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The traditional Dung networks depict arguments as atomic and study the relationships of attack
between them. This can be generalised in two ways. One is to consider various forms of attack,
support, feedback, etc.Another is to add content to nodes and put there not just atomic arguments
but more structure, e.g. proofs in some logic or simply just formulas from a richer language.
This paper offers to use temporal and modal language formulas to represent arguments in the
nodes of a network. The suitable semantics for such networks is Kripke semantics. We also
introduce a new key concept of usability of an argument. This is the beginning of a continuing
research for adding contents to the nodes of an argumentation network. This research will allow
us to address notions like ‘what does it exactly mean for a node to attack another’ or ‘what
does it mean for a network to be consistent’ or ‘can we give proper proof rules to manipulate
networks’, and more.
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1. Introduction and orientation

This section will look at modal and temporal logics in a way which is compatible with argumen-
tation networks. This will allow us to understand our options in introducing modal and temporal
argumentation networks.

We adopt a context view of modal logic. Assume we are talking about various contexts, which
we denote by w1, w2, . . ., and we discuss a finite number of atomic facts, Q = {q1, . . . , qn}. We
write w � q to mean that q holds in the context w. Modal logic allows us to talk from within a
context w about other-related contexts. Let R be an accessibility relation on the set W of contexts,
so we write wRw′ to mean w′ is accessible to w.

If we add the modal connective ♦ to our language, we can write

• w � ♦q iff for some w′, such that wRw′, we have w′ � q.

This gives us basic modal logic.
The first question we ask is where does the relation w � q come from? In traditional modal

logic, this is arbitrary.
A traditional modal model (for the logic K) comes as a triple (W , R, �), where W is the set

of worlds (contexts), R ⊆ W × W is the accessibility relation and � is the relation which tells us
which atoms q ∈ Q hold at which world (i.e. when w � q holds). � is arbitrarily given. One can
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modify abstract modal logic and add more details about the origins of �. For example, we can
imagine that each context w has a database �w associated with it and we write

w � q iff �w � q

If we do this, we no longer have the semantics of arbitrary modal logic K and we may get some
special versions/extensions of K.

In the case of argumentation, we may associate with each context w an argumentation network
Nw = (Q, ρw), where Q is the set of atoms and ρ2 ⊆ Q × Q is the attack relation. We need to
choose an extension Ew ⊆ Q calculated properly using traditional Dung rules from the attack
relation ρw. We thus have

w � q iff q ∈ Ew.

Thus in this approach, the argumentation networks are vehicles for defining �. This has intuitive
sense. In the world w, there is a local perception of attack ρw about the facts of w and a debate
resulting in an extension Ew, and this extension tells us what facts hold in the context w. So, really
we should write

Nw = (Q, ρw, Ew).

If we adopt this approach, we will have a problem. Modal logic allows us to use expressions like
♦q at any world w. So, we need to allow ♦q to enter the argumentation considerations taking place
at world w.

Let Q♦ = Q ∪ {♦q|q ∈ Q}. We have

Nw = (Q♦, ρw.Ew)

with
ρw ⊆ Q♦ × Q♦

and Ew an extension,

Ew ⊆ Q♦.

We ask how is this extension calculated?
Suppose we have in the world w, the case that ♦q attacks p (i.e. ♦qρwp) and ♦q is not attacked

by any other argument. We would, therefore, expect that ♦q ∈ Ew, i.e. w � ♦q holds.
On the other hand, we also expect that for some w′ such that wRw′ we have w′ � q, i.e. that

q ∈ Ew′ . However, such a w′ may not exist!
We get an internal incompatibility in the system. Obviously we need an internal device to deal

with this either an additional compatibility postulate or by something else. We solve this problem
by introducing the concept of usability. We have a usability function hw and we have in this case
hw(♦q) = 0, i.e. we cannot use it in the considerations of finding an extension Ew.

Of course, there is independent motivation to the concept of usability. Its introduction is not
just technical.

In the above considerations, the dominant view was that of modal logic, and the argumentation
network view was auxiliary; it provided a means of defining �. Can we look at the entire possible
world system as one big argumentation network? Put differently, can we view (W , R, Nw), w ∈ W ,
as one big argumentation network?

This is possible to do using auxiliary arguments which eliminate R and W . We first explain this
by example. Consider Figure 1. There are three worlds w, w1, w2. We have wRw1 and wRw2. We
assume the grounded extension in each world. ♦q is not attacked in w1. It says that it is possible
to have an accessible world in which q holds. So, we must have either q in the grounded extension
of world w1 or q in the grounded extension of world w2.
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Figure 1. Example for eliminating R and W.
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Figure 2. Result after R and W eliminated from Figure 1.

If this holds, we say ♦q is usable in w, otherwise not. This usability is implemented in the
object level by adding the point hw(q) as a meta-point outside the possible worlds, which point
attacks ♦q of the world w, and letting all the qs of the accessible worlds attack it. By the traditional
rules of Dung argumentation, if at least one of the qs in w1 or in w2 is in, then hw(q) is out and
so ♦q is in. Otherwise, ♦q is out (not usable) in w. We do the same trick for ♦p. If we want to
eliminate the big circles indicating the worlds, we have to annotate the atoms by the world name.
If we do that we get Figure 2, which is one big uniform argumentation network where we seek
the grounded extension.

The above discussion shows what options we have in principle in formulating modal and
temporal argumentation networks.
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(1) Let modal logic dominate by keeping the possible worlds separate and allow for an
argumentation network to say what holds in each world.

(2) Incorporate the modal aspects inside one big argumentation network by using auxiliary
meta-arguments. This way we are compiling modal logic into argumentation. This is
technically possible to do, even possible to do nicely, in view of the results in Gabbay’s
(2011) paper, showing that argumentation is equivalent to classical logic in a nice way.

(3) In the temporal logic case, there is a simpler and more immediate way of defining a
temporal logic network. We simply time stamp each argument with a moment of time or
an interval of time, these being the times when this argument is considered usable. Thus,
a network has the form (T , ρ, τ), where T is the set of arguments, ρ is the attack relation,
and τ is a function,

τ : T ∪ ρ ⇒ R,

where τ(x) = moments of time, where x is usable.
There is a very simple model, used in 2005 in Barringer, Gabbay, and Woods (2005), in
connection with temporally varying numerical strength of arguments.
In itself, the model is too simple and does not offer much, but one can easily add natural
structure to it to indicate evolution over time, as done in Barringer et al. (2005) and
Abraham, Gabbay, and Schild ((2011a, b). In Barringer et al. (2005), the change in time
was of strength of argument and this can influence the argument’s attack capabilities and
(Abraham et al. 2011a) the time stamping was used to resolve loops.

