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Mental models represent possibilities, and the theory of mental models postulates three systems
of mental processes underlying inference: (0) the construction of an intensional representation
of a premise’s meaning – a process guided by a parser; (1) the building of an initial mental
model from the intension, and the drawing of a conclusion based on heuristics and the model;
and (2) on some occasions, the search for alternative models, such as a counterexample in
which the conclusion is false. System 0 is linguistic, and it may be autonomous. System 1
is rapid and prone to systematic errors, because it makes no use of a working memory for
intermediate results. System 2 has access to working memory, and so it can carry out recursive
processes, such as the construction of alternative models. However, it too is fallible when the
limited processing capacity of working memory becomes overburdened. The three systems are
embodied in a unified computational implementation of the model theory, called mReasoner,
which is a recent departure in the theory. We review its three systems as they apply to reasoning
about the properties of sets of individuals, and we explore how these systems can be extended
to other domains of reasoning.
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Individuals with no training in logic can make certain deductions with ease. For instance, if they
learn that

Senator Smith is on the Appropriations Committee
Everyone on the Appropriations Committee is Texan

they can infer that Senator Smith is Texan. Indeed, not to make this inference could be a mistake.
It is valid, because its conclusion holds in every case in which its premises hold, i.e. the conclusion
must be true if the premises are true (Jeffrey 1981, p. 1).Yet, despite the simplicity of the deduction,
its underlying mental processes are not accessible to introspection, and so they remain a challenge
to cognitive science.

Early psychological accounts postulated that reasoning depends on a mental implementation
of formal logic (Inhelder and Piaget 1958, p. 305). Individuals were supposed to extract the logical
form of premises to derive a conclusion using formal rules of inference in a process akin to a logical
proof, and then to restore the appropriate contents to the form of the conclusion (Johnson-Laird
1975; Osherson 1975; Braine 1978; Rips 1983). But, these theories had difficulty in explaining
a robust empirical result: the contents of premises can affect inferences in ways that logic alone
cannot predict (Wason and Shapiro 1971). The discovery of these effects led to the theory of mental
models, which takes meaning rather than logical form to be central to reasoning. In this article,
we focus on its account of deductive reasoning, which postulates that reasoners use the contents
of premises to simulate the world under description. In the past, the theory has been applied
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piecemeal to various sorts of reasoning. We describe how we have begun to unify it in a single
computational implementation called mReasoner (for “model-based Reasoner”). To illustrate how
it works, we focus on monadic assertions, which are about the properties of sets of individu-
als. However, to set the scene for this new unification, we begin with the general principles of
the theory.

The model theory of reasoning

The mental model theory – the “model” theory, for short – postulates that when individuals under-
stand discourse, they construct a simulation of the possibilities consistent with what the discourse
describes (Johnson-Laird 2006). The theory accordingly depends on three main principles:

(1) Individuals use a representation of the meaning of a premise, an intension, and their
knowledge to construct mental models of the various possibilities to which the premises
refer.

(2) The structure of a model corresponds to the structure of what it represents, i.e. the model
is iconic as far as possible (Peirce 1931–1958, Vol. 4). In some cases, such as the rep-
resentation of negation (Khemlani, Orenes, and Johnson-Laird in press), models have to
include abstract symbols.

(3) To minimise the load on working memory, mental models represent what is true and not
what is false. Only fully explicit models represent what is false, and reasoners should have
difficulty constructing such models.

On this account, a conclusion is probable if it holds in most of the models of the premises,
necessary if it holds in all of the models of the premises, and possible if it holds in one or more
models of the premises. A conclusion is consistent with the premises if it holds in at least one
model of the premises. Also, it is invalid if it fails to hold in at least one model of the premises,
namely, a model that is a counterexample to the conclusion. The model theory is an alternative
to theories based on mental rules of inference or probabilistic calculations. Table 1 summarises
many of the key theoretical differences.

The model theory predicts several phenomena that have been corroborated in experiments.
Inferences are faster and more accurate when they depend on only a single model than when
they depend on several models (Bauer and Johnson-Laird 1993; Evans, Handley, Harper, and
Johnson-Laird 1999). Semantics and general knowledge can block the construction of models
of possibilities and add various sorts of relation among the entities in a model (Johnson-Laird
and Byrne 2002; Quelhas, Johnson-Laird, and Juhos 2010). Individuals use counterexamples
to refute invalid conclusions, especially if these conclusions are consistent with the premises
but do not follow from them (Bucciarelli and Johnson-Laird 1999; Johnson-Laird and Hasson
2003). And reasoners err predictably when an inference requires them to consider what is false
(Johnson-Laird and Savary 1999; Khemlani and Johnson-Laird 2009; Kunze, Khemlani, Lotstein,
and Johnson-Laird 2010).

The model theory applies to reasoning of many sorts, including inferences based on quantifiers
such as all artists and some bohemians (Johnson-Laird 1983; Khemlani, Lotstein, and Johnson-
Laird under review a, under review b), and sentential connectives such as and, or, and if (Johnson-
Laird and Byrne 1991). Table 2 summarises the domains to which it applies. Each of these
extensions calls for novel assumptions, and many of them have been implemented in separate
computer programs (for a review see Johnson-Laird and Yang 2008). For instance, the extension
to temporal reasoning postulates a separate iconic “time line” to represent temporal assertions,
such as, “A happens before B” and “A happens during B”, and it has been implemented in a
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Table 1. Distinguishing characteristics of psychological theories of reasoning based on mental rules,
probabilities, and mental models.

Psychological theories of reasoning

Distinguishing Mental Probability Mental
characteristic rules heuristics model models

Domains to which the
theory has been
applied.

All of first-order logic. Monadic assertions
including quantifiers,
such as “most”, which
are outside first-order
logic; and reasoning
based on conditionals
(if − then−).

See Table 2

Input to the proposed
mechanism

The logical forms of
premises

Sentences Sentences

Linguistic analysis Not applicable Not specified, because
the theory is at the
computational level,
not the algorithmic
level

Parser recovers a representa-
tion of their meaning: an
intensional representation,
which is used in the
creation and modification
of mental models.

Heuristics None “Fast and frugal”
heuristics approximate
rational, context
dependent probability
calculations, e.g.
Bayes’s theorem

Heuristics derived from
patterns of valid deductions
use intensions to yield
putative conclusions and
check them in initial
models.

Deliberations in
inference

Formal rules of inference,
such as modus ponens,
are applied to the
logical forms of
premises.

None Search for alternative
models that may serve
as counterexamples or
validate initial conclusions.

Effect of context and
content

They can affect logical
form, but the theory
applies only thereafter.

They establish prior
probabilities.

They can modulate the
interpretation of quantifiers,
connectives, and other
terms, blocking the
construction of models and
adding relations to models.

Output A proper subset of the
valid conclusions
in first-order logic,
because there are valid
inferences that the
theory cannot capture.

Probabilistic conclusions. Mental models, psychologi-
cally plausible conclusions,
and valid conclusions that
are beyond the competence
of naïve reasoners.

computer program (Schaeken, Johnson-Laird, and d’Ydewalle 1996). With each new extension,
the danger is that the theory splits into separate fragments. Each fragmentary theory may give a
satisfactory account of its domain, but the fragments may no longer fit together or rest on common
background assumptions. This problem is hardly unique to the model theory, and part of the
appeal of unitary architectures is that they obviate it (Newell 1990; Anderson 1993). In our view,
the time has come for a unification of accounts of reasoning: one theory, one architecture, and one
computational model.

As a consequence, we have begun to unify the model theory and to implement it in mReasoner,
which we describe in the following sections of the article. The theory postulates an architecture in
which there are three main systems. System 0, as we refer to it, is linguistic. It parses each premise
in order to create an intensional representation of its meaning. System 1 uses the intension to build
an extensional representation, i.e. a mental model of a possibility, and its heuristics rely on this
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Table 2. The mental model theory and its extensions.

Domain of inference Example premises Source(s) Implemented in
and/or queries mReasoner version 0.8?

Syllogistic reasoning All As are Bs Bucciarelli and Johnson-Laird
(1999)

Yes

Some As are Bs
Some As are not Bs Khemlani et al. (under review a)
No A is a B

Reasoning about
consistency

Can both A and B be true at
the same time?

Johnson-Laird, Legrenzi, Girotto,
and Legrenzi (2000)

Yes

Johnson-Laird, Girotto, and
Legrenzi (2004)

Set membership
inferences

A is a B. Khemlani et al. (under review c) Yes

A is not a B.
The interpretation of

negation
It is not the case that −. Khemlani et al. (in press) Yes

Sentential reasoning A and B Johnson-Laird, Byrne, and
Schaeken (1992)

In progress

A or B or both
A or else B Johnson-Laird and Byrne (2002)
If A then B
If and only if A then B

Modal reasoning A is possible Bell and Johnson-Laird (1998) In progress
A is not possible
A is necessary Goldvarg and Johnson-Laird (2000)
A is not necessary

Multiple quantification Some As are not in the same
place as all Bs

Johnson-Laird, Byrne, and Tabossi
(1989)

In progress

Numerical quantifiers
and quantifiers outside

More than three of the A
are B

Kroger, Nystrom, Cohen, and
Johnson-Laird (2008)

In progress

first-order logic More than half the A are B Neth and Johnson-Laird (1999)
Extensional probabilistic The probability of A is −. Johnson-Laird (1994) No

reasoning A is more likely than B.
What is the probability that

A?
Johnson-Laird, Legrenzi, Girotto,

Legrenzi, and Caverni (1999)
Which is more likely, A or B?

Spatial reasoning A is on the right of B Byrne and Johnson-Laird (1989) No
A is in front of B Jahn et al. (2007)

Mackiewicz and Johnson-Laird
(2012)

Temporal reasoning A happens before B Schaeken et al. (1996) No
A happens while C
A happens after B Juhos et al. (2012)
A happens during B

Causal reasoning A will cause B Goldvarg and Johnson-Laird (2001) No
A causes B
A caused B
A prevents B Frosch and Johnson-Laird (2011)
A allows B
A and only A will cause B

Deontic reasoning A permits B Bucciarelli and Johnson-Laird
(2005)

No
A obligates B
A prohibits B
A permits not B

Relational reasoning A is taller than B. Goodwin and Johnson-Laird (2005) No
A is taller than B to a greater

extent than C is taller than
D.

Goodwin and Johnson-Laird (2006)

Counterfactual reasoning If A had not occurred then B
would not have occurred.

Byrne and Tasso (1999) No
Byrne (2005)
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model and the intension to draw a rapid initial conclusion. System 2 carries out more powerful
processes, and it searches for alternative models, including counterexamples in which the initial
conclusion fails to hold. This system can evaluate, supplement, and even correct initial inferences.
The search for alternatives uses various operations, which manipulate the initial model by adding,
rearranging, or removing properties of individuals. The search can also flesh out initial models
and add relations among the entities in the models in order to yield additional inferences. The
two systems often work in concert. For example, system 1 can operate implicitly to determine
the tense of a spontaneous conclusion while system 2 operates more explicitly to determine its
contents (Juhos, Quelhas, and Johnson-Laird 2012).

The linguistic processes in the first stage may be autonomous – we make no strong claims
about the matter. The other two stages, however, correspond to the familiar distinction between
the rapid intuitions of system 1 and the slower deliberations of system 2 in dual-process theories
of cognition (Johnson-Laird 1983, Chap. 6; Sloman 1996; Stanovich 1999; see, e.g. Evans 2003,
2007, 2008; Verschueren, Schaeken, and d’Ydewalle 2005; Kahneman 2011). However, the model
theory goes beyond dual-process accounts of reasoning, because it is the first to be implemented
computationally, and it replaces descriptive labels such as “associative” and “deliberative” with
an architectural distinction in computational power. It makes the strong assumption that system
1 has no access to working memory for intermediate results, and so the high-level computations
it can carry out are computationally constrained to those that can be performed by a finite-state
automaton. It can, therefore, work only with a single model at a time, and is unable to carry out any
sort of recursive processes, such as counting beyond a small finite number. In contrast, system 2
has access to working memory, and is therefore more powerful computationally: it can search for
alternative models, and it can count and carry out other arithmetical operations, at least until they
overload its processing capacity. Because almost all reasoning is computationally intractable, no
finite system can cope as problems increase in complexity, e.g. with the addition of more premises.

We now turn to a description of how mReasoner works for inferences based on monadic asser-
tions, which are about the properties of sets of individuals. For instance, the assertion, “Everyone
on the Appropriations Committee is Texan” is monadic, because it assigns the property, Texan, to
all members of a set of individuals. The noun phrases in monadic assertions typically refer to sets
of individuals, usually as a result of a determiner, such as “all”, “most”, or “some”, which in com-
bination with a noun or nominal yield a quantifier, such as “all artists,” “most of the bohemians”,
and “some of the cadgers”.

mReasoner: A unified computational model of reasoning

mReasoner is a computational implementation of the model theory of reasoning. Its architecture is
based on three main systems, which, as we mentioned earlier, construct intensional representations
(system 0), build an initial model and use heuristics to formulate a putative conclusion (system
1), and search for alternative models of the intensions (system 2). We outline each of these three
systems in turn.

System 0 processes: parsing premises to compose intensional representations

Models are built by consulting the representation of the meaning of each premise, i.e. an intensional
representation, which is composed out of the meanings of words and the grammatical relations
among them. Accordingly, the first process in mReasoner is a shift-and-reduce parse that makes
use of a context-free grammar and a lexicon (Hopcroft and Ullman 1979). It uses the meanings of
words in the lexicon to compose an intensional representation that depends on the grammatical
relations among the words. The lexical entries consist of a word (such as “all”), its part of speech
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(“determiner”), and a specification of its semantics. The grammatical rules specify how a string
of syntactic constituents can be reduced to a higher order grammatical constituent, culminating
in a well-formed sentence, and each grammatical rule is paired with an appropriate semantic
rule. The parser applies the matching semantic rule as it uses a grammatical rule to reduce a
string of words to a single constituent, such as a “noun phrase”. The uses of a standard parser, a
context-free grammar, and a rule-by-rule compositional semantics, are neither novel nor empirical
claims of the theory. The point instead is to illustrate how the meanings of assertions containing
determiners, both orthodox ones, such as “all” and “some”, and unorthodox ones, e.g. “most”
and “few”, can be captured using the values of parameters. Orthodox determiners are those that
can be represented in the first-order predicate calculus, which is the standard version of logic in
which variables range over individuals. The unorthodox determiners cannot be captured in this
calculus, but call for one in which variables range over predicates, i.e. sets of individuals. The
model theory accordingly postulates that quantified assertions express relations between sets (for
a summary of this view, see Cohen and Nagel 1934, pp. 124–125; Khemlani and Johnson-Laird in
press). Other psychological theories likewise treat quantifiers as relations between sets; some of
them make use of diagrammatic representations to handle relations (Ceraso and Provitera 1971;
Erickson 1974; Ford 1995), and others rely on formal rules of inference (Stenning and Yule 1997;
Guyote and Sternberg 1981; Geurts 2003; Politzer, van der Henst, Luche, and Noveck 2006). What
distinguishes the model theory is that it relies on models of individual entities and properties to
represent sets.

The program captures the meanings of quantifiers in the values of six parameters. They con-
strain various operations, including building models, which we describe in the next section of the
article. As an illustration of the parameters, consider the assertion:

Some artists are bohemians.
The first parameter in the intension is the cardinality of the entities in a model representing

the set in the initial noun phrase, e.g. the number of tokens for the set of artists in the example
above. This value is set by default to 4 in the lexical entry of the quantifier, and so the initial model
contains four such tokens. The system generates the same predictions for syllogistic reasoning
regardless of whether the default value is 3, 4, or more, but future studies may allow researchers
to determine the parameter empirically. The value is mutable, and it can be changed at a later
stage of processing (see the account below of searching for counterexamples). This parameter
also includes the boundary conditions on the cardinality, e.g. it must be greater than or equal to
1 in the case of “some”. Unlike Aristotle, modern logic treats universally quantified assertions,
such as “all artists are bohemians”, as making no claims about the existence of artists. Likewise,
in daily life, an assertion such as “all trespassers are prosecuted”, can be true even if there are
none. At present, mReasoner finesses this problem, but in principle it can be handled in the
parameters.

The second parameter in the intension is the cardinality of the set referred to by the quantified
phrase as a whole, such as “some artists”, which for this determiner has a default setting of 2,
which is less than the value of the first parameter. However, in the case of “all artists”, the second
parameter is the same as the cardinality of “artists,” i.e. the default value of the first parameter.
Of course, the second parameter changes if a change is made to the first parameter. The third
parameter states the constraints on the relation between the two cardinalities, e.g. “some artists”
is represented with fewer tokens than the set of artists as a whole, but the number must be greater
than zero in order to capture the existential force of the determiner. The fourth parameter states
the polarity of the determiner, that is, whether it is affirmative or negative. The fifth parameter
states whether the determiner is universal (e.g. “all,” “no”) or existential (e.g. “some,” “most”),
which affects the strategies used to search for counterexamples. Also, the sixth parameter states
the relation between the sets referred to in the subject and in the predicate of the assertion. In the
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case of monadic assertions, the relation is usually set-inclusion or its negation, e.g. a subset of
artists is included, or not included, in the set of bohemians. However, other relations, such as set
membership do also occur, e.g. “artists are of varying abilities”, which means that the set of artists
is a member of the set of those sets of individuals who vary in ability from one to the other.

The set of parameters may seem complicated, but readers should bear in mind that the parame-
ters can capture the meaning of other sorts of determiner such as: “most”, “many”, “at least three”,
“more than half”, which include determiners that cannot be expressed in the first-order predicate
calculus. The present set of parameters is illustrated in Table 3 for the assertions that occur in
Aristotelian syllogisms: “All As are Bs”, “Some As are Bs”, “No As are Bs”, “Some As are not
Bs”, and three representative examples of assertions that occur outside syllogisms, “Most As are
Bs”, “Neither A is a B”, and “Exactly five of the As are Bs”. The set of parameters is incomplete,
because an extension of the theory to deal with quantified relations, such as, “All philosophers
have read some books”, calls for further parameters to represent the respective scopes of the
quantifiers. The likely interpretation of the preceding example contrasts in scope with an assertion
in the passive voice: “Some books have been read by all philosophers” (see, e.g. Johnson-Laird
and Byrne 1991). Unlike the first assertion, the second implies that philosophers have read the
same books.

In summary, intensions are collections of parameters that, together with the semantic content
of the open-class words in a sentence, such as “artists” and “bohemians”, capture the meaning
of the sentence. They provide the data needed to build and to modify models. The order of the
parameters has no bearing on how the intension is used in these processes. The compositionality
of intensions follows the tradition of formal semantics, as does the assignment of truth values to
assertions if their intensions can be mapped into independent models of the world (Partee 1996).
From this perspective, a mental model captures what is common to a set of possibilities (Barwise
1993). But, the relation between sentences and their intensions is also compatible with cognitive
and constructionist approaches to grammar (see e.g. Goldberg 2003; Langacker 2008). The system
can be extended to deal with subtle distinctions in meaning among determiners, such as, “all”,
“each”, “every”, and “any” (Langacker 2008, p. 292). Likewise, it can be extended to deal with
numerical, proportional, and scalar quantifiers. However, our focus in the next section is on the
monadic assertions that occur in Aristotelian syllogisms. These inferences are from two premises,
in which each has one of the four initial forms in Table 3.

System 1 processes: the construction and interpretation of initial models

System 1 uses the intension of the first premise in a syllogism to build an initial model, and it
updates this model given the subsequent premise. As an illustration, consider the assertion:

Some artists are bohemians.
The intension’s parameter values are shown for “Some As are Bs” in Table 3. The first parameter
stipulates that the number of artists (As) by default in the initial model is four:

Artist
Artist
Artist
Artist

In this diagram, each row represents an individual as an artist, and so the model has a small
finite number of mental tokens. Of course, mental models represent real individuals, not words,
which we use here for convenience. The inferential system in mReasoner is able to treat the model
above as representing “all artists” and not, say, “exactly four artists”, because it has access to the
intension of the premise, which constrains the possible interpretations of models and their possible
modifications.
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Table 3. A summary of mReasoner’s six parameters in the intensions of six sorts of monadic assertions, where ‘?’ signifies a default value that can be modified
provided it meets the boundary conditions.

The six parameters in a monadic intension

i. Cardinality of ii. Cardinality of vi. Set-theoretic
overall set of As and set referred to by iv. Polarity of v. Universal relation between

Assertion its boundary conditions the quantifier iii. Constraints on ii. the determiner quantifier subject and predicate

All As are Bs ?4 ≥ 1 ?4 = cardinality in i. Positive True Include
Some As are Bs ?4 ≥ 1 ?2 ≤ cardinality, > 0 Positive False Include
No As are Bs ?4 ≥ 1 ?4 = cardinality Negative True Include
Some As are not Bs ?4 ≥ 1 ?2 ≤ cardinality, > 0 Positive False Not-include
Most As are not Bs ?4 ≥ 2 ?3 < cardinality, Positive False Not-include

> 1/2∗ cardinality
Neither A is a B 2 2 = cardinality Negative True Include
Exactly five As are Bs 5 5 = cardinality Positive True Include

Note: When the polarity of the determiner of an intension (parameter iv.) is negative, it is treated as equivalent to the set-theoretic relation of exclusion (i.e. a value of parameter vi. set to “not-include”).
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The second parameter specifies that the number of artists who are also bohemians is two by
default. Because the fourth parameter states that the polarity of the determiner is positive, two of
the artists are updated as bohemians. (Had the parameter been negative, the artists would have
been updated with the property of not being bohemians.) The model is accordingly updated to:

Artist Bohemian
Artist Bohemian
Artist
Artist

The boundary constraints in the third parameter are satisfied at this point, i.e. the number of artists
who are bohemians is smaller than the number of artists and it is greater than zero.

The fifth parameter states that the assertion is not universal, and so it is possible that there are
artists that are not bohemians, and bohemians who are not artists. The model is updated with an
extra individual bohemian who is not an artist:

Artist Bohemian
Artist Bohemian
Artist
Artist

Bohemian
mReasoner similarly constructs initial models for other sorts of monadic assertions.

System 1 also accommodates a second premise, such as:
All bohemians are cadgers.

Its intension leads to the updating of the model to:
Artist Bohemian Cadger
Artist Bohemian Cadger
Artist
Artist

Bohemian Cadger
Once system 1 has an initial model of this sort, it can draw a conclusion establishing a new

set-theoretic relation, that is, a relation that is not asserted in the premises. Researchers often place
heuristics at the forefront of theories of reasoning (see also Ford 1995; Stenning and Yule 1997;
Chater and Oaksford 1999; Politzer et al. 2006), but until now proponents of the model theory have
downplayed their use. In an effort to bridge the two approaches, mReasoner embodies heuristics
in its system 1 processes. However, the system abides by the constraint that any conclusion that
heuristics generate must hold in the initial model. We have described the specific heuristics in detail
elsewhere (Khemlani et al. under review a), and so here we only outline their general principles.
For the inference above, heuristics need to deliver both the quantifier in the conclusion (its mood)
and the order of the terms that occur in it: “artists” and “cadgers” (its figure). Previous heuristics,
such as the atmosphere effect (Revlis 1975), have been based on superficial aspects of sentences,
such as the determiners that occur in them, or on the informativeness of premises with a view
to yielding probabilistic conclusions (Chater and Oaksford 1999). The heuristics in system 1
depend on a very different idea: individuals use their knowledge of the meaning of premises, i.e.
their intensions, to guide them to initial conclusions. If a negative premise occurs in a syllogism,
any valid conclusion is bound to be negative too. If a premise containing the determiner “some”
occurs in a syllogism, any valid conclusion is bound to include it too. So, given that individuals are
sensitive to the nature of potentially valid conclusions, they should have acquired the knowledge
that as soon as a premise contains a negation, or an existential determiner, the conclusion must be
in a negative and existential mood. The premises in our example above are:

Some artists are bohemians.
All bohemians are cadgers.
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They accordingly yield a conclusion with the existential determiner, “some”. It follows that only
if both premises are based on “all”, can a valid conclusion use this determiner. In general, when
two premises differ in mood, one of them dominates the other in determining the mood and figure
of the initial conclusion according to the following rank order:

Some_are not_
None_are_
Some_are_
All_are_

This order is based on a generalisation from valid conclusions to syllogisms, and so it differs
from the heuristics invoked in the atmosphere effect, and in other analogous theories. However, at
first sight, it parallels the probabilistic heuristics of Chater and Oaksford (1999), which are based
on informativeness. Where the two theories diverge is that Chater and Oaksford add a further
assumption that individuals avoid drawing conclusions in the mood, Some _ are not _, because
they are so uninformative.

The premise in the dominant mood also determines the order of the terms in the conclusion (its
figure). Given the preceding premises, the two end terms, which are those that occur in only one
premise, are “artists” and “cadgers”. The first premise is the dominant one, and so it determines
the figure of the conclusion. System 1 uses the grammatical role of the end term in the dominant
premise to play the same role the conclusion, and so it yields the initial conclusion:

Some artists are cadgers.
This conclusion holds in the initial model of the premises, and so it is the output from system

1. Analogous principles apply to other sorts of premises. They account for the well-known figural
effect that occurs in syllogistic reasoning, e.g. the tendency to infer the conclusion above rather
than its converse, “Some cadgers are artists”. Indeed, conclusions in the predicted figure occurred
82% of the time in six different experiments (see the meta-analysis in Khemlani and Johnson-Laird
in press). A similar heuristic determining the figure of conclusions is due to Chater and Oaksford
(1999), i.e. the “attachment” heuristic according to which if the least informative premise has an
end-term as its subject, it is also the subject of the conclusion; otherwise, the end-term in the other
premise is the subject of the conclusion. Once again, however, the theories diverge, because of
Chater and Oaksford’s assumption that individuals avoid inferring conclusions of the form, Some
_ are not _.

The heuristics in mReasoner rely on the intensions of the premises and the initial mental model.
They operate without storing any information in working memory, and so they are rapid. However,
the heuristics are fallible. Consider the following inference:

Some artists are bohemians.
Some bohemians are cadgers.
The premises yield the initial model:
Artist Bohemian Cadger
Artist Bohemian Cadger
Artist
Artist

Bohemian
Cadger

The heuristics yield the initial conclusion:
Some artists are cadgers.

It holds in the initial model, and so mReasoner yields it as a putative conclusion. In fact, it
corresponds to the most frequent conclusion that reasoners tend to draw from premises of this
sort (i.e. it occurred on 61% of inferences in the meta-analysis of Khemlani and Johnson-Laird in
press). But, it is invalid, and most of the other responses in the meta-analysis were that nothing
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Table 4. The three operations that system 2 of mReasoner uses to search for counterexamples to monadic
conclusions, their description, an example in which the operation is invoked, a putative conclusion that holds
in the initial model, the initial model itself, and the model that the operation yields as a counterexample to
the conclusion.

Models

Putative Initial Modified
Operation Description Example conclusion model model

Adding An individual is added to the set All Bs are As. All As are Cs. B A C B A C
of models. All Bs are Cs. A

Breaking An individual with multiple Some As are Bs. Some As are Cs. A B C A B
properties is broken into two A B C
separate individuals. B C A

All Cs are Bs. Some Cs are As.

B C

Moving A property is moved from one No As are Bs. No As are Cs. A ¬B A ¬B C
individual to another. No Bs are Cs. No Cs are As. B ¬C B ¬C

C

Note: We list only the different sorts of individuals in each model, and “¬” denotes negation.

follows from the premises, which is correct because no definite conclusion interrelating the end
terms does follow from the premises. How can a theory explain that reasoners make both valid
and invalid inferences? System 2, to which we now turn, provides the answer.

System 2 processes: the search for counterexamples

In the preceding section, we focused on how mReasoner embodies system 1 and uses heuristics
to draw conclusions that are true in the initial model of the premises. However, these conclusions
are often not true in other models of the premises. For that reason, the program embodies this
second system, which makes a recursive search for alternative models that might falsify a heuristic
conclusion. When it finds a counterexample, it also formulates a new conclusion if one is possible,
or else declares that no definite conclusion follows about the relation between the end terms. It
searches for counterexamples using three operations: adding, breaking, and moving properties in
a model. These operations were embodied in an earlier program that dealt solely with syllogisms,
and subsequent research in which participants manipulated external models of premises showed
that they used these three operations too (Bucciarelli and Johnson-Laird 1999). We describe and
illustrate each of the operations in Table 4.

Reasoners may adopt additional strategies for searching for counterexamples. Indeed, when
they reason from premises that concern spatial relations (e.g. in front of, to the left of, above)
individuals often make minimal, systematic changes to their initial models by “chunking” multiple
entities within a model and operating upon those entities as though they were a single unit (Jahn,
Knauff, and Johnson-Laird 2007). At present, system 2 implements only the search operations for
models based on monadic assertions, but in principle, it can support other sorts of operation. The
difficulty is to find empirical methods that reveal the nature of the operations underlying a search
for counterexamples.

When system 2 succeeds in finding a counterexample to a conclusion, it attempts to formulate a
weaker conclusion in the same figure by adjusