque et al.

Agent 1 Agent 2

N\ e

Planner Planner

NS

Agent Plans

l

Dialogue | <—

Persuasion and Deliberation
Dialogue (agents’ preferences
l influence the plan modification

and selection)

Best
Agreed
Plan

Figure 2. Argumentative approach to plan selection.

strategy to prioritise questions. Our plan proposal ASP can be expressed as an argumentation
scheme as follows (full details of the argumentation scheme are given in Medellin-Gasque et al.
(2011)):

Given a social context! and

current circumstances?

in which a set of preconditions hold,

a plan PL should be executed

to achieve new circumstances,

causing a set of postconditions to hold,
which will realize the plan-goal,
which will promote a set of values?

We use action-based alternating transition systems (AATS) as introduced in van der Hoek,
Roberts, and Wooldridge (2007) as a semantic basis for our formalism to represent action and
plan proposals. AATS models define joint-actions that may be performed by agents in a state and
the effects of these actions. In particular, an AATS model defines semantic structures useful to
represent joint-actions for multiple agents, their preconditions and the states that will result from
the transition (Appendix 1).

In Table 1, we present our Argumentation Scheme for Plan proposals (ASP) and its expression
in the AATS model representation. A valid instantiation of the scheme presupposes the existence
of a regulatory environment or a social context X in which the proponent-agent has some rights
to engage in a dialogue with the cooperating agent. Current circumstances are represented by the
initial state go € Q, where Q is a set of states. An agent could instantiate the scheme to propose
plan PL as a finite set of related action combinations partially ordered with respect to time. The
plan leads to a state g, in which postconditions hold and the plan-goal G is achieved (where G is
an assignment of truth values to a set of propositions pg € ®) and a non-empty set of values Vi
is promoted/demoted. An example of how our plan proposal could be instantiated is as follows:

e Given the problem that two robot agents need to reach a zone travelling together with
constraints in the paths,

Argument and Computation 155

Table 1. Plan proposal ASP and the AATS model representation.

Plan proposal Using an AATS model

Given a social context X, in the current circumstances g Given social context X,

in which preconditions 7 (g,) hold plan PL should be
performed to achieve new circumstances g, in which
postconditions 7 (gy) will hold. This will realise the

In the initial state gy = g € Q, where 7 (qo),
agents a, b € Ag should execute plan PL,
where PL is a finite set of related joint-actions j,

plan-goal G which will promote value(s) V. partially ordered with relation to time
such that PL = {jo,...,jn}
and {jo, ..., Jn} € Jag and j, = {@g, .., ap}
with transition given by 7 (g, PL) is gy,
where 7(qo, {j1, - - -»jn}) = T(t(q0,j1)> (25 - - - »Jn))
and 7(qyx, {}) = g«
such that pg € m(gy) and pG ¢ 7 (gy), where G =p
and (Vg C V such that vy € Vg
iff 6(gx, gy, v1) is +)
and Vg # 0

agent 1 has the authority to propose a plan (given by the social context),

agent | believes the agents are in zone A (current circumstances),

agents are ready to leave at time ¢ (preconditions),

agents need to perform together plan PL,, consisting of a sequence of joint actions assigning
actions to both of them,

to reach zone D (new circumstances, goal),

e to promote efficiency and safety (values).

2.1. Critical questions for the plan proposal scheme

In Walton (2005), Walton explains ...arguments need to be examined within the context of an
ongoing investigation in dialogue in which questions are being asked and answered. Critical
questions provide a way to examine the acceptability of arguments instantiating schemes. Different
critical questions are used to critique different aspects of the argument. A benefit of having critical
questions associated with an argument scheme is that the questions enable dialogue participants
to identify points of challenge to an argument or locate premises and assumptions in the argument
that can be recognised as questionable. Questions can take the form of attacks if the agents provide
evidence to back up the claim. A weak question challenges an assumption rather than denying a
claim. This is a request for more information and does not incur any commitments (unlike a strong
attack).

Critical questions can be used as a basis on which to create rule-governed interaction protocols
called ‘Dialogue Games’ for agents where the participants put forward arguments (instantiating
the argumentation scheme) and opponents of the argument challenge it (by instantiating critical
questions) as in, for example, Atkinson, Bench-Capon, and McBurney (2005) and Heras, Navarro,
Botti, and Julian (2010). Essentially, the moves of the game correspond to the critical questions.
Argumentation-based dialogues are used then to formalise dialogues between autonomous agents
based on theories of argument exchange. We classify our set of 65 critical questions for the
plan proposal scheme ASP into seven layers according to the aspect of the proposal which is
challenged:

Layer 1: An action and its elements (lowest level).
Layer 2: The timing of a particular action.
Layer 3: The way actions are combined.

156 R. Medellin-Gasque et al.

Layer 4: The plan proposal overall.

Layer 5: The timing of the plan proposal.
Layer 6: Side effects.

Layer 7: Alternative options (highest level).

We now discuss each layer and present some examples of questions. The full list is presented
in Medellin-Gasque et al. (2012b).

Layer 1. An action and its elements (16 questions).
In this layer, questions aim to find inconsistencies for a particular action, challenging the validity
and possibility of the action elements. The validity of an action and an action element is given
by the existence of the action definition in the agent’s action repertoire, thus an agent challenging
the validity of an action or an action element says that the action has no definition in the agents’
representation of the world. We use the ‘durative action’ representation from the Planning Domain
Definition Language (PDDL) 2.1 planning specification in Fox and Long (2003) to question action
elements from a different perspective from the one used in Atkinson et al. (2006). The PDDL 2.1
specification is an extension to PDDL* for expressing temporal planning domains. Durative actions
are defined with elements such as action duration, invariant conditions, termination conditions,
start effects and end effects. Further details on the formalisation of the durative action in our plan
proposal could be found in Medellin-Gasque et al. (2011). Some example questions at this layer
are as follows:

CQA-01. Is the action possible?

CQA-02. Are the action preconditions as stated by proponent?
CQA-04. Are the action invariants conditions as stated by proponent?
CQA-07. Are the termination conditions as described possible?

Layer 2. The timing of an action (nine questions).
Here, questions focus on the possibility of the action with respect to a particular time point. This
layer includes the following questions:

CQAT-02. Is the action possible with the specified duration?
CQAT-06. What is the earliest time the action can start?

CQAT-08. Is it possible for the action to finish at the specified time?
CQAT-09. What is the earliest time the action can end?

Layer 3. The way actions are combined (10 questions).
In some types of plan (e.g. partial-plans), actions can be interleaved, so this layer presents questions
that focus the way two actions are combined in the plan, for example:

o CQAC-01. (For sequential actions) Could actions o; and o be performed concurrently?

o CQAC-02. (For sequential actions) Can the order of the actions be changed?

e CQAC-03. (For concurrent actions) Is there a conflict in any of the invariant conditions of
the actions?

e CQAC-06. (For concurrent actions) Is there a maximum duration for actions to perform
concurrently?

Layer 4. The plan proposal (11 questions).
The questions in this layer challenge the plan as a single entity with the elements that support it.
Examples include

e CQPP-01. Is the plan possible?
e CQPP-04. Are the current circumstances as stated by proponent?

Argument and Computation 157

e CQPP-12. Assuming the believed preconditions are true, will the plan bring about the
desired state?

e CQPP-14. Can the desired goal G be realised?

o CQPP-16. Are the values in Vg legitimate values?

We assume that values are subjective and represent a social interest of the agent, but agents should
have a common ontology regarding values, so questions about the legitimacy of values are relevant
to align the ontology.

Layer 5. The timing of the plan proposal (10 questions).
Here, questions focus on the plan possibility given the times specified. This layer includes the
following questions:

CQPPT-01. Is the starting point for the plan fixed? If not, what is the range allowed?
CQPPT-05. Can the plan duration be longer?

CQPPT-06. Is the plan possible with the specified duration?

CQPPT-16. Is the plan possible at the specified start time?

Layer 6. Side effects’® (five questions).
Here, questions in this layer consider plan side effects not previously considered. These include
the following questions:

o CQSE-01. Does performing the plan have a side effect which demotes the value v,?
o CQOSE-04. Does performing the plan preclude doing some other action which would promote
some other value v, ?

Layer 7. Alternative options (four questions).
Here, questions consider other possibly better alternatives, such as:

o CQAO-03. Is there an alternative plan that promotes the same value v,?
o CQAO-05. Is there an alternative plan to realise the same goal G?
o CQAO-09. Is there another agent Ag; that could perform action o?

Whilst we leave open the possibility for further questions to be added to our categories, we
have generated the list from a systematic analysis of the various elements of our argumentation
scheme and hence believe that it can be taken as complete for our current purposes. We believe
a comprehensive dialogue about plans should cover the plan at different levels and enable all
aspects of the plan to be questioned therefore the need of 65 questions to critique plans in detail at
several levels. In particular implementations, assumptions can, if desired, be made which will
place certain aspects beyond question and so reduce the number of questions. By providing the
full range of questions our scheme leaves the choice to the implementation in the light of their
particular needs. In the next section, we present the details of a dialogue game protocol based on
these critical questions.

3. Dialogue game protocol

To define our dialogue game, we use the elements presented in McBurney and Parsons (2009),
where the authors describe the elements of a dialogue game:

e Commencement rules: rules which define the circumstances under which the dialogue can
start.

e Locution rules: rules that indicate which utterances are allowed.

e Combination rules: rules which define the dialogical context under which particular locutions
are permitted or not, or obligatory or not.

158 R. Medellin-Gasque et al.

e Commitment rules: rules which define the circumstances under which participants incur
dialogical commitments by their utterances, and thus alter the contents of the participants’
associated commitment stores.

e Combination of commitment rules: rules which define how commitments are combined
or manipulated when utterances incurring conflicting or complementary commitments are
made.

e Speaker order rules: rules which define the order in which speakers may pose utterances
and when the current speaker changes.

e Termination rules: rules that define the circumstances under which the dialogue ends.

We based our dialogue game protocol on these elements focusing on the locutions and the
rules for the combination of locutions. Our protocol is also inspired by the protocol presented
in Atkinson et al. (2005), where a persuasion dialogue is used to enable agents to argue about
proposals for action with a common goal and different preferences. The elements of our protocol
are as follows:

Commencement rules: the social context determines which agents can initiate and participate
in dialogues, so that some agents have the power to start dialogues by creating a dialogue thread
which others can join.

Locution rules: the protocol uses mainly the locutions in the Fatio protocol in McBurney and
Parsons (2004), where the authors extended the agent communications language FIPA ACL (FIPA
2002) locutions to handle rational argument dialogues. The Fatio locutions are: assert, question,
challenge, justify and retract. We add the locutions accept, reject, that allow to accept or reject
specific plan proposals or actions. We assume that the language syntax comprises two layers as
presented in the FIPA ACL specification. The outer (wrapper) layer comprises the locutions which
express the illocutionary force of the inner content (the speech acts) and the inner layer related to
the topic of the discussion.

Commitment rules: each proposal and assertion results in a dialogical commitment for the
agent.

Combination of commitments rules: specific locutions are available to drop commitments.

Speaker order rules: order and turn taking are determined in the postconditions of each
locution.

Termination rules: the dialogue finishes when a proposal is accepted by all the participants,
when no more proposals are available for evaluation or when all the participants leave the dialogue.

Our protocol is divided into six stages that group locutions together and help to define the
semantics of the protocol. The stages are based on those presented in McBurney, Hitchcock, and
Parsons (2007), where dialogue stages for a deliberation dialogue are specified as a part of a
formal framework. Hulstijn uses a similar five-stage model for negotiation dialogues in Hulstijn
(2000). Our dialogue game stages are (details of our dialogue game protocol are presented in
Medellin-Gasque, Atkinson, and Bench-Capon (2012a)) given as follows:

(1) Opening stage: this stage is to ensure that all the agents that join the dialogue commit to
cooperate towards agreeing on a plan. We assume that the permissions to participate in the
dialogue are given by the social context.

(2) Plan proposal stage: this stage is where an agent takes the proponent role and puts forward
a plan to reach a goal. Agents can adopt one of two roles in the dialogue, the proponent-
agent or the respondent-agent. It is important to mention that although each proposal is
evaluated separately, the protocol enables participants to present several proposals until
one is generally accepted.

Argument and Computation 159

Table 2. Protocol syntax and informal semantics.

Locution Preconditions Postconditions
open_dialogue(d, ag) Agent ag has permission to open the Dialogue d created
dialogue
Dialogue stage opening
enter_dialogue(d, ag) Dialogue stage: open Agent ag in dialogue d
Agent ag has permission to join the Dialogue stage: proposing
dialogue d
propose(d, ag, aspy) Dialogue d created Proposal for plan asp, created
Agent ag in dialogue d Agent ag committed to the elements in

Dialogue stage: proposing

question(d, ag, aspn, qn) Proposal asp, asserted
Dialogue stage: evaluating
Agent ag is in dialogue d
Dialogue stage: evaluating

assert(d,ag,aspn, d,qn) Proposal asp,, asserted
Question g, asserted

Dialogue stage: evaluating
challenge(d, ag, aspy, qn) Proposal asp,, asserted
Dialogue stage: evaluating

Justify(d, ag, aspy,) Proposal asp,, asserted
Challenge for ¢ asserted
retract(d, ag, aspy) Proposal asp, asserted
agreel(d, ag, asp,) Proposal (asp,) asserted by agent ag

reject_proposal(d, ag, asp,) ~ Proposal asp, open
Dialogue stage: selecting

leave_dialogue(d, ag) Dialogue d created
Agent ag in dialogue d

proposal ASP
Dialogue stage: evaluation
Agent ag takes proponent role
Element related challenged by question gy,
Agent ag takes respondent role
Dialogue stage: evaluating

Agent ag committed to element ¢

The assertion represents an answer for
question g,

Dialogue stage: evaluating

Element challenged by ¢,

Agent ag takes respondent role

Dialogue stage: evaluating

Agent ag committed to ¢

Dialogue stage: evaluating

Agent ag not committed to asp,

Proposal asp, accepted by ag

Dialogue stage: selecting

Dialogue stage: proposing

Proposal asp, closed

Agent ag out of dialogue d

Agents’ ag not committed to any element

(3) Evaluation stage: in this stage, the respondent agent uses our set of critical questions to
pose attacks on a proponent agent’s argument in the proposal. The proponent can either
assert information to provide evidence or retract the element or proposal.

(4) Refinement stage: we use this stage to refine the plan by proposing new actions. This stage
differs from the evaluation stage in the sense that the evaluation is performed at the action
level. This stage enables deliberation dialogue where agents can engage in a dialogue about

how to achieve their goals.

(5) Selection stage: the evaluation of accepted proposals is done in this stage. The dialogue
has two outcomes, either a consensus for a plan execution is reached or not.
(6) Closing stage: at this stage, agents finish their participation in the dialogue following an

acceptance or rejection of the proposal.

Table 2 presents examples of the syntax and the informal axiomatic semantics of the protocol.
We next define our strategies to select critical questions to be used in the Evaluation stage of our

protocol.

4. Strategies to select critical questions

In open environments it is, in principle, desirable that agents engaged in a dialogue have the
freedom to pose any question, but in some scenarios, agents may be restricted by preconditions
imposed by the domain, the social context or the dialogue protocol. While this restricts the freedom

160 R. Medellin-Gasque et al.

of the agents, it typically has benefits in terms of the efficiency and coherence of the dialogue.
We focus on the process of selecting from a set of critical questions once the communicative act,
in this case question(), has been selected but the content remains to be determined. A different
problem is to select the communicative act itself and different strategies could be applied as in
Amgoud and Hameurlain (2007), where the authors define a strategy for dialogue move selection.
In this article, we consider a strategy to be a process with two steps: (1) identify the differences
between the respondent’s representation of the world and the proposal presented by the proponent
to generate potentially useful questions and (2) prioritise the questions and select which one to
pose. We now discuss these two steps in more detail.

4.1. Belief representation alignment

Our respondent agent identifies questions to present based on the information in the proposal.
When finding these questions we are verifying the plan presented against the local specification of
the respondent. The process used to identify questions compares the information of the proposal
which is: the goal, the initial state, the action specification, the social context and the values
involved against the agent’s local beliefs about the world. If an inconsistency is detected, the
related question is added to a list of potentially useful questions. We distinguish this problem from
an ontology alignment problem. Of course, there may be an element of both problems in a scenario
such as this but we assume that the ontologies are the same for agents or that any differences have
been resolved before the dialogue starts.® We use the pseudo-code in Table 3 to obtain questions
comparing the information in the proposal with its beliefs.

In a cooperative dialogue scenario such as the one we are considering agents need to agree on
their beliefs about the world. In a continuously changing environment, this may be very difficult.
Evenif agents agree at some point on a set of circumstances, a change could happen that invalidates
several coordination agreements between agents. This means the protocol semantics should allow
questions about the domain to be posed more than once. The process to create questions identifies
and helps to resolve conflicts in the world representation of the agents after which the process
can be continued by selecting the best-possible plan based on their preferences. The process of
identifying questions takes into account the fact that some questions depend on the outcome of

Table 3. World representation alignment pseudo-code.

Step Comment
1. IdentifyConflicts() Information taken from the plan proposal
2. CheckPlanGoal() Inconsistencies in the plan goal
3. If inconsistency detected
4. AddQuestions() Creating the sublist with possible attacks
5. ChecklInitialState() Inconsistencies in the initial state
6. If inconsistency detected
7. AddQuestions()
8. For each Action in the plan
9. CheckActionSpecification() Inconsistencies in the actions specification
10. If inconsistency detected
11. AddQuestions()
12. Next Action
13. CheckSocialContext() Inconsistencies in the social context
14. If inconsistency detected
15. AddQuestions()
16. CheckValues() Inconsistencies in the values
17. If inconsistency detected
18. AddQuestions()

19. End

Argument and Computation 161

others. For example, when checking for the validity of an action element, if the action is not valid,
there is no point in considering the question of whether the action is possible.

4.2. Question prioritising and selection

Critical questions were classified into seven layers in Section 2. We now present a more detailed
analysis of the critical questions to further classify and order them taking into account this finer
grained description. When categorising the questions our aim is to identify their intrinsic purpose
in the dialogue, which we use to give the questions a priority in our strategies. From a general
perspective, in a planning scenario, critical questions may refer to the domain, to the plan, or to
the scheduling of the actions. We take this categorisation as our first-ordering criterion. Intuitively,
we want first to resolve inconsistencies of beliefs about the domain (to create valid plans), then
focus on the plan itself and finally, focus on the scheduling elements of the plan. A standard Al
planning process in fact follows the same order: a valid domain and problem representation are
the input of a generic planner algorithm and once the plan is created, a scheduling process can be
applied to it.

The next categorisation refers to the way a proposal could be questioned depending on the
nature of the critical question. From the set of our questions, a question can challenge:

The suitability of an element (e.g. Are there any side effects when executing action o?)
The validity of an element (e.g. Do the termination conditions of action o hold?)

The possibility of an element (e.g. Are the current circumstances possible?)

The possibility in time of an element (e.g. Is it possible to execute action o at time t?)
Other possible better alternatives (e.g. Is there an alternative plan to reach the goal?)

This categorisation provides an order in which questions can be posed. We first want to establish
that the plan proposed is suitable for the context based on the motives that it satisfies. We include
in the suitability questions, for example, Do the new circumstances already pertain? or Does
the goal promote value v? It may not make sense to argue about the validity of an element if
the intrinsic motives to perform the plan are not fully agreed by all parties. Once agreed as to the
suitability, we can question the validity of the elements to resolve any conflicts about the beliefs
of the world that the agents have (e.g. Is action o valid?) Once agents agree on the validity
of the elements, the possibility of the plan can be addressed. An element can be valid but not
‘possible’ for the current state of the world when an agent has the action in its repertoire but the
preconditions are not currently satisfied, necessitating another step in the plan to enable the action.
For example, the action fakeTrain() may be recognised by the agents as a valid action to perform
in the world but may not be possible to perform it at a certain train station or at a certain time.
When we deal with possibility questions, a finer grain of detail may be addressed leading us to
consider the actions that are possible for the plan. With the actions we can follow the same order,
first suitability questions, then validity questions and finally possibility questions. Finally, we can
focus on alternative plans as a direct attack on the critiqued plan. The plan proposed may be valid
and acceptable for all the involved agents but still another plan may be a better option given their
preferences. If we combine both categorisations, we obtain a priority order to consider critical
questions in a dialogue. We designate this strategy s1, and also consider a different priority order
placing validity questions before the suitability questions to create strategy s2 (Table 4 presents
the two strategies). Each one of layers presented in Section 2.1 can have questions of the types
presented above. We believe that this categorisation is better to create a priority order for questions
in a dialogue than simply progressing through the critical questions layers. In the next section,
we present an implementation where agents use these strategies in a dialogue simulation with
various scenarios and analyse the results together with a random question selection approach,
which provides a base line for comparison.

162 R. Medellin-Gasque et al.

Table 4. Order in which questions are considered for both strategies.

Strategy s1 question order Strategy s2 question order
1. Plan suitability 1. Actions’ validity

2. Actions’ suitability 2. Plan elements’ validity

3. State of the world suitability 3. Plan suitability

4. Plan elements’ validity 4. Actions’ suitability

5. Actions’ validity 5. Norms suitability

6. State of the world validity 6. Plan elements’ possibility

7. Actions’ possibility 7. Plan elements’ possibility in time
8. Actions’ possibility in time 8. Actions’ possibility

9. Plan elements’ possibility 9. Actions’ possibility in time
10. Plan elements’ possibility in time 10. State of the world validity
11. Alternative actions 11. Alternative actions

12. Alternative plans 12. Alternative plans

5. Implementation

In this section, we describe experiments that show the effect of following our strategies on the
effectiveness and efficiency of the dialogues. The strategies guide the process of selecting moves
in a dialogue between two agents. In the example problem, two agents (John and Paul), who are
in Inverness and need to attend a conference in Paris, have to choose between different possible
routes travelling together. The actions that can be combined to reach the goal are: rakeTrain(),
takeFlight() and takeCoach() through different cities (Inverness, Manchester, London, Paris).”
Each city has restrictions on the availability of the train, plane and coach connections. Several
values are used: value v; = money, the cheapest option, value v, = time, the fastest option, value
v3 = friendship, travelling with a friend, and value v4 = comfort, the most comfortable way to
travel.

The purpose of the implementation is to apply the selection strategies in a scenario where agents
engage in a persuasive dialogue to select the best plan. We designed four test cases where agents
have different plans and information about the world. Then, we give agents a set of preferences
and a strategy and run a dialogue simulation where agents propose plans using our dialogue game
to discuss with one another and select the best-possible plan for both. The strategy is applied to
the questioning process that rejects or accepts the plan based on the validity of the information
the agents present. We use our two strategies and also one in which questions are posed randomly
to provide a comparison point. We now describe briefly the dialogue protocol implementation,
which is fully set out and described in Medellin-Gasque et al. (2012a).

5.1. Dialogue protocol implementation

To implement our protocol, we use TuCSoN (Tuple Centres Spread over the Network), a software
platform for tuple-centre applications (Omicini and Zambonelli 1999). Tuple-based coordination
models originate from the field of paralleling programming, but their features are also useful for the
coordination of distributed systems (Gelernter and Carriero 1992). A tuple-centre is basically an
enhancement of a tuple space, where agents synchronise and cooperate over information available
in a shared data space through a behaviour specification. A tuple-centre is thus a tuple-space
enhanced with a behaviour specification that defines the responses or reactions to communication
events (Omicini and Denti 2001). These responses are specified in terms of a reaction specification
language: TuCSoN uses ReSpecT (Reaction Specification Tuples) (Denti, Natali, and Omicini
1998), which adopts a tuple language based on first-order logic to define logic tuples that are
accessible via standard communication operations. The protocol syntax and semantic rules are
preloaded in the fuple-centre as ReSpecT rules. The TuCSoN infrastructure permits tuple-centres

Argument and Computation 163

to be saved making them persistent. We use this feature to load the protocol each time a dialogue
is started. Valid locutions are in the form of persistent tuples and protocol semantics are specified
using ReSpecT reactions. Table 5 presents the ReSpecT tuples used to define the syntax of our
protocol. The parameters used in the locutions are (Di) dialogue identifier, (Ag) agent identifier,
(Pr) proposal identifier, (Ac) action identifier, (CgN) critical question and (Ev) evidence.

The semantics of the protocol are embedded in the tuple-centre as ReSpecT reactions. As an
example, the semantics for the propose locution as a ReSpecT reaction are given in Table 6.

5.2. Agent and system architecture

An Al planning task requires a description of the initial state, a set of action capabilities and
a set of private goals. We base our world representation in the PDDL originally introduced in
Ghallab et al. (1998) and revised in Fox and Long (2003) (PDDL 2.1) to handle durative actions.
Typically, a PDDL specification consists of a set of predicates, a set of actions with parameters,
preconditions and effects. PDDL 2.1 introduced the concept of durative actions as explained in
Section 2 and permits the duration together with more conditions and effects to be included in the
action. A condition could be labelled as at_start, over_all and at_end, and effects can be specified
as at_start and at_end. We use Java classes to represent the action elements and the state of the
world. Each of our agents has a ‘Dialogue Manager’ in charge of the communication with the
tuple-centre and a configurable strategy to select critical questions. Figure 3 gives an overview of
the agent components and the system architecture.

Table 5. Protocol syntax and ReSpecT format.

Locution ReSpecT format Description

open_dialogue()
enter_dialogue()
propose_plan()
accept_proposal()
retract_proposal()
propose_action()
accept_action()
retract_action()
question()

assert()

leave _dialogue()

loc(open(Di, Ag))
loc(enter(Di,Ag))

loc(propose(Di, Ag, Pr))
loc(accept_proposal(Di,Ag, Pr))
loc(retract_proposal(Di, Ag, Pr))
loc(propose_action(Di,Ag, Pr,Ac))
loc(accept_action(Di,Ag, Pr,Ac))
loc(retract_action(Di,Ag, Pr,Ac))
loc(question(Di,Ag, Pr,CgN))
loc(assert(Di,Ag, Pr,CgN, Ev))
loc(leave_dialogue(Di,Ag))

Agent opening a dialogue

Agent entering the dialogue

Agent proposing a plan in proposal Pr
Agent accepting the proposal

Agent retracting the proposal

Agent proposing action for a plan
Agent accepting an action

Agent retracting an action

Agent questioning an element in Pr
Agent asserting evidence to question CgN
Agent leaving the dialogue

Table 6. ReSpecT semantics for the propose locution.

ReSpecT reaction Description

reaction(out(propose(Di,Ag, Pr)),
Preconditions
(rd_r(loc(propose_plan(_,_ ,_))),

Reaction tuple for the proposed plan

Check the locution is in the protocol syntax

rd_r(dState(proposing)),
rd_r(participant(Di, Ag)),

Postconditions

out_r(dhistory(propose_plan(Di,Ag, Pr))),
in_r(dState(open)),
out_r(dState(evaluating)),
out_r(committment (Ag, Pr)),
out_r(role(Di, rolePr,Ag)),
in_r(propose_plan(—,— ,_)))).

Check the dialogue state
Check participant Ag is in the dialogue

Insert dialogue history tuple

Delete previous dialogue state

Insert new dialogue state

Insert dialectical commitment to proposal Pr
Assign role proponent to the agent

Clean auxiliary tuples

164 R. Medellin-Gasque et al.

Argument & Computation

ReSPecT reactions
Protocol Semantics

TuCSoN

Permanent Tuples

Shared Information
Dialogue History
Plan Proposals

Protocol Syntax
Critical Questions

Post and retrieve plan information through locutions
out
in

Dialogue
Manager

\Plans

Planning
Engine

Figure 3. System architecture.

We use the ‘Dialogue Manager’ concept from the TRAINS implementation presented in Allen
et al. (1995), where a conversational planning agent engages in a dialogue to create a plan, using
feedback received from the interaction. The Dialogue Manager in our system has the following

main tasks:

il‘\ out

Dialogue
Manager

F'Ians/

Planning
Engine

(1) Identify questions to pose (validating local information).
(2) Apply the critical question selection strategy.

(3) Create the proposal tuples.

(4) Provide the interface to communicate with the tuple-centre to post and retrieve tuples;

tuple centre tasks comprise:
e Validate the protocol syntax.

Validate the protocol semantics.

Retrieve dialogue participants.

[]
e Retrieve critical questions.
[
[

Retrieve the dialogue history.

5.3. Dialogue runs

A dialogue-run in our experiments consists of the following steps:

(1) A proponent agent (PRO) initiates the dialogue.

(2) The agent’s planning engine selects the preferred plan according to its value preference

and current beliefs.

(3) The dialogue manager transforms the plan into a proposal object.
(4) The dialogue manager creates a valid tuple using the proposal object.
(5) The protocol in the tuple centre validates the locution.

(6) The respondent agent (RES) acknowledges the proposal and starts the questioning process,

applying the strategy.

Argument and Computation 165

(7) The questioning process involves RES questioning PRO over the elements in the proposal
until acceptance, retraction or rejection.

(8) When the RES agent poses the question: COQAQO-03. Is there an alternative plan to realise
the same goal? the agent roles change. RES gets a turn to propose and evaluate its preferred
plan (note that we just give RES one chance to put forward its preferred plan®).

(9) Once the questioning process finishes, if the preferred plan for both is the same the dialogue
finishes. Where we have two valid plans at the end of the evaluation PRO selects the plan
which promotes more values, or when these are equal, the plan that demotes fewer values.
Further details on how the dialogue runs are implemented are given in the next section
when we analyse the results.

Since we use a Java implementation, the communication between modules is done through
objects. The pseudo-code in Figure 4 shows how the agents create and interchange objects for a
dialogue run from the point when the proposal needs to be posted.

Proponent Agent
01. ProposePlan()

02. \\Agent selects the preferred plan

03. PlanningEngine.IdentifyBestPreferredPlan()
04. \\Create proposal from object plan

05. DialogueManager.CreateProposal ()

06. \\Post proposal to the tuple centre

07. Dialogue Manager.PostTuple()

08. TucsonContext.PostTuple ()

09. \\Proponent waits for questions

10. DialogueThread.WaitforQuestions()

11. If PlanQuestioned()

12. For each question

13. \\Search for evidence related to question
14. DialogueManager.SearchEvidence ()

15. If EvidenceFound()

16. DialogueManager.ProvideEvidence ()
17. else

18. DialogueManager.RetractProposal ()
19. End if

20. Next

21. End If

22. End

Respondent Agent
01. DialogueThread.AnswerProposal()

02. DialogueManager.ApplyStrategy ()

03. \\Identify valid questions

04. DialogueManager.IdentifyConflicts()
05. \\Order questions based on strategy
06. DialogueManager.Orderquestions ()
07. While QuestionList.haselements()
08. \\Post question to the tuple centre
09. DialogueManagerPostQuestion()
10. \\Wait from proponent answer
11. DialogueThread.WaitforAnswer ()
12. If EvidenceNotProvided()

13. \\Question defeats proposal
14. break ()

15. End If

16. End While

17. End

18. End

Figure 4. Pseudo-code for the proponent and respondent agents’ functions in a dialogue simulation.

166 R. Medellin-Gasque et al.

5.4. Scenarios used in the experiments

The plans used by our agents in our experiments are presented in Table 7 together with the status
of their values (promoted(+), demoted(—) or neutral(=)). Although each individual action could
be associated with a value, for the sake of simplicity here we will only consider values related to
the plan as a whole.

We use 2 agents and 20 test cases presented in Tables 8 and 9 to generate dialogue runs. Test
cases are formed by providing the agents with:

(1) Information about the world:
e A set of constraints that represent the social context.
e A belief about the initial state.
e A set of action specifications.

(2) A set of plans.

(3) A set of values.

(4) A preference order over values.

In the different test cases, we change the validity of some elements in the plans and/or world
representation for each agent to create different runs. We give agents four different sets of infor-
mation about the world and plans (presented in Table 8) and we combine them with five different
preference orders (Table 9) to generate the 20 test cases. In Table 8, a check mark (v') indicates the
validity of the element and a cross (x) indicates some problem in the specification. The validity
of elements (actions conditions, action effects) is represented using a ‘token attribute’ associated
with each element. That the ‘token’ is false represents that the element validity against the context
has expired.

In test case A, both agents have valid plans and their beliefs about the world are aligned. This
test case generates only questions about alternative plans. In test case B, John’s plans p, p», p3 are

Table 7. Agents’ plans.

Plan Actions Values
p1 — Coach Jj1 = takeCoach(Inverness, Manchester) V] = money +
Ja = takeCoach(Manchester, London) vy = duration —
Jj3 = takeCoach(London, Paris) v3 = friendship =
v4 = comfort —
p2— Trains Jja = takeTrain(Inverness, Manchester) V| = money =
Js = takeTrain(Manchester, Paris) vy = duration =
v3 = friendship +
v4 = comfort +
p3 — Flight Jjo = takeFlight(Inverness, Paris) V| = money -
vy = duration +
v3 = friendship -
v4 = comfort =
p4 — Coach—train Jj1 = takeCoach(Inverness, Manchester) V| = money =
Js = takeTrain(Manchester, Paris) vy = duration —
v3 = friendship +
v4 = comfort =
ps — Train—flight Jj71 = takeTrain(Inverness, London) Vi = money -
Js = takeFlight(London, Paris) Vo = duration =
v3 = friendship =
v4 = comfort =

pe — Coach—train—flight J1 = takeCoach(Inverness, Manchester) Vi = money
Jo = takeTrain(Manchester, London) vy = duration =
Jj10 = takeTrain(London, Paris) v3 = friendship =

v4 = comfort

Argument and Computation 167

Table 8. Test cases.

Test case John’s plans John’s beliefs Paul’s plans Paul’s beliefs
A P1 v' Social context constraints v’ D4 v' Norms v
P2 v/ Initial state v s v' Initial state v
P3 v' Action specification v Action specification v/
Pe v
B D1 X Social context constraints v~ D4 v" Norms X
D2 X Initial state v s v/ Initial state X
D3 X Action specification v Action specification v/
P6 v
C p1 v" Social context constraints v~ Ds v" Norms v
§23 X Initial state v pa x Initial state v
P3 x Action specification v Action specification v/
D6 v
D p1 v" Social context constraints v~ P4 v" Norms v
23 X Initial state X s v' Initial state v
P3 v' Action specification v Action specification v/
Pe v
Table 9. Test case agents’ preferences.
John’s preference orders Paul’s preference orders
Run Values Plan Values Plan
1 VI > V4> V3> V) vy in pj V3> V4>V > V) V3 in py
2 V3> V) >V > Vg4 vz in py V3> V4>V > V) V3 in ps
3 Vo > V| > V3 > V4 vy in py V) > V4>V > V3 v in ps
4 V3>V > V4> v3 in p Vi > V) > V4> 13 v in pg
5 VI > V4> V3> V) vy in pj V) > V4> V3 > V) V3 in py

not valid and induce questions about the validity and possibility of action elements (any preference
over these plans has to be re-evaluated after the dialogue). Some constraints and initial state of
the world believed by Paul are not valid, and so this situation generates questions regarding the
validity and possibility of the elements. In test case C, John’s plans p,, p3 are not valid and Paul’s
plan py is also not valid. In test case D, John’s initial state is not valid nor is his plan p,. Dialogue
runs for this test case aim to question the proposals at the suitability level.

Table 9 presents the five sets of preference orders we use for the two agents. Agents may change
their preferred plan once the dialogue finishes, depending on the outcome of the questioning
process. More details on how the agents’ preferred plan changes after the dialogue is given in
the results presented in the next section. To exercise the different combinations of the strategy
used, we ran each test case six times combining the strategy used (strategies s1, s2 and a random
approach) with the agent that starts the dialogue (two agents), to determine whether which agent
goes first has a significant influence on the dialogue. In this approach, critical questions cannot be
on their turn attacked (as is the case of attacks using arguments in a dialogue game) and should
be answered.

From the complete list of 65 critical questions, we have implemented 28 questions for these
experiments.” We implemented critical questions related to validity, possibility and suitability for
the action and plan specifications, alternate plans and side effect questions. We intend to investigate
the characteristics as part of future work. An annotated example of a dialogue run outcome is given
in Appendix 1.

168 R. Medellin-Gasque et al.

6. Evaluation

To analyse the results, we record for each run the number of proposals, the number of questions
and the outcome of the dialogue. In Tables 10—17, we present the results of the dialogue runs. We
discuss the results presented in each table and conclude with an overall analysis of the results.
The tables present the results for each test case separately, each run (characterised by the agents’
preference over plans) is executed three times, one for each of our strategies and one random
approach. Results for each test case are presented in two tables, depending on the agent that
starts the dialogue. The results present the number of proposals and the order in which they were
evaluated, together with the outcome of the plan evaluation (a check mark (v') for an accepted
proposal, and a cross (x) for a rejected proposal). Finally, we present the overall number of
questions evaluated (Qs) and the selected plan. We analyse now each test case separately.
For test case A (Tables 10 and 11), we can observe the following:

e Neither plans nor agents’ beliefs have inconsistencies and in A1-A4 both strategies just pose
one question: CQAQO-05. Is there an alternative better plan to reach the goal? In the random
approach, the respondent agent has to go through all the questions, because the random
approach has no process to identify relevant questions.

e For this test case, where no inconsistencies were found, there is no difference in the results
when we change the agent that starts the dialogue.

e Inrun Al, after plans p; and p4 are evaluated, the proponent selects plan p4, which demotes
fewer values than plan p; following step (9) from Section 5.3. This selection is used in runs
Al1-A4 in Tables 10 and 11.

e In run A5 from Table 10, plan p; is discarded because of its side effects identified by
question: COSE-01. Does the plan p have a side effect which demotes the value v,? Plan
p1 demotes value v, = duration, which is Paul’s highest ranked value. Similarly, in run AS
from Table 11, plan ps demotes value v; = money, John’s highest ranked value.

From test case B results (Tables 12 and 13), we can observe the following:

e When John: starts the dialogue, plan proposal pg is always selected since it is the only valid
plan.

e In run Bl from Table 12, agents evaluate five proposals. It is worth mentioning that even
though plans p4 and ps are valid plans, Paul: has incorrect beliefs about the initial state and
that is why the proposals are rejected.

Table 10. Test case A when John starts the dialogue.

Run Preference before dialogue After dialogue Strategy Proposals Qs Plan selected
Al John: p; John: p; sl 2-p1(vV),pa(v') 1 P4
Paul: py Paul: py 52 2-p1(vV),pa(v') 1 D4
Random 2-p;(v),ps(V") 119 yn
A2 John: p; John: p; sl 2-pa(V),pa(v) 1)23
Paul: py Paul: py 52 2-p2(V),pa(v’) 1 P2
Random 2-p;(V),ps(v) 169 P2
A3 John: p3 John: p3 sl 2-p3(v),ps(V) 1 D3
Paul: ps Paul: ps 52 2-p3(vV),ps(V) 1 P3
Random 2 -p3(v),ps(v) 91 3
A4 John: p, John: p, s1 2-pa(vV),pa(v') 1 D2
Paul: py Paul: py 52 2—pa(V),pa(¥V') 1 P2
Random 2 -pr(V),psa(vV") 169 P2
A5 John: py John: py sl 3—p1(x),p2(V),ps5(x) 3 P2
Paul: ps Paul: — 52 3—p1(x),p2(V),ps5(x) 3 P2

Random 3 —p;(x),pa(vV),ps(x) 148 D2

Argument and Computation 169

Table 11. Test case A when Paul starts the dialogue.

Run Preference before dialogue After dialogue Strategy Proposals Qs Plan selected
Al John: py John: py s1 2-ps(V),p1 (V) 1 D4
Paul: py Paul: py 52 2-ps(V),p1 (V) 1 pa
Random 2-ps(V),p1(vV) 119 P4
A2 John: p, John: p, s1 2-pa(V),p2(V) 1 D2
Paul: py Paul: py 52 2—ps(V),p2(V) 1 P2
Random 2—-ps(V),p2(V) 169)23
A3 John: p3 John: p3 sl 2-ps(v),p3(v") 1 3
Paul: ps Paul: ps 52 2-ps(V),p3(v) 1 D3
Random 2 -ps5(v),p3(v) 91 D3
A4 John: p; John: p; sl 2—-ps(V),p2 (V) 1)23
Paul: py Paul: py 52 2-ps(vV),p2(vV) 1 P2
Random 2—p4(V),p2 (V) 169 P2
A5 John: py John: — sl 3 —ps(x),pa(V),p1(Xx) 3 Da
Paul: ps Paul: py 52 3 —p5(x),pa(v'),p1(x) 3 D4
Random 3 —ps5(x),pa(v),p1(x) 148 Pa

e In run B2, agents evaluate three proposals. First, plan proposal p; is rejected by Paul. The

next value preferred for John: is v,, so John: picks ps which is neutral to v, (plan p; is
also neutral to v, = duration). Finally, Paul proposes plan p4 through the alternate question
option; the proposal is rejected and the proposal process stops.

For test case B, strategy s2 performs better than strategy s1 in terms of the number of
questions evaluated because most of the inconsistencies were induced by the possibility for
action conditions in the plan representations and strategy s2 considers these aspects first. As
stated above, Strategy s1 puts forward suitability questions first, followed by validity and
possibility questions.

e When Paul starts the dialogue (Table 13), there is no outcome since none of the plans

presented is valid according to Paul’s beliefs. Although plan p4 and plan ps are valid plans,
Paul has incorrect beliefs about the initial state and this is the reason why the proposals
are rejected. Because Paul starts, John: does not get the chance to present plan pg because
the plan is not preferred in any run. The dialogue implementation is thus not fair in that
there can be a difference in the outcome depending on who starts the dialogue. We give
the respondent agent just one opportunity to pose its best-preferred plan, and if that plan
turns out to be not valid, there is no second chance, whereas the proponent agent has the
opportunity to propose all its plans until one is accepted. The protocol can handle multiple
proposals for different agents, but the way the dialogue examples were designed does not
have the flexibility required to allow a fair dialogue independent of the agent that starts the
dialogue. The problem could be addressed by re-starting the dialogue with the other agent
going first and having a procedure for adjudicating cases where the outcomes differ.

e In all the runs for this test case, agents do not have a preference after the dialogue since the

plan selected does not promote their preferred option. Nevertheless, the best plan according
to the next value in the agent’s preference order is selected. In this test case, this is not
evident since only one plan is valid in the final evaluation.

From test case C results (Tables 14 and 15), we can observe the following:

e Again strategy s2 performs better than strategy s1 in terms of number of questions evaluated.
e When Paul starts the dialogue in run C1 Table 15, the preferences after the dialogue are:

John plan p; and Paul plan ps, John: selects p; because between these two plans, p; is the
plan that promotes more values.

170 R. Medellin-Gasque et al.

Table 12. Test case B when John starts the dialogue.

Preference

Run before dialogue After dialogue Strategy Proposals Qs Plan selected
Bl John: p, John: — s1 5= p1(x),p2(x),p3(x), pe(v'), pa(x) 23 Dé
Paul: py Paul: — 52 5= p1(x),pa(x), p3(x), pe (V') pa(x) 12 D6
Random 5 —p1(x),pa(x),p3(x),pe(v),pa(x) 184 D6
B2 John: p; John: — sl 3 —pa(x),pe(V), pa(Xx) 15 D6
Paul: py Paul: — 52 3 —pa(x),pe(V'),pa(X) 9 Pe
Random 3 —pa(x),pe(v), pa(x) 150 D6
B3 John: p3 John: — sl 3 —p3(x),pe(v),p5(x) 13 Pe
Paul: ps Paul: — 52 3 —p3(x),pe(V),ps5(Xx) 8 D6
Random 3 —p3(x),pe(v'),ps(x) 168 123
B4 John: py John: — sl 3 —pa(x),pe(V'),pa(x) 15 Pe
Paul: py Paul: — 52 3 —pa(x),pe(v'), pa(x) 9 Pe
Random 3 —ps(x),pe(v'), pa(x) 150 123
B5 John: py John: — sl 5—p1(x),p2(x),p3(x), pe(v), p5(x) 15 Pe
Paul: ps Paul: — 52 5—p1(x),p2(x), p3(x), pe(vV),ps(x) 23 D6
Random 5 —p(x),pa(x),p3(x),pe(v),ps(x) 139 P6

Table 13. Test case B when Paul starts the dialogue.

Run Preference before dialogue After dialogue Strategy Proposals Qs Plan selected
Bl John: p; John: — sl 3 — pa(x),ps5(X),p1(X) 10 -
Paul: py Paul: — 52 3 —pa(x),ps(x),p2(x) 4 -
Random 3 —pa(x),ps(x),p2(x) 157 -
B2 John: py John: — sl 3 —pa(x),ps5(x),p2(x) 14 -
Paul: py Paul: — s2 3 — pa(x),p5(X),p2(X) 6 -
Random 3 = pa(x),ps(x),p2(x) 171 -
B3 John: p3 John: — s1 3 —ps5(x), pa(x),p3(x) 12 -
Paul: ps Paul: — 52 3 —p5(x),pa(x),p3(x) 5 -
Random 3 —ps(x),pa(x),p3(x) 167 -
B4 John: py John: — sl 3 —pa(x),ps(x),p2(x) 14 -
Paul: py Paul: — 52 3 —pa(x),ps5(x),p2(x) 6 -
Random 3 — pa(x),ps5(x),p2(X) 171 -
BS John: py John: — sl 3 — pa(x),p5(x),p2(X) 6 -
Paul: ps Paul: — 52 3 —pa(x),ps(x),p2(x) 10 -

Random 3 —ps(x),p5(x),pa(x) 137 -

e Inrun C5 Table 15, plan ps and plan p; are rejected because of their side effects as explained
for test case AS. Plan ps proposed by Paul demotes v, = money, which is John’s highest
ranked value in run C5.

From test case D results (Tables 16 and 17), we can observe that Strategy s1 performs better in
this test case because most of the inconsistencies are in the initial state. Since suitability questions
are considered first (e.g COPP-05. Do the new circumstances already pertain?), the dialogue is
completed more quickly.

6.1. Summary of experiments

We have implemented agents that engage in a dialogue to select the best valid plan possible
taking the preferences of both agents into account. The dialogue takes a persuasion approach
and makes use of critical questions to evaluate the plan proposal at several levels. In general,
the outcome of the dialogue does not change when we change the strategy but the number of
questions is always different. The implementation of our two-step strategy shows that the number

Argument and Computation 171
Table 14. Test case C when John starts the dialogue.
Preference
Run before dialogue After dialogue Strategy Proposals Qs Plan selected
Cl1 John: py John: py sl 2-p1(V),pa(x) 6 1
Paul: py Paul: — 2 2-p1(V),pa(x) 4 P1
Random 2 -p((V),ps(x) 78 P1
C2 John: p; John: — sl 3 —pa(x),pe(V), pa(Xx) 8 D6
Paul: py Paul: — 52 3 —pa(x),pe(V),pa(X) 5 Pe
Random 3 —pa(x),pe(v), pa(x) 106 D6
C3 John: p3 John: — sl 3 —p3(x),pa(x),p5(v") 7 pPs
Paul: ps Paul: ps 52 3 —p3(x), pa(x),p5(V) 5 Ps
Random 3 - p3(x),pa(x),ps(v) 169 Ds
C4 John: py John: — sl 3 —pa(x),pe(V'),pa(Xx) 8 Pe
Paul: py Paul: — 52 3 —pa(x),pe(v'), pa(x) 5 Pe
Random 3 —pa(x),pe(v'), pa(x) 106 123
G5 John: p; John: — sl 5-p1(x),p2(x),p3(x),ps(v),ps(x) 10 Ps
Paul: ps Paul: — 52 5= p1(x),p2(x), p3(x),pe(v)),ps(x) 12 P6
Random 5 —pi(x),p2(x),p3(x),pe(v'),ps(x) 149 P6
Table 15. Test case C when Paul starts the dialogue.
Run Preference before dialogue ~ After dialogue Strategy Proposals Qs Plan selected
C1 John: py John: p; sl 3—pa(x),ps(V),p1 (V) 7 P1
Paul: py Paul: — 52 3 —pa(x),ps(V),p1 (V) 5 P1
Random 3 -pa(x),ps(v),p1(v)) 138 14
C2 John: py John: — sl 3 —pa(x),p5(v), p2(x) 8 ps
Paul: py Paul: — 52 3 —pa(x),ps(V),p2(Xx) 5 Ds
Random 3 —p4(x),ps(v),p2(x) 129 Ps
C3 John: p3 John:— sl 2 —ps5(v'),p3(x) 6 ps
Paul: ps Paul: ps 52 2 —-ps5(v'),p3(x) 4 Ps
Random 2 -ps5(v),p3(X) 84 Ds
C4 John: py John: — sl 3 —pa(x),ps(V),p2(X) 8 s
Paul: py Paul: — 52 3 —pa(x),p5(v), p2(x) 5 s
Random 3 —p4(x),ps(v),p2(x) 126 Ds
C5 John: py John: — s1 3 —p5(x), pa(x),p1(x) 7 —
Paul: ps Paul: — 52 3 —p5(x), pa(x),p1(x) 9 —
Random 3 —p5(x),pa(Xx),p1(x) 105 -
Table 16. Test case D when John starts the dialogue.
Preference
Run before dialogue After dialogue Strategy Proposals Qs Plan selected
DI John: p; John: py sl 5= p1(x), p2(x), p3(x), p6(x), pa(v') 13 D4
Paul: p4 Paul: py 2 5= p1(x),p2(x), p3(x), pe(x), pa (V') 15 P4
Random 5 —pi(x),pa(x),p3(x),pe(x),pa(v’) 205 D4
D2 John: py John: py s1 5= pa(x),pe(x), p1(x),p3(x),pa(v') 13 P4
Paul: py Paul: py 2 5= pa(x), p6(x), p1(x), p3(x), pa(v') 15 P4
Random 5 —p(x),pe(x),p1(x),p3(x),pa(v’) 182 D4
D3 John: p3 John: ps sl 5= p3(x),pe(x),p2(x), p1(x), p5 (V') 13 Ps
Paul: ps Paul: ps 2 5-p3(x),pe(x), p2(X),p1(x),ps(v') 15 Ps
Random 5 —p3(x),pe(x),p2(x),p1(x),ps(v)) 198 Ps
D4 John: p> John: py s1 5= p2(x),pe(x), p1(x), p3(x), pa (V') 13 P4
Paul: p4 Paul: p4 2 5= p2(x),pe(x), p1(x), p3(x), pa(v') 15 D4
Random 5 —pa(x),pe(x),p1(x),p3(x),pa(v) 182 Pa
D5 John: p) John: — s1 5= p1(x),p2(x), p3(x), p6 (V). p5(x) 8 -
Paul: ps Paul: — 2 5= p1(x),p2(x), p3(x), p6(v'), p5(X) 12 -
Random 5 —pi(x),pa(x),p3(x),pe(v'),ps(x) 145 -

172 R. Medellin-Gasque et al.

Table 17. Test case D when Paul starts the dialogue.

Run Preference before dialogue After dialogue Strategy Proposals Qs Plan selected
D1 John: p; John: py sl 2 —pa(V),p1(x) 10 yon
Paul: py Paul: py 52 2 —ps(V),p1(x) 12 P4
Random 2 —p4(V'),p1(x) 120 P4
D2 John: p, John: py sl 2 —pa(V'), pa(x) 10 D4
Paul: pg Paul: py 52 2 —ps(V),p2(x) 12 yn
Random 2 —ps(V),p2(X) 74 P4
D3 John: p3 John: ps s1 2 —ps(v),p3(x) 10 Ds
Paul: ps Paul: ps 52 2 —ps(v'),p3(x) 12 Ds
Random 2 -ps5(v),p3(X) 81 Ds
D4 John: p; John: ps s1 2-ps(vV),p3(x) 10 s
Paul: py Paul: ps 52 2 -ps5(V'),p3(x) 12 ps
Random 2 -p5(v'),p3(x) 182 Ds
D5 John: p; John: py sl 3 —ps(x),pa(V),p1(Xx) 13 D4
Paul: ps Paul: p4 52 3 —ps5(x),pa(v'),p1(x) 17 D4
Random 3 —ps5(x),pa(v),p1(x) 146 Pa

of questions decreases considerably when compared with the random approach in all of the runs.
This is the most important feature that we wanted to show when running these experiments. Asking
questions about the main issues will naturally help converge to a solution much faster than asking
random questions where there is no previous question identifying and the priority of questions is
constructed randomly.

When posing random questions, in the worst case the respondent agent has to go through all
the questions, which is not desirable. Now, when using a strategy, the dialogue length changes
depending on the type of conflict the agents have. If it is possible to anticipate which sort of
problems are likely in a particular setting, the appropriate strategy can be chosen accordingly.

When the agents’ preferences change, the number of questions does not change considerably
but sometimes the quality of the outcome may be affected. This is because the best plan might not
be considered if one acceptable to both agents is considered before the best plan is reached. When
an agent prefers a plan, it tries to put it forward first and so accelerates the process determining
whether it is accepted or rejected. We believe that the order of the questions in the strategy could
be further tailored for a particular scenario with information of previous dialogues, which would
provide information about the other agents’ preference as in Black and Atkinson (2011).

7. Related research

This article contributes to an active area of research that uses argumentation for practical reasoning
and provides autonomous agents with a way to communicate and cooperate when selecting and
executing a plan in a non-deterministic environment.

The practical reasoning scheme of Atkinson et al. (2006) together with the AATS semantics
of Atkinson and Bench-Capon (2007) forms the foundation of our scheme but has been extended
especially with respect to time, duration and sequencing of actions. Thus plans, rather than single
actions, can be considered. Although Atkinson and Bench-Capon (2007) reason about plans as
single monolithic super-actions, our extension allows us to get inside the plans and consider their
particular components. Our current account also examines the temporal aspects more thoroughly.

In Dunin-Keplicz and Verbrugge (2003), the authors define planning steps in relation to dia-
logue. The first step is the discussion of proposals as a subtype of persuasion dialogue. The outcome
of this dialogue should be a set of sub-goals and a common belief about this goals. The next step
required is an inquiry or deliberation dialogue that matches actions with subtasks. Persuasion
and information seeking dialogues are then applicable during the allocation of these tasks. Even

Argument and Computation 173

negotiation dialogues may be required because agents may have a conflict of interests during
action allocation. Finally, a collectively trusted team member may conclude action allocation.

In Tang, Norman, and Parsons (2009), a model for individual and joint actions of agents for
describing the behaviour of multi-agent teams is presented. The model uses policies to generate
plans and at the same time, the communication needs for the execution stage are embedded in
the policy algorithm. Thus, the communication needs are considered before the plan is executed.
In our approach, agents propose plans taken from a plan library and then engage in a dialogue
to justify the plans and possibly refine them. Agents do not create plans in our approach; we
focus instead on the mutual acceptability of plans. We consider a refinement of pre-formulated
plans and assume that agents have a plan library. Although agents creating the plans would not
change the perspective of the article. Tang et al.’s approach could be combined with ours to
generate a comprehensive planning process that includes the creation of the plan, its justification
and eventually its execution.

In Belesiotis, Rovatsos, and Rahwan (2010), the authors develop an argumentation mechanism
for reconciling conflicts between agents over plan proposals. The authors extend a protocol where
argument-moves enable discussion about planning steps in iterated dispute dialogues as presented
in Dunne and Bench-Capon (2003). The approach identifies relevant conflicts in agents’ beliefs
and discusses algorithms for argument generation based on the characteristics of the planning
domain. Our approach also considers conflicts in the agents’ beliefs and these are transformed
into the critical questions used in dialogue game. Furthermore, we consider conflicts in the plan
itself and the social context to evaluate more aspects of the proposal.

In Toniolo, Sycara, and Norman (2011), the authors define a mechanism to enable agreements
to be reached regarding a shared plan using argumentation schemes. The main difference with our
approach is that we use a critiquing dialogue, where Toniolo et al. (2011) use a deliberative dialogue
that focuses on resolving conflicts in the action representation and existing agent commitments. A
set of rules allow agents to formulate arguments in the dialogue (arguments for plan constraints,
norms and goals), whereas in our approach, these guidelines generate arguments given by the set
of critical questions and the strategy used.

Another related approach is presented in Onaindia, Sapena, and Torrefio (2010), where
the authors present the problem of solving cooperative distributed planning tasks through an
argumentation-based model. The model allows agents to exchange partial solutions, express opin-
ions on the adequacy of candidate solutions and adapt their own proposals for the benefit of
the overall task. The argumentation-based model is designed in terms of argumentation schemes
and critical questions whose interpretation is given through the semantic structure of a partial
order planning paradigm. The approach assumes a lack of uncertainty and deterministic planning
actions, and so, focuses only on questions concerned with the choice of actions. The argumen-
tation scheme, based on the scheme for action proposal from Atkinson et al. (2005) is of the
form: in the current circumstances and considering the current base plan T1;, agent ag; should
perform the refinement step T1', which will result in a new partial plan T1;, which will realise some
sub-goals G, which will promote some values V. Our work is similar to this work in the sense that
plans are entities treated at a detailed level when arguing about them. We go further, however,
and consider plan proposals in even more detail referring to action elements and combinations of
actions. We believe that this gives agents more ways (more questions) to critique plans so they
are able to evaluate plans more thoroughly and therefore select better plans but we are not in the
position (it is not our implementation objective) to ensure that the approach gives better plans.
A comparative evaluation is needed to make such a claim. Our argumentation scheme is related
to a more comprehensive set of critical questions, that together with a strategy to select critical
questions, gives agents more options to critique a proposal. Specifically, the approach in Onaindia
et al. (2010) is based on refinement steps created from instantiations of an argumentation scheme,

174 R. Medellin-Gasque et al.

whereas our approach is that we map these refinements into specific questions at the dialogue
level, giving the agents the possibility to argue over specific problems that would not be detected
with other approaches. Therefore, the elements presented allow an agent to question and/or attack
the argument in a more targeted fashion, facilitating the modification of more types of plans and
specific identification of differences between participants.

8. Conclusions

Planning is known to be a highly complex and detailed problem due to the need to represent and
reason about a large number of elements. We have shown how an argumentation-based approach
can capture these elements but at the cost of needing to select from a very large number of
moves when critiquing a plan proposal, placing a high premium on an effective strategy for move
selection. Our experiments confirm that this is the case and how even a simple strategy can greatly
assist in the move selection process.

The approach to plan selection presented in this article provides means for agents to cooperate,
while allowing the agents to reach agreements that reflect their individual preferences. We showed
that the use of a strategy when selecting a question in a dialogue regarding plans is beneficial,
although different strategies performed better in different cases. We identified the characteristics
which influence the performance of the strategies. The strategy where possibility questions are put
first in the questioning order performs better for most cases because inconsistencies are normally
found mainly in the plan representation. We believe that the strategy should be tailored to the
context in which the dialogue develops and modified as the dialogue develops to reduce the
exchange of information.

To summarise our approach on the strategies, the alignment of belief relies on the ‘iden-
tification’ of relevant critical questions about the validity of elements but the resolution of
these inconsistencies (introduced by questions) is influenced by the order in which validity
questions are put forward in the dialogue. The order in which questions are put forward in a
dialogue does make a difference as shown in the strategies comparison. Furthermore, strate-
gies to select critical questions reduce to some extent the overhead in communication and this
could help in some multi-agent environments where communication is more costly than internal
computation.

One of the main differences of our approach from standard distributed planning approaches
is when and how agents discuss the best course of action to take. In our approach, we use a
persuasion dialogue to critique plans between agents, assuming that the plans are already defined.
The dialogue can then focus on the evaluation of plans considering agents’ potentially different
beliefs about the world and different preferences. The preferences are applied in the dialogue
to choose the best-possible plan respecting the preferences of both agents. We believe that this
approach presents an advantage over distributed planning approaches where knowledge-bases are
first merged, then plans are created, and there is no clear indication as to where and when agents
apply preferences over actions or plans. Furthermore, in our approach, we map these refinements
to the plan into specific questions giving the agents the possibility to argue over specific problems
in a more targeted fashion. Therefore, the elements presented allow an agent to question and/or
attack the argument, facilitating the modification of plans and identifying problems that would
not be detected with other approaches.

With the strategy, we want an approach to critical question selection that helps to reach agree-
ments more quickly and in a more natural way. We showed that when using a strategy, agents reach
an agreement more quickly in particular scenarios. In addition, the plan selection could be done
in a more natural way as a result of the structured exchange of arguments using argumentation
schemes and critical questions. A future research direction is related to the fact that in some of

Argument and Computation 175

the test cases (A5, CS5), there is no outcome because the plans gets rejected based on their side
effects. This suggests that selecting an appropriate question to question or challenge a proposal
based on the other agent’s preference is relevant. In Black and Atkinson (2011), the authors present
a dialogue system that allows agents to exchange arguments in order to come to an agreement
on how to act using a model of what is important to the recipient agent. Assuming an agent can
reason about or engage in a dialogue to ask the other agent’s preference, our strategy could take
into account this factor when choosing which question to pose.

Furthermore, we intend to extend our evaluation to look at other strategies that further change
the question ordering to see if this has any effect on the outcome of a dialogue and provide new
benchmarks against which our strategies can be compared. Finally, in future work, we also plan to
consider issues connecting time with action combinations, so as to better understand the potentially
complex inter-relationships of durative actions and their combinations.

Acknowledgements
Rolando Medellin-Gasque is grateful to CONACYT of Mexico for financial support.

Notes

1. The ‘social context’ was an extension to the argumentation scheme presented in Atkinson et al. (2006)
and introduced in Atkinson, Girle, McBurney, and Parsons (2009), where agents rely on a social structure
to issue valid commands in a command dialogue scenario.

2. We use the terms ‘initial state’ and ‘current circumstances’ interchangeably in this article.

. ‘“Values’ are qualitative social interests of agents following Atkinson et al. (2006).

4. The PDDL is an attempt to standardise planning domain and problem description languages developed
for the International Planning Competitions.

5. A side effect is an outcome of the action that was unintended, and could in principle promote or demote
a value, though our implementation in Section 5 currently considers only negative side effects.

6. In Torrefio, Onainda, and Sapena (2010), the ontology alignment problem is discussed for a similar
scenario.

7. Inour example, we assume that actions are meant to be executed simultaneously by both agents, although
often this is not the case in multi-agent planning where task allocation can be an important feature.

8. We may revisit this restriction in future work.

9. Certain questions are not required because of our assumption that actions are executed by both agents
simultaneously.

w

References

Allen, J.F., Schubert, L.K., Ferguson, G., Heeman, P., Hwang, C.H., Kato, T., Light, M., Martin, N.G.,
Miller, B.W., Poesio, M., and Traum, D.R. (1995), ‘The TRAINS Project: A Case Study in Building
a Conversational Planning Agent’, Journal of Experimental and Theoretical Artificial Intelligence, 7,
7-48.

Amgoud, L., and Hameurlain, N. (2007), ‘Argumentation in Multi-Agent Systems’, in An Argumentation-
Based Approach for Dialog Move Selection (Vol. 4766), eds. N. Maudet, S. Parsons, and I. Rahwan,
Berlin, Heidelberg: Springer, pp. 128-141.

Atkinson, K., and Bench-Capon, T. (2007), ‘Practical Reasoning as Presumptive Argumentation Using Action
Based Alternating Transition Systems’, Artificial Intelligence, 171, 855-874.

Atkinson, K., Bench-Capon, T., and McBurney, P. (2005), ‘A Dialogue Game Protocol for Multi-Agent
Argument over Proposals for Action’, Autonomous Agents and Multi-Agent Systems, 11, 153-171.
Atkinson, K., Bench-Capon, T., and McBurney, P. (2006), ‘Computational Representation of Practical

Argument’, Synthese, 152, 157-206.

176 R. Medellin-Gasque et al.

Atkinson, K., Girle, R., McBurney, P., and Parsons, S. (2009), ‘Command Dialogues’, in Argumentation in
Multi-Agent Systems, eds. 1. Rahwan and P. Moraitis, Fifth International Workshop, Berlin, Heidelberg:
Springer-Verlag, pp. 93-106.

Belesiotis, A., Rovatsos, M., and Rahwan, 1. (2010), ‘A Generative Dialogue System for Arguing About
Plans in Situation Calculus’, in Proceedings of the 6th International Conference on Argumentation in
Multi-Agent Systems, Budapest, Hungary, ArgMAS’09, Berlin, Heidelberg: Springer-Verlag, pp. 23-41.

Bench-Capon, T., and Dunne, P.E. (2007), ‘Argumentation in Artificial Intelligence’, Artificial Intelligence,
171, 619 — 641.

Black, E., and Atkinson, K. (2011), ‘Choosing Persuasive Arguments for Action’, in The 10th International
Conference on Autonomous Agents and Multiagent Systems - Volume 3, Taipei, Taiwan, AAMAS 11,
Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, pp. 905-912.

Denti, E., Natali, A., and Omicini, A. (1998), ‘On the Expressive Power of a Language for Programming
Coordination Media’, in Proceedings of the 1998 ACM Symposium on Applied Computing (SAC98),
ACM, New York, NY, USA, pp. 169-177.

Dunin-Keplicz, B., and Verbrugge, R. (2003), ‘Dialogue in Teamwork’, in Enhanced Interoperable Systems.
Proceedings of the 10th ISPE International Conference on Concurrent Engineering (ISPE CE 2003),
eds. R. Jardim-Gongalves, J. Cha and A. Steiger-Garcao, 26-30 July 2003, Madeira, Portugal: A.A.
Balkema Publishers, pp. 121-128.

Dunne, PE., and Bench-Capon, T. (2003), ‘Two Party Immediate Response Disputes: Properties and
Efficiency’, Artificial Intelligence, 149, 221-250.

Durfee, E.H. (2001), ‘Multi-Agents Systems and Applications’, in Distributed Problem Solving and Planning
(Vol. 2086), eds. J.G. Carbonell and J. Siekmann, Berlin: Springer-Verlag, pp. 118-149.

FIPA, (2002), ‘Communicative Act Library Specification’, Standard SC00037J, Foundation for Intelligent
Physical Agents.

Fox, M., and Long, D. (2003), ‘PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains’, Journal Artificial Intelligence Research, 20, 61-124.

Gelernter, D., and Carriero, N. (1992), ‘Coordination Languages and Their Significance’, Communications
of the ACM, 35, 97-107.

Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., and Weld, D. (1998), ‘PDDL — The Planning
Domain Definition Language’, Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control.

Heras, S., Navarro, M., Botti, V., and Julidn, V. (2010), ‘Argumentation in Multi-Agent Systems’, in Apply-
ing Dialogue Games to Manage Recommendation in Social Networks (Vol. 6057), eds. P. McBurney,
I. Rahwan, S. Parsons, and N. Maudet, Berlin, Heidelberg: Springer, pp. 256-272.

van der Hoek, W., Roberts, M., and Wooldridge, M. (2007), ‘Social Laws in Alternating Time: Effectiveness,
Feasibility, and Synthesis’, Synthese, 156, 1-19.

Hulstijn, J. (2000), ‘Dialogue Models for Inquiry and Transaction’, PhD Thesis, Universiteit Twente,
Enschede, The Netherlands.

desJardins, M.E., Durfee, E.H., Ortiz, C.L., Jr., and Wolverton, M.J. (2000), ‘A Survey of Research in
Distributed, Continual Planning’, Al Magazine, 20(4), 13-20.

McBurney, P., Hitchcock, D., and Parsons, S. (2007), ‘The Eightfold Way of Deliberation Dialogue’,
International Journal of Intelligent Systems, 22, 95-132.

McBurney, P., and Parsons, S. (2004), ‘Locutions for Argumentation in Agent Interaction Protocols’, in
Agent Communication. Revised Proceedings of the International Workshop on Agent Communication
(AC2004),eds. R.M. van Eijk, M.P. Huget, and F. Dignum, July, Vol. 3396, Berlin: Springer, pp. 209-225.

McBurney, P., and Parsons, S. (2009), ‘Dialogue Games for Agent Argumentation’, in Argumentation in
Artificial Intelligence (chap. 13) eds. I. Rahwan and G. Simari, Berlin: Springer, pp. 261-280.

Medellin-Gasque, R., Atkinson, K., McBurney, P., and Bench-Capon, T. (2011), ‘Arguments Over Co-
operative Plans’, in Theory and Applications of Formal Argumentation. First International Workshop,
TAFA 2011, July, Lecture Notes in Computer Science (LNCS) 7132, Berlin: Springer, pp. 50-66.

Medellin-Gasque, R., Atkinson, K., and Bench-Capon, T. (2012a), ‘Dialogue Game Protocol for Co-operative
Plan Proposals’, Technical Report ULCS-12-003, Department of Computer Science, University of
Liverpool, UK.

Argument and Computation 177

Medellin-Gasque, R., Atkinson, K., and Bench-Capon, T. (2012b), ‘An Analysis Over Critical Questions
for Plan Proposals’, Technical Report ULCS-12-002, Department of Computer Science, University of
Liverpool, UK.

Omicini, A., and Denti, E. (2001), ‘From Tuple Spaces to Tuple Centres’, Science of Computer Programming,
41, 277-294.

Omicini, A., and Zambonelli, F. (1999), ‘Coordination for Internet Application Development’, Autonomous
Agents and Multi-Agent Systems, 2, 251-269.

Onaindia, E., Sapena, O., and Torrefio, A. (2010), ‘Cooperative Distributed Planning through Argumentation’,
International Journal of Artificial Intelligence, 4, pp. 118-136, CESER Publications.

Prakken, H. (2010), ‘An Abstract Framework for Argumentation with Structured Arguments’, Argument and
Computation, 1, 93-124.

Tang, Y., Norman, T.J., and Parsons, S. (2009), ‘A Model for Integrating Dialogue and the Execution of
Joint Plans’, in AAMAS ’09: Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems, Budapest, Hungary, Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 883-890.

Toniolo, A., Sycara, K., and Norman, T. (2011), ‘Argumentation Schemes for Policy-Driven Planning’, in Pro-
ceedings of the First International Workshop on the Theory and Applications of Formal Argumentation
(TAFA), July, Barcelona, Spain.

Torrefio, A., Onaindia, E., and Sapena, O. (2010), ‘Reaching a Common Agreement Discourse Universe on
Multi-Agent Planning’, in 5th International Conference on Hybrid Artificial Intelligence Systems (HALS
2010), Vol. 6077, Springer, pp. 185-192.

Walton, D.N. (2005), ‘Justification of Argumentation Schemes’, Australasian Journal of Logic, 3, 1-13.

Wilkins, D.E., and Myers, K.L. (1998), ‘A Multiagent Planning Architecture’, in Proceedings 4th
International Conference on Artificial Intelligence Planning Systems, Pittsburgh, PA: AAAI Press,
pp. 154-162.

Appendix 1. AATS definition
An AATS is an (n + 7)-tuple of the form:

S =1(0,q0,A8,Ac1,...,Acp, p, T, P,),

where
e (is a finite non-empty set of states;
e go € Q is the initial state;
e Ag = {1,...,n}is a finite non-empty set of agents;
e Ac; is a finite, non-empty set of actions, for each i € Ag, where Ac; NAc; =@ for all i #j € Ag;
now we can say that a joint action jag for the set of agents Ag is a tuple (e, . . ., &), where for each

aj(j < n), there is some i € Ag such that ; € Ac;. We denote the set of all joint-actions J4¢. Given an
elementj of J4; and an agent i € Ag, i’s action in j is denoted by j;. If we have specific actions for more
than one agent, we call this an agent combination, e.g. {j;,j;} will represent an action combination for
agents i and j.

o p:Acpg —> 22 is an action precondition function, which for each action @ € Acyg defines the set of
states p (o) from which « may be executed;

o 7:0Q xJgg — Qis a partial system transition function, which defines the state 7(g,j) that would
result by the performance of j from state g, note that, as this function is partial, not all joint actions are
possible in all states (cf. the precondition function above);

e & is a finite, non-empty set of atomic propositions; and

e 7 : Q — 2% is an interpretation function, which gives the set of atomic propositions satisfied in each
state: if p € m(g), then this means that the propositional variable p is satisfied (equivalently, true) in
state g.

In Atkinson and Bench-Capon (2007), the authors extended this transition system to enable representation
of a theory of practical reasoning related to arguments about action through values were added to the system.
The extensions are as follows:

178 R. Medellin-Gasque et al.

e Av;, is a finite, non-empty set of values Av; C V, foreachi € Ag.

® §: O x Q0 xAvpg — {+,—,=} is a valuation function which defines the status (promoted(-+),
demoted(—) or neutral (=)) of a value v, € Avag ascribed by the agent to the transition between
two states: 8(gx, gy, vy,) labels the transition between g, and g, with one of {+, —, =} with respect to
the value v, € Avgg.

Appendix 2. Dialogue simulation run

\\Agent Proponent John (AP) presents argument for plan pl
\\Agent Respondent Paul (AR) challenges the proposal
\\with critical questions.

Loading Protocol\ldots
[PCADA] Open Dialogue - Agent Proponent
[PCADA] Enter Dialogue - Agent Respondent

\\Proponent selects preferred plan and presents it as a plan
\\proposal in the Tuple centre

[Test] PLAN NAME: pl - flight

[PCADA] Agent Proponent - Agent 1- Set Active Plan

[PCADA] Agent Proponent Create Proposal Tuple

[PCADA] Post Proposal Tuples AP

\\Respondent acknowledges proposal , identify questions
\\and apply strategy

[PCADA] Identify Questions AR

[PCADA] Applying Ordering Strategy

[PCADA] Posting Questions AR

\\Respondent challenges current circumstance(5234) possibility

[PCADA] Question: cQPP05

[PCADA] Question question(10,8,proposal5503,4,cQPP-05,5234,null, false,
currentCirc_POSSIBILITY)

\\Respondent agent provides evidence and rejects the attack.
[PCADA] Proponent provides evidence
[PCADA] Assert assert(10,7,proposal5503,cQPP-05,evidence,ValidToken)

\\Respondent challenges norm validity

[PCADA] Question: cQPP02

[PCADA] Question question(10,8,proposal5503,1,cQPP-02,0,null, false,
norm_VALIDITY)

[PCADA] Proponent provides evidence

[PCADA] Assert assert(10,7,proposal5503,cQPP-04,evidence,ValidToken)

\\Respondent challenges current circumstance validity

[PCADA] Question: cQPP04

[PCADA] Question question(10,8,proposal5503,4,cQPP-04,5236,null, false,
currentCirc_VALIDITY)

[PCADA] Proponent provides evidence

[PCADA] Assert assert(10,7,proposal5503,cQPP-04,evidence,ValidToken)

\\No more questions identified for this proposal
\\Respondent accepts the proposal

Argument and Computation 179

[PCADA] Accept Proposal AR

\\Roles between agents change when alternative plan
\\ question is considered

\\Agent Proponent Paul

\\Agent Respondent John

[PCADA] Question question(10,8,proposal5503,6,cQA0-01,p4 -coach-train
,null, false,alternateOption_Plan)

\\Evaluating alternative plan p4
[Test] Alternative PLAN NAME: p4 - coach-train

PCADA] Agent Proponent - Agent 2 - Set Active Plan
PCADA] Agent Proponent Create Proposal Tuple
PCADA] Post Proposal Tuples AP

[]

[]

[]

[PCADA] Identify Questions AR

[1 Applying Ordering Strategy

[] Posting Questions AR

\\Respondent agent challenges action tale train possibility in time
[PCADA] Question: cQATO1

[PCADA] Question question(10,8,proposal5503,2,cQAT-01,5361,
takeTrain_LP, false,action_POSSIBILITY_ TIME)

[PCADA] Proponent provides evidence

[PCADA] Assert assert(10,7,proposal5503,cQAT-01,evidence,ValidToken)

\\Respondent challenges end effect possibility.

[PCADA] Question: cQAl2

[PCADA] Question question(10,8,proposal5503,1,cQA-12,5350,5359, true,
endEffect_POSSIBILITY)

[PCADA] Retract Evidence Proponent

[PCADA] Retract -retract(10,7,proposal5503)

[PCADA] Retract plan because of question cQA-12

\\Two plan proposals evaluated. Six questions in total
Total number of proposals: 2

Total number of questions: 6

Outcome Agent -7 pl - flight

[PCADA] Leave Dialogue Agent Questioner

[PCADA] Leave Dialogue Agent Proponent

[-—=-—-—- Dialogue Finished----- Run2c-Al-S2-----