2. Introducing the global meta-level approach to temporal networks: concept of usability

There are several good reasons why we should consider modal and temporal argumentation
networks

(1) Temporal facts as arguments. Past facts or future scheduled events can also be used as
arguments for the present. An argument against the trustworthiness of a person may be
the facts of past betrayals. An argument in favour of a higher mortgage loan may be
a scheduled increment in salary next year. Unfortunately, this does not work with UK
banks. An argument against a higher mortgage loan may be the possibility of redundancy
in the future. Figure 3 is an example of how a scheduled redundancy exercise in the near
future can be used as an argument against a high mortgage loan now, where d means the
event of redundancy and m the general argument in favour of a mortgage.
We shall discuss later why it is not reasonable to encapsulate ‘Future d’as a single argument
c attacking m now. We lose structure this way (compare with how we lose structure in

Future d

mm

now

d

near future

Figure 3. Future used as argument against present.
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Figure 5. Using a past argument to attack a present argument.

propositional logic in case ∀xA(x) � A(α). We need predicate logic to go into the structure
of the sentences.

(2) Fibring arguments. Arguments from one domain may be brought into another domain. For
example, expert medical arguments may be brought in as a package into a legal argument.
This may be best treated in the context of modal logic (bringing information from the
medical world into the legal world), where ♦x means bring in information x from another
world, i.e. domain. See Figure 4. Let b be the legal argument to commit the accused to a
1-year prison sentence for tax evasion. Let c be the medical argument that the accused has
cancer. This medical argument attacks b in the legal world.A hefty fine is more appropriate.
c is part of a medical network of arguments and c emerges among the winning arguments
of that network. Figure 4 illustrates the situation. Of course, in the legal world ♦c might
be attacked as unacceptable evidence on the basis of some procedural errors in putting in
forward (not shown in diagram).

(3) Future arguments. The possibility that an argument a may be able to defeat another argu-
ment b. We denote this by ♦a. Such possibilities are central to threats and negotiations’
arguments where various future scenarios are discussed. For example, do not ask for more
than a 10% salary settlement as it will never be approved by the executives – there may
be strong fairness arguments for claiming 10% but pragmatically it will not be affordable
and thus will not get approved.

(4) Past arguments. We can use the fact that an argument c was potent in the past (denoted
by Pc) to attack another current argument. Figure 5 is an example of such a configuration,
where ♦a indicates that argument a is possible and Pc indicates that argument c was
considered in the past, but maybe is no longer taken seriously now, yet the fact that it was
a serious argument in the past is sufficient to defeat b. For example, a mother might say ‘I
have always cared for you, you cannot abandon me now’.
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For example, a female employee may threaten with a possible argument claiming harass-
ment. It may be that one cannot argue harassment now but it is not clear what the
circumstances would look like when reviewed in the future. So, ♦harassment may have
some force. We have had many such arguments when UK law was expected to be overruled
by EU law. Many ♦(EUlaw) arguments were already defeating local UK arguments even
before the EU law came into force in the UK.
Negotiations always involve evaluation of future scenarios of possible arguments and
counter arguments and the possibilities of certain scenarios may be a strong argument at
present.
Arguments from the point of view of tradition have always been successful in the past,
e.g. we have always accepted the A’level standard as an appropriate university entrance
qualification, so we continue to do so, even though many will argue that the level has
dropped. We can have our doubts about the value of tradition now but yet an argument of
the form ‘but it has always been the case that x’ may still win out.
Any use of precedent is also akin to this form.

The basic notion is that of admissible extension. This is a subset E ⊆ S such that

(1) E is conflict free, i.e. for no x, y ∈ E can we have (x, y) ∈ R.
(2) E is self-defending, i.e. for all x, y ∈ S, if x ∈ E and (y, x) ∈ R, then there exists a z ∈ S

such that (z, y) ∈ R.

The above discussion suggests that we introduce the concept of usability of arguments. We may
have at a certain time or at a certain context some arguments that are talked about and are available
in some real sense, but these arguments cannot be used for a variety of reasons. The formal
presentation of such arguments can be to introduce them into the network but label them as
unusable through a usability function h. If x is an argument, then h(x) = 1 means it is usable and
h(x) = 0 means it is not. The reader may ask why do we want to introduce them at all if they are
not usable? Well, in the context of modal and temporal logics, it makes sense to talk about them.
Maybe they were usable, maybe they will be usable or are possibly but not necessarily usable, or
should have been usable, etc. We give several examples.

Example 2.1 (The catholic super administrator) A UK university, operating an equal opportu-
nities policy, advertises for a faculty administrator. There is a shortlist of three candidates and,
because of a special request from one candidate, the interview date is moved.1

The top two candidates are: a woman aged 42, who knows 15 languages and 10 computer
languages and has a PhD in economics and business administration from Harvard. She has lots of
experience working for government administration; the other candidate is a man of similar age,
but not with as strong a background as the lady.

There is an argument for hiring the lady candidate: she is the best!
There is an argument against hiring the lady candidate: she is Catholic, aged 42, recently

married, and will probably waste no time in starting a family.
This latter argument is a strong subjective argument, which, following the proper procedures,

cannot be used. Indeed, one cannot mention it, let alone even think it! h (this argument) = 0.2

Example 2.2 (The rape) A girl complained she was raped by a man late at night in the street.
The man claimed that she gave him reason to take the view that she was willing and available.
The entire incident was filmed, video and audio, by a CCTV camera.

However, this camera was installed without a licence and hence, because of a legal techni-
cality, any evidence from the CCTV is not admissible. The evidence from the CCTV clearly and
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unambiguously defeated the claim of the man, but because of its inadmissibility, the jury was
instructed to accept the man’s claim.

In both cases, we present the network in the traditional form (S, R), where S is the set of
arguments and R is the attack relation, but with both usable and unusable arguments included,
where those that are usable are marked via a function h. h(a) = 0 means we cannot use argument
a. h(a) = 1 means we can use the argument.

It is important to note that unusability is temporary and can change. Circumstances can change,
the law can change, new arguments can be brought forward and what was unusable can become
usable.

(1) Unusability due to defeat. Figure 4 can be an example of unusable argument. The notation
♦c, wants to bring the cancer argument from another network, the medical network into the
present network, the legal one. In the figure, c is a winning argument in the medical network
and it is attacked by y in the figure but is defended by x. However, it is quite possible in a
complex cross-network situation, that we have a ♦z such that in the appropriate network
for z, z is defeated. In this case, we can view ♦z as unusable. Again, this is not permanent
and may change.

(2) Unusability due to secrecy. It is quite possible that an argument a is defeated by an argument
a∗ which cannot be recorded explicitly in the system. In this case, it may be convenient
not to mention a∗ and to simply mark a as unsuable.

3. Temporal networks: formal considerations

We need to define the formal machinery and distinctions allowing us to put in context our approach
to modal and temporal argumentation networks. So, we define some basic notions in this section
and move on to the Kripke models in the next section.

Definition 3.1 (General labelled networks)

(1) A general labelled network has the form

N = (T , ρ, l, f),

where T is a set of nodes and ρ ⊆ T × T is a binary relation on T . l is a labelling function
on T ∪ ρ giving labels from a set of labels L (usually L = {0, 1} or [0, 1]). The label l(t)
for t ∈ T can be thought of as the strength of the node. The label l(t, s) for (t, s) ∈ ρ can
be thought of as the transmission label from t to s.
The functional f is an update functional, it updates the labelling function l to a new one
f(l). f is a pair of functions, f1, f2, which operate on multisets of elements to give a new
element. For example, the function ‘maximum’ or the function ‘take the sum of’ is such a
function. We write the value fi(x, y, z, . . .), where (x, y, z, . . .) is a sequence or a multiset.
Given a node t, let ρ(t) be {s|sρt holds}. Then for any t, let

f(l)(t) = f1(l(t), l(s), l(s, t), s ∈ ρ(t))

f(l)(s, t) = f2(l(t), l(s), l(s, t))

be new labels at t, and at(s, t) given by the functional f. f depends on ρ and l, and on the
labels and transmission labels, as depicted in Figure 6.
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Figure 6. A general labelled network.

The way f is calculated is not described here. The reader can compare later in the section
below, where we give some examples of algorithms for f in terms of ρ and l.

(2) f can be used for successive updating of the labelling of our network.
We define lm for m ≥ 0 by induction on m.
Step 0 : l0 = l.
Step m + 1 : lm+1 = f(lm)

Let ? be a fixed label in L. We can define l∞ using? by letting l∞(x) = y, if for some k
we have lm(x) = y for all m ≥ k, and otherwise let l∞(x) =? x is either a node t ∈ T or a
connection(s, t) ∈ ρ.

We now have the machinery to look at argumentation networks and we use the Caminada
labelling for them (Caminada and Gabbay 2009; Caminada 2011).

Definition 3.2 (Argumentation model)

(1) Let C be the language of the classical propositional calculus with atoms Q and connectives
¬, ∧, ∨, →, �, ⊥. Where Q is the set of atomic arguments.

(2) An argumentation model has the form N = (F, ρ, h) where F is a set of formulas, ρ is a
binary relation on F and h an assignment of truth values to the atoms Q. We can view h as
a subset h ⊆ Q, and think of it as the set of usable arguments.

(3) Given h, we can assign usability values to the formulas of F using the traditional truth
table. We write h(A) as the value of a wff A under h. h can now be regarded as a subset of F.

(4) A network is atomic iff F ⊆ Q.
(5) Note that h gives initial usability values which are not necessarily permanent and may

change in the course of the recursive evaluation, see Definition 3.3.

Definition 3.3 Let N = (F, ρ, h) be an argumentation model. We define an algorithm for extract-
ing winning arguments out of N as follows. The definition is by levels. We define hm(A) for A ∈ F

by induction on m (compare with Definition 3.1).
Level 0
h0(A) = h(A).
Level m + 1
Let A ∈ F and let ρ(A) = {B1, . . . , Bk} be all formulas B of F such that BρA holds. These are

the formulas which attack A according to ρ. There are several possibilities

(1) hm(B) = 0 for all B ∈ ρ(A). In this case, let hm+1(A) = 1.
(2) For some B ∈ ρ(A), hm(B) = 1. In this case, let hm+1(A) = 0.
(3) ρ(A) = ∅, in which case, let hm+1(A) = 1
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Let π be the operation which defines hm+1 out of hm, i.e. hm+1 = πhm. Of course, π depends on ρ.
To be more explicit about the role of π, assume H is a function giving {0, 1} values to all elements
of F. Using ρ and rules (1)–(3) above we can transform H into H ′. We write H ′ = πH.3

Level ∞
Let h∞(A) = y ∈ {0, 1} iff for some k, hm(A) = y for all m ≥ k.
Let h∞(A) =? (undefined) otherwise.
h∞ is called the BG labelling of F.

Definition 3.4 (Caminada labelling) Let (F, ρ) be an atomic network. A Caminada labelling on
F is a function λ giving values in {0, 1, ?} satisfying the following:

(1) if ρ(x) = ∅, then λ(x) = 1
(2) If for some y ∈ ρ(x), λ(y) = 1, then λ(x) = 0.
(3) If for all y ∈ ρ(x), λ(y) = 0, then λ(x) = 1.
(4) If for some y ∈ ρ(x), λ(y) =? and for no y ∈ ρ(x) do we have λ(y) = 1, then λ(x) =?

Lemma 3.5 Let N = (F, ρ, λ) be an atomic network with the Caminada labelling λ. Then, there
exists an assignment h0 such that h∞ = λ.

Proof Let h+(x) = 1 if λ(x) = 1 or λ(x) =?
Let h+(x) = 0 if λ(x) = 0.
Let h−(x) = 1 if λ(x) = 1.
Let h−(x) = 0 if λ(x) = 0 or λ(x) =?
Let h0 = h+.

We now prove

(1) If hm = h+, then hm+1 = h−.
(2) If hm = h−, then hm+1 = h+.

Assume hm = h±. We calculate hm+1(x), x ∈ F, and show hm+1 = h∓.
If λ(x) = 1, then either ρ(x) = ∅ or for all y ∈ ρ(x), λ(y) = 0. In this case, hm(y) = 0 and so

hm+1(x) = 1.
If λ(x) = 0, then for some y ∈ ρ(x), λ(y) = 1. In this case, hm(y) = 1 and so hm+1(x) = 0.
If λ(x) =?, then ρ(x) �= ∅ and for some y ∈ ρ(x), λ(y) =? and for none of the other y ∈ ρ(x)

do we have λ(y) = 1. So, let {y1, . . . , yk , yk+1, . . . , yr} = ρ(x), with k ≥ 1, λ(yj) =?, 1 ≤ j ≤ k
and λ(yk+1) = · · · λ(yr) = 0.

Clearly if hm = h±, then hm(yk+1) = · · · = hm(yr) = 0.
If hm = h+ then hm(x) = 1 and hm(y1)= · · · hm(yk) = 1 and hence hm+1(x) = 0.
This shows that hm+1 = h−, since x was arbitrary.
If hm = h− then hm(x) = 0 and hm(y1) = · · · = hm(yk) = 0 and so for all y ∈ ρ(x), hm(y) = 0

hence hm+1(x) = 1.
Again since x was arbitrary, we get hm+1 = h+.
So, if we start with h0 = h+, we get h2m = h+, h2m+1 = h− and so h∞ = λ. �

Lemma 3.6 The converse of the previous lemma does not hold. Not every h∞ is a Caminada
labelling.

Proof Consider the network in Figure 7
Start with h0(a) = h0(b) = 1, h0(c) = h0(d) = 0, ho(e) = 0. We have h1(a) = h1(b) =

0, h1(c) = h1(d) = 1, h1(e) = 0.
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Figure 7. Oscillation and attack.

We also have

h2m = h0, h2m+1 = h1.

Thus, h∞(a) = h∞(b) = h∞(c) = h∞(d) =? and h∞(e) = 0.
The Caminada labelling rules do not allow for λ = h∞. �

Remark 3.7

(1) The reason we could provide the example in Figure 7 is that h gave value 1 to the loop
(a, b) and value 0 to the loop (c, d). So, as the values in the loop oscillated, there was
always one loop which attacked e. If all loops were to oscillate synchronously, h(e) would
have oscillated as well.
How can we overcome this? We can use ultrafilters to get an exact value out of the
oscillation. We need some concepts
Let N be the set of natural numbers.A family of subsets U of numbers is called an ultrafilter
if the following holds
(a) N ∈ U, ∅ �∈ U

(b) If X, Y ∈ U, then X ∩ Y ∈ U

(c) either X or N − X is in U.
U says which sets are ‘big’.
We also note that there exists an ultrafilter U such that all co-finite sets are in U.
We now give an alternative definition of h∞. Call it hω.

hω(x) = 1 iff Ux = {m|hm(x) = 1} ∈ U.

Let us see what happens with the example of Figure 7 if we use hω instead of h∞. We have
Ua = Ub =all even numbers.
Uc = Ud =all odd numbers.
One of two sets {odd numbers, even numbers} is in U. From symmetry, we can assume
without loss of generality that it is the even numbers. We get

hω(a) = hω(b) = 1, hω(c) = hω(d) = 0.

So hω is the same as h0 and we have nothing.
Let us try another angle.

(2) The discrepancy with the Caminada labelling and hence with the Dung network rules seem
to arise in the case where a winning argument x according to Dung gets a value h(x) = 0.
Figure 8 gives two typical examples.
According to the Dung rules a, d, c are winning arguments. If h is such h(a) = 0, then b
and e will be the winning arguments.
The question we ask is can we use a device which makes the two approaches compatible?
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Figure 8. Example showing the discrepancy with the Caminada labelling.
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Figure 9. The real meaning of Figure 8.

Suppose we say a is not usable (i.e. h(a) = 0) because there is an attack on a. Say h(a) is
the argument which attacks a. h(a) is not in the network but the fact that a is attacked is
recorded by h(a) = 0. There may be good reason why we do not want h(a) to be explicit
in the network. Maybe h(a) is a different type of argument. Maybe it is a secret argument.
Whatever the reason is, the real network is Figure 9.
The above trick works for this network. Does it work in general?
Given an atomic network (F, ρ, h), can we get the correct result by adding nodes F1 =
{h(x)|x such that h(x) = 0} and letting F

′ = F ∪ F1 and ρ ′ = ρ ∪ {(h(x), x) | h(x) ∈ F1}?
Do we have a general theorem that we can pair the winning subsets? I.e. can we have:

(a) For any winning set T ′ ⊆ F
′, T ′ ∩ F is a winning set of (F, ρ, h).

(b) For any winning set T ⊆ F, there exists a winning set T ′ ⊆ F
′ such that T = T ′ ∩ F.

We can hope for such results only if whenever h says an argument x is out then it is out
permanently, because when we insert h(x) to attack x and force it out, it is out permanently.
Our algorithm in Definition 3.3 and later on in the section dealing with modal and temporal
logics, does not keep unusable arguments out permanently, it does bring them in depending
on the attack cycles.

Remark 3.8 (Discussion of the Dung network rules)

(1) The discrepancy with the Caminada labelling is a serious one. The Caminada labelling is
faithful to the Dung argumentation network rules, namely (Definition 3.3)

(a) If all attacks on a node x are defeated (are out), then x is in.
(b) If some attacks on a node x are in, then x is out.
(c) If there are no nodes attacking x, then x is in.

In the Dung framework, these rules are not defeasible rules, they are absolute.
So consider, for example, an argumentation network with one node and one argument x.
Since nothing attacks x, x is a winning argument. If we look at a classical model for x
with x = 0, namely x is unusable for whatever reason, then the Dung rule overrides the
unusability of x and x is still a winning argument.
Compare this with default logic. The default rule x/x says that if x is consistent to add
then add it by default. This will not override any given data about x.
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So, rules (a)–(c) are too strong when we give a model interpretation to the arguments. An
argument can win even though it is unusable, simply because it is not attacked.

(2) We call for a new critical evaluation of rules (a)–(c). We would abandon rule (c) and modify
rule (a).
The proposed BG rules for a Dung network relative to an assignment or other evidence
are (a*)–(c*) below. We call the associated update functional π∗ (compare with π of
Definition 3.3).

(a∗) If all attacks on x are defeated and there is no evidence that x is unusable, then x
is in

(b∗) If some attacks on x are in, then x is out.
(c∗) If there are no nodes attacking x, then x is in only if there is no evidence that it is

unusable.
Jakobovits and Vermeir (1999) have already proposed that an argument which has all of
its defeaters out need not necessarily be in. This view is criticised in Caminada (2006).
Our (a*) and (c*) are in line with Jakobovits and Vermeir (1999).

(3) Let us call an assignment h a Caminada assignment to the atoms of Q if for some Caminada
labelling λ we have

• h(x) = 1 if λ(x) = 1.
• h(x) = 0 if λ(x) = 0.
• ∀x(λ(x) =? implies h(x) = 1).

From Lemma 3.5, we know that h∞ = λ and hence Caminada assignments are compatible
with Dung networks. If we restrict our Kripke model to Caminada assignments, then maybe
we will have no technical discrepancies.

Remark 3.9 The difference between BG and Caminada labelling can be appreciated by looking
at the logic programming translation of a Dung network. Consider the network ({a, b}, {(ab)})
(that is a network with two arguments a and b with a attacking b). Its translation is (¬ is negation
as failure)

(1) b if ¬a.
(2) a.

In our model, we also give usability assignments h(x) to x. So, we translate as follows into a logic
programming program (we regard h(x) as a new literal dependent on x attacking x by virtue of an
argument showing that x is unusable) :

(1∗) b if ¬a ∧ ¬h(b).
(2∗) a if ¬h(a).
(3∗) h(x) if ¬zero(x), for all nodes x.
(4∗) zero(x), for all x such that x = usable, under the assignment h.

h(x) and zero(x) are new literals, for each node x.
Note that we use ¬h(x) rather than h(x) in the programme so that the programme will have a

corresponding Dung network. To make ¬h(x) fail, we need to add h(x), for x = usable, under h.
The corresponding Dung network for the above network is Figure 10 (Footnote 1):

So, the BG programme is defined to contain the following clauses

(1∗) If x1, . . . , xn attack y in the network, we include the clause

y if ¬x1 ∧ . . . ∧ ¬xn ∧ ¬h(y),

where h(y) is a new atom.
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h(a) a b

h(b) zero(b)

zero(a)

Figure 10. The network of Remark 3.9.

(2∗) If y is not attacked by any node, we include the clause y if ¬h(y).
(3∗) Add h(y) if ¬zero(y).
(4∗) For every y such that h(y) = 1, we include the literal zero(y).4

4. Kripke models for argumentation networks 1

We begin this section with some methodological remarks and general examples which will bring us
to a point of view best suited for the presentation of modal and temporal argumentation networks.

We begin with a simple example. Consider the sentence

• John read le livre with interest.

This sentence contains some French words. To understand the sentence, we need to go to a French
dictionary and come back with values. We come back with the words ‘the book’.

Now consider

• John is dishonest because he did not pay yesterday.

To check the value of the above, we must go to yesterday and verify that John did not pay.
Let t label the location of the main sentence and let s label the location of where we need to

go. In each case, we have the following situation.
In the process of evaluating the algorithm At at t, we hit upon a unit of the form

Take x to location s, find a value y = Vt
s (x) for x at s and come back and plug it into our local algorithm

At and carry on.

The notation V t
s (x) is the value you get for x at location s intended to be understood and used

at t (so V t
s is a French to English ‘function’ in the first example, and a function reading from a

payment ledger for the second example).
Let us now take another example. Consider the three argumentation networks in Figure 11. In

network t, the node x is not an argument but an instruction to look for an accessible network in
which there is a winning argument which can defeat b. The two accessible networks are s and r. In
s, a is not a winning argument, but it is in r. Suppose a is capable of defeating b; this knowledge is
not recorded in the network t but is known to us either extra-logically or intrinsically (for example,
b is logically inconsistent with a). Then, x will be instantiated as the argument a coming from
network s. x, being an instruction or a recipe for finding arguments, can be as specific as needed
for a successful search. Note that we could have written Figure 12 instead of Figure 11. This is a
fibring of network r at position x at network t. The attack on b comes from inside the network r
from node a onto node b (in network t).
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b

network t

x = bring anything
from another network

to defeat b c

a

e

network s

d

g

a

a

network r

Figure 11. Networks related by instructions.

g adx =

b

a

Figure 12. Traditional network corresponding to Figure 11.

ac g

bx

de aa

Figure 13. A Kripke model corresponding to Figure 11.

We can turn the situation into modal logic by using ♦x (or even ♦a if we know that x = a will
do the job) and we get a kind of Kripke model, see, for example, Figure 13. The zigzag arrow �
is accessibility and the ordinary arrow → is attack. ♦x (or ♦a) means find a winning argument a
which can attack b. Here, the meaning of ♦a is administrative. ♦ is a meta-level administrative
connective. ♦a does not mean that a is a possible argument; and ♦ is not in the argument language.

Consider now the following network

♦ storm → b

in which ♦ storm represents ‘it is possible there will be a storm’ and b represents ‘setting sail
now’. The model envisages several possible futures, if in at least one of them there is a storm then
that possibility defeats b. Here, the possible ♦ is not an administrative but a temporal event. The
language of ♦a is object level, and ♦ must be in the language of arguments.
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5
1

3

6

4

2

Figure 14. A Kripke model corresponding to Figure 5.

Technically, the mathematics of both cases, the administrative meta-level ♦ and the temporal
event object level ♦, is very similar. In both cases, we can put ♦x in the nodes of an argumentation
network and seek winning arguments in accessible networks.

In either case of ♦x, we need to search other networks for an appropriate winning value. So, it
is not clear until after the calculation and search, whether we have a usable argument here or not,
especially if the family of networks is complex. Hence, the need and the technical usefulness and
value of a usability assignment. It simplifies matters during the calculations.

We now explore our options for Kripke models for argumentation networks. We begin with a
simple first attempt which will turn out to need improvement. However, it is helpful to go through
this first attempt for us to appreciate what is to be added. Consider the network of Figure 5 and
let Figure 14 describe a Kripke model. The reader should bear this in mind when reading the next
formal definition.

Definition 4.1 (Languages) We recall here the languages of modal and temporal logics.

(1) The classical connectives we use are ∼ (negation), ∧, ∨, →. We reserve ¬ for negation as
failure.

(2) In temporal logic, we use the connective PA which for A was true in the past and FA for A
will be true in the future. A temporal model is usually presented through a nonempty set T
of moments of time and an earlier-later relation < on T . < is usually taken as irreflexive
and transitive. The classical truth conditions for P and F are

• t � PA iff for some s such that s < t, we have s � A.
• t � FA iff for some s such that t < s, we have s � A.

Temporal logic defines
HA =∼ P ∼ A = A has always been true.
GA =∼ F ∼ A = A will always be true.

(3) Modal logic uses ♦A reading, A holds in another accessible world. The set of worlds is
denoted by S and has an accessibility relation R ⊆ S × S. We have

• t � ♦A iff for some s such that tRs we have s � A.
�A usually means ∼ ♦ ∼ A.

(4) The usual temporal or modal logics have formulas evaluated at worlds. If we want to
define the notion of modal and temporal networks, we will need to deal with networks of
formulas evaluated at worlds.

(5) We can have in the language both the temporal connectives P, F and the modal connective
♦. In which case, the semantics will need to have both R and <. We may allow for the
future to be also a possibility for ♦, in which case we have:

t < s → tRs.
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Sometimes only P and ♦ are used in which case we can use only R and go backwards in
it for evaluating P.

(6) The examples below use ‘usability’ instead of truth. So, we have for an example that ‘a is
usable at world t’ is treated mathematically the same way as we treat ‘a is true (holds) at t’.

Let us start with some examples in the simple language which contain arguments of the form x,
(atomic), ♦x, possibility of an argument, and Px, past arguments. Think of ♦x as future possibility.
So, in the Kripke model, ♦ goes up in the arrow direction and P goes down in the arrow direction.

In the usual Kripke evaluation procedures for classical logic, with a set Q of atomic arguments,
we have an assignment h giving a truth value at each world t for each atomic proposition q. We
write h(t) ⊆ Q for the set of true propositions at t. In the argumentation case, we do not have
atomic propositions, but we do have argumentation networks which themselves contain atomic
propositions. For example, the network of Figure 5 contains the atoms a, b, c.

So, we give the following definition. For each node n in the Kripke model, we assign a set
h(n) ⊆ set of atoms appearing in the network. For an atom q, we assign a usability value 1 if
q ∈ h(n) and 0 otherwise. We also use the notation h(n, q) = 1 or h(n) � +q to indicate that
q ∈ h(n), and h(n, q) = 0 or h(n) � −q to indicate that q �∈ h(n).

Figure 15 is an example of such an assignment, where we write ±q to indicate the value of q.
Suppose we want to know the value of the network of Figure 5 at the model at node 1. How

do we evaluate Pc? We follow the traditional steps of evaluation in a Kripke model; we go down
the accessibility relation and look for a world where c is usable.

At node 5, we have +c, so maybe we say +Pc at node 1, but we notice that a attacks Pc in the
network (Figure 5). So, does 1 � Pc or not? Furthermore, Pc attacks b and so at node 2 does Pb
hold or not?

We have +b at node 1, so we would like to say 2 � Pb, however b may be successfully attacked
at node 1. So, we may not have Pb after all, so what do we have?

We need an agreed recursive definition.
Let us see some examples where we might have a loop, and try and get a clue by working the

example out.

Example 4.2 Consider the network and Kripke model as described in Figure 16
To evaluate the network at 1, we know that ∼ Pb = usable. But ∼ Pb is attacked by ♦a and

so we need the value of ♦a at 1. For this, we need the value of a at point 2. We have +a at 2, but
this is attacked by ∼ Pb, which is not attacked by ♦a at 2 since it is not usable at 2.

So, we need to know the value of b at 1. We do have +b at 1 but this is attacked by ♦a so we
need to know the value of a at 2 and we have a loop.

We need some process of evaluation which will give us a better chance to resolve the loops.
We do this by levels of recursive evaluation. We use two bits of notation.

5 : +a, +b, +c
6 : +a ,−b, −c

2 : + a, − b,+ c

1 : +a,+b, +c

3 : + a,+ b,− c

4 : +a, −b, +c

Figure 15. An example of an assignment.
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+a,+b

+a,+b

model

a

b
~Pb

a

network

1

2

Figure 16. A model for Example 4.2.

(1) hm(t, A) is the assignment of value at level m to the argument A. A may be atomic or a
formula.

(2) t �m A is the network value of A at world t at level m. We use the BG algorithm for the
functional π∗ namely clauses (1∗)–(3∗) of Remark 3.8.

So to make the meaning of hm and �m crystal clear: hm says which arguments in the network
are usable at level m, while �m says which arguments are winning (not defeated) at level m. An
argument defeated at �m is considered unusable by hm+1.

Let us now apply this to Figure 16’s example.
Level 0

h0 is the assignment h to the atoms as indicated in the Figure, i.e. h0(1, a) = h0(1, b) = h0(2, a) =
h0(2, b) = 1. �0 is defined for a b as the same value as h0.

For ♦a, Pb, h0, �0 is not necessarily defined.
It is convenient to use the notation

hm(t) � +A to say hm(t, A) = 1,

hm(t) � −A to say hm(t, A) = 0.

The idea of hm and �m is as follows: hm evaluates the temporal modalities using the Kripke
model without regard to the argumentation network. Then, �m records the result of the attacks
(i.e. the winning arguments) of the argumentation network at each world. The �m may record the
defeat of some atoms in the network, thus rendering them unusable at level m + 1 (by virtue of
being defeated at level m) thus giving rise to a new assignment which can now be used to calculate
hm+1 and so on.

Level 1

h1(1) � +♦a, +b, + ∼ Pb, +a,

h1(2) � −♦a, +b, − ∼ Pb, +a.

Now we have networks with nodes which have values and so we calculate the winning arguments.
These are the ones holding at the worlds of the Kripke model at level one. We write:

1 �1 ♦a, a,

2 �2 b, a.
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Level 2
The assignment we use to calculate h2 is the atomic part of �1, namely 1 �1 a and 2 �1 a, b.

h2(1) � +♦a, −b, +a, + ∼ Pb,

h2(2) : −♦a, +b, + ∼ Pb, +a.

After evaluation of the networks, we get

1 �2 ♦a, a,

2 :�2∼ Pb, b.

Level 3
�2 gives us a new assignment to the atoms, namely 1 �2 a and 2 �2 b.

h3(1) � −♦a, −b, +a, + ∼ Pb,

h3(2) � −♦a, +b, + ∼ Pb, −a.

calculating the surviving arguments at each world, we get

1 �3∼ Pb, b,

2 �3∼ Pb, b.

Level 4
We now get the assignment from �3 for atoms as

1 �3 b, 2 �3 b.

We calculate h4

h4(1) � −♦a, − ∼ Pb, +b, −a,

h4(2) � −♦a, − ∼ Pb, +b, −a.

We calculate �4 at each node using network rules

1 �4∼ Pb, b,

2 �4∼ Pb, b.

�3 and �4 are the same. So, the answer is now stable.

Remark 4.3 The reader may wonder what has happened to the loop we observed before and what
kind of interpretation (loop resolution) we are getting. To explain that let us look at the traditional
loop in the network of Figure 17, in which a and b attack each other. We have three complete
extensions {a}, {b}, ∅.5 Let us do the level calculation intuitively.

Level 0
Start with +a, +b.

Level 1
Attack as suggested by level 0. We get −a, −b.

Level 2
Attack as suggested by level 2. We get +a, +b.
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a b

Figure 17. A traditional loop for Remark 4.3.

So, we are infinitely looping and we can put a question mark on a and b, leading to ∅.
Of course, everything depends on the assignment at level 0. Other possible assignments are

{+a, −b}, {−a, +b}, {−a, −b}, yielding {a}, {b}, and ∅, respectively.

Example 4.4 We try and evaluate the network of Figure 5 at the model of Figure 16. We use the
BG π∗ evaluation algorithm.

We do this by levels. Let h0 be the assignment to the atoms as indicated in Figure 15. Thus, h0

satisfies
Level 0

h0(5) � +a, +b, +c,

h0(6) � +a, −b, −c,

h0(1) � +a, +b, +c,

h0(2) � +a, −b, −c,

h0(3) � +a, +b, −c,

h0(4) � +a, −b, +c.

Level 1

h1(5) � +a, +b, +c, −Pc, +♦a,

h1(6) � +a, −b, −c, −Pc, +♦a,

h1(1) � +a, +b, +c, +Pc, +♦a,

h1(2) � +a, −b, +c, −Pc, +♦a,

h1(3) � +a, +b, −c, +Pc, −♦a,

h1(4) � +a, −b, +c, +Pc, −♦a.

Now the network of Figure 5 has values for each node at each world. We can compute the winning
argument at each world. Note that c does not appear as a node in the network so we inherit its
value from h.

5 �1 +a, −b, +c, −Pc, +♦a,

6 �1 +a, −b, −c, −Pc, +♦a,

1 �1 +a, −b, +c, +Pc, +♦a,

2 �1 +a, −b, +c, −Pc, +♦a,

3 �1 +a, +b, −c, +Pc, −♦a,

4 �1 +a, +b, +c, +Pc, −♦a.

Level 2
We evaluate h2 using the assignment to the atoms suggested by �1.
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h2(5) � +a, −b, +c, −Pc, +♦a,

h2(6) � +a, −b, +−, −Pc, +♦a,

h2(1) � +a, −b, +c, +Pc, +♦a,

h2(2) � +a, −b, +c, −Pc, +♦a,

h2(3) � +a, +b, −c, +Pc, −♦a,

h2(4) � +a, +b, +c, +Pc, −♦a.

We now calculate �2

5 �2 +a, −b, +c, −Pc, +♦a,

6 �2 +a, −b, −c, −Pc, +♦a,

1 �2 +a, −b, +c, +Pc, +♦a,

2 �2 +a, −b, +c, −Pc, +♦a,

3 �2 +a, +b, −c, +Pc, −♦a,

4 �2 +a, +b, +c, +Pc, −♦a.

We have stability since �1 equals �2.

Definition 4.5 (Temporal languages) Let Q be a set of atoms. The basic temporal language based
on Q uses the unary connectives C = {¬, ♦, P}. A temporal formula has the form α1α2 . . . αmq,
where q ∈ Q and αi ∈ C, i = 1, . . . , m.

The language is said to be very basic if we allow ♦x and Px and x only.
The full temporal language also allows the use of the classical connectives ∧, ∨ → and

unrestricted use of ♦ and P.

Definition 4.6 (Temporal Kripke models) Let (S, R, a) be a Kripke model and let N = (F, ρ) be
a network in the basic temporal language with ¬, ♦, P, and Q or in the full temporal language. Let h
be an assignment giving for each world t ∈ S and an atom q ∈ Q a usability value h(t, q) ∈ {0, 1}.6

We define by induction a sequence of new assignments h1, h2, . . . and semantic consequences
�1, �2…as follows:

(1) Let h1 be defined as follows
h1(t, q) = h(t, q), for q atomic,
h1(t, ♦A) = 1 if for some s ∈ S such that tRs we have h1(s, A) = 1.
h1(t, PA) = 1 iff for some s, such that sRt we have h1(s, A) = 1.
The definition for the classical connectives is the usual one.

(2) Let �1 be defined as follows:
First consider h1(t) as an assignment on (F, ρ) with t as a fixed parameter. We can consider
h1(t) as a subset of F. Consider the operator π of Definition 3.3.
We define �1 by

t �1 x iff x ∈ πh1(t).

The reader can compare with the construction in Example 4.2.

Note that if we want to use defeasible rules as discussed in Remark 3.8, then we use π∗ of
Remark 3.8 instead of π of Definition 3.3.

We now define hm+1 �m+1 for m ≥ 1.
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hm+1 is obtained from �m in the same way that h1 was obtained from h, by regarding t �m

q, q ∈ Q as an assignment to the atoms. Note that all we need is the values of �m on the atoms of Q.
�m+1 is obtained from hm+1 in the same way that h2 was obtained from h1, i.e. for each t, we

have t �m+1 A iff A ∈ πhm+1(t).
This defines hm �m for all n ≥ 1.
We now define t �∞ A for t ∈ S and A ∈ F as follows:

t �∞ A holds (does not hold) if for some k, t �m A holds (resp. does not hold) for all n ≥ k.
Otherwise if t �m A oscillates, we say that t �∞ A is undecided.

5. Kripke models for argumentation networks 2

Let us assess the situation we are in. In the previous section, we offered a simple model. This
model can be improved. The problem is not so much the discrepancy with the Dung approach
(Remark 3.9) as this is not a unique possible world problem, but the difficulty is that we need to
sharpen the intuitive meaning to Definition 4.6. It is mainly technically motivated by a natural
formal analogue of the semantical movements in a traditional modal and temporal Kripke model.
We need to clarify more sharply the meaning of usability of arguments and its connection to truth
and falsity and possibility of argument and facts.

There seems to be a fundamental difference between the modal operator ♦ and the temporal
operator P. P goes into the past, while ♦ goes to an alternative world of different reason-
ing/argumentation framework. In an ordinary Kripke semantics for traditional modal and temporal
logics, there is no technical distinction between the two. In an argumentation context, we need to
give different technical treatment to these two connectives. The ♦ we treat as a fibring operator
(go to another context, do something there, and come back with the result, see Gabbay (1996)),
while the operator P is still treated as purely temporal.

We illustrate with an example.
We want to argue against a political candidate c. We want to bring in the past facts that he

double-crossed his partners, showing lack of loyalty and trustworthiness (call this Pd, d for ‘dirt’).
However, the situation today is such that digging up the past on a candidate is counterproductive
(call this ∼ p). It is suggested therefore to wait 6 months for the facts to emerge naturally (i.e. ♦d,
where ♦ here reads future possibility).

A counterargument against waiting is that by that time criteria for judging candidates will
change and the argument will be defeated, say d will be attacked by e (e can mean who cares? ; it
was a long time ago!).

Figure 18 shows the situation:

in 6 months:

past

now:

e Pd c

~p Pd c

d

Figure 18. A network with a temporal argument.
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We notice the following discrepancies between the formal situation of Figure 18 and the
formal definition we gave to modal and temporal argumentation networks in Definition 4.6.

(1) We have different networks at different possible worlds.
(2) ♦ behaves like a fibring operator
(3) P is purely temporal for facts.
(4) With P the assignment, h indicates ± usability by virtue of truth or falsity, while with ♦,

the assignment h might indicate ± usability for other reasons.
(5) We cannot have a proper temporal and modal treatment of arguments without looking into

the details of what is the internal structure of arguments and how exactly do they attack
one another in terms of such structure.
Suppose we adopt the view that arguments are proofs and attacks disrupt such proofs. Let
us examine how time T gets into the picture. Consider the following example:
I park my car near Russell Square at 11am in the morning, do my business of the day and
come back to it at 5 pm. I expect to find it there. If I don’t find the car then nonmonotonic
deduction allows me to conclude that the car was stolen. We can have a little logical system
(nonmonotonic or Bayesian net) which compares the conclusions of ‘car stolen’against ‘car
towed away by local council parking department’. We can assume the latter conclusion can
be defeated. We can also ignore some well-known difficulties of persistence of arguments
where one gets paradoxically that the car was stolen only a few seconds before my return
(the stolen car paradox).
There is one sure way to attack this argument and its conclusion. This is to prove the simple
fact that I do not have a car.
Figure 19 illustrates the situation
Facts can attack arguments most effectively. Also, if the facts are undecided or are not
available, then we claim the argument is not usable. See Section 6 for further discussion.
So when designing a new modal and temporal logic for argumentation, we need a pure
{P, F} temporal logic just for the facts.

(6) Our next question is whether an argument itself can be time dependent. This is a bit tricky.
In monotonic logic, the answer is no. Euclid geometric proofs are as valid and good today as
they were in ancient times. But in the nonmonotonic case, the answer is yes. Nonmonotonic
reasoning depends on context. Today, a girl in a mini-skirt will not be considered immodest
but go back 200 years and everyone at that time will nonmonotonically deduce she is ‘fast’.
So as we can see from this example, the deduction mechanism itself can change in time.
Thus, we may argue for example along the lines ‘you had better get yourself a decent
long dress now because soon people’s perception will change and you will no longer be
respectable wearing a mini-skirt’.

Definition 5.1 (Temporal Kripke models – udpated)

(1) Consider a language with the classical connectives {∼, ∧, ∨, →} and the temporal and
modal connectives {P, F, ♦}. We also assume a set Q of atoms, and we use the atoms to
construct formulas using the connectives in the traditional manner.

Proof: car is
stolen relies
on facts, e.g.
I have a car

Fact:

I have
no car

Figure 19. Facts attacking an argument.
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(2) A Kripke model for the above language has the form (S, R, ≤, a, h), where S is a nonempty
set of worlds and R ⊆ S × S is a binary relation for ♦ and < is an irreflexive and transitive
relation on S for F and P. h is an assignment giving for each t ∈ S, a subset h(t) ⊆ Q. We
consider h as a usability function on the atomic arguments of Q, saying which elements
of Q are usable at world t.

(3) For each t, let N(t) = (F(t), ρ(t)) be an argumentation system.
(4) We define by induction a sequence of new assignments h1, h2, . . . and semantic conse-

quences �1, �2…as follows:
(a) Let h1 be defined as follows

h1(t, q) = h(t, q), for q atomic.
h1(t, ♦A) = 1 if for some s ∈ S such that tRs we have h1(s, A) = 1.
h1(t, PA) = 1 iff for some s, such that s < t we have h1(s, A) = 1.
h1(t, FA) iff for some s such that t < s we have h1(s, A) = 1.
The definition for the classical connectives is the usual one.

(b) Let �1 be defined as follows:
First consider h1(t) as an assignment on (F, (t), ρ(t)) with t as a fixed parameter. We
can consider h1(t) as a subset of F(t). Consider the operator π∗ of Remark 3.8.
We define �1 by

t �1 x iff x ∈ π∗h1(t).

We now define hm+1 �m+1 for m ≥ 1.
hm+1 is obtained from �m in the same way that h1 was obtained from h, by regarding
t �m q, q ∈ Q as an assignment to the atoms. Note that all we need is the values of �m on
the atoms of Q.
�m+1 is obtained from hm+1 in the same way that h2 was obtained from h1, i.e. for each t,
we have t �m+1 A iff A ∈ π∗hm+1(t).
This defines hm �m for all n ≥ 1.
We now define t �∞ A for t ∈ S and A ∈ F as follows:
t �∞ A holds (does not hold) if for some k, t �m A holds (resp. does not hold) for all n ≥ k.
Otherwise if t �m A oscillates, we say that t �∞ A is undecided.

6. Conclusion and discussion

Modal logic deals with sets W of possible worlds w ∈ W . The possible worlds in propositional
modal logics are usually atomic and have no internal structure. In this paper, we associate with
possible worlds w argumentation networks of the form Nw. The argumentation networks Nw contain
as arguments (i.e. the arguments appearing in the argumentation network Nw) modal and temporal
formulas. Thus, to define extension in Nw, we need to look at extensions in other accessible worlds
N ′

w. This greatly enriched the language of argumentation but required a tricky inductive definition
of how to calculate extensions and required the concept of usability of arguments. We also gave
examples to motivate the need for such definitions, but we also discussed simpler definitions of
temporal argumentation networks.

We continue with a comparison with some key papers. I am grateful to the referees for compiling
this list.

(1) M.L. Cobo, D.C. Martines, and G. Simari, a 2010 paper on admissibility in timed abstract
argumentation networks (Cobo, Martinez, and Simari 2010).
This paper offers a time stamping model, where each argument is time stamped when it
is available. The model is similar but not the same as the ones used in Abraham et al.
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(2011a) and Barringer et al. (2005). In all cases, the change is in the meta-level. There are
no temporal connectives involved.

(2) N.D. Rotstein, M.O. Moguillansky,A.J. Garcia, and G.R. Simari, a 2010 paper on dynamic
argumentation framework (Rotstein, Moguillansky, Garcia, and Ricardo 2010).
The paper offers a model where arguments are based on evidence structures. Thus, the
dynamics of change come from updates and changes in the evidence structure. There are
no modal connectives in the object level to connect between different evidence structures.

(3) G. Boella, S. Kaci, and L. van der Torre, a 2009 paper on dynamics in argumentation with
single extensions (Boella, Kaci, van der Torre 2009).
This paper does not offer dynamics of argumentation networks but rather principles in the
meta-level which can govern change in networks. In particular, they offer properties for
refinement of the attack relation. Thus, if, for example, we have an interrelated family of
argumentation networks (different worlds or different times), we can check whether this
family satisfies the meta-level principles offered in this paper.

Let us conclude with our plans for future research.What is interesting is to look at an argumenta-
tion network and partition the arguments into different subsets and regard them as subnetworks (i.e.
different modal worlds) and put requirements on extensions as seen from the point of view of the
different subnetworks. This presents a very neat way of introducing modality into argumentation.
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Notes
1. As an argument for wishing a new interview date, the candidate has declared that she is getting married

in the local catholic church, and these dates coincide. As a result of this correspondence, the interviewers
know she is Catholic and a new bride.

2. There is a known case where a preferred candidate did not score as well as another candidate in an
interview for a position in local government. In exceptional circumstances, the interview panel was
reconvened and the outcome was that the preferred candidate’s score actually fell!

3. In terms of Definition 3.1, H is a labelling l (no transmission labels) and π is a functional f whose
algorithm uses clauses (1)–(3).

4. If you recall the idea of attacks on attacks as developed in Section 2 of Barringer, Gabbay, and Woods
(2012) and originally in Barringer et al. (2005), you will realise that we can present a network relative to
additional nodes attacking connections. The zero(y) nodes are added according to assignment to attack
the connection zero(y) → h(y). In fact, there is no need to do it this way. We do not need zero(y). We
can simply augment the original network with additional nodes h(y) attacking the node y for all y such
that h(y) = 0. The problem with that is that h keeps on changing and so the h(y) will keep on being in
and out.

5. (1) A subset E of arguments E is conflict free if no member of it is attacked by another member.

(2) A subset of arguments E is admissible if whenever a member x in E is attacked by any other argument
z, then there is a y in E which attacks z.

(3) E is preferred extension if it is a subset satisfying (1) and (2) and is maximal with respect to set
inclusion.

6. This definition is parallel to the traditional one. ♦ goes up the accessibility relation and P goes down it.
The evaluation is more complicated because the formulas are part of a network.
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As noted before if we insist that at each t, the assignment h(t) ⊆ Q is a Caminada assignment (need not
be the same one for all t), then we will have less technical discrepancies with the Dung interpretation. We
need to check, however, since our language has temporal operators, whether hm(t) remains a Caminada
assignment. We will examine this point later in the section. Our guess is that further adjustment will be
needed.
We shall give better definitions later in the next section.
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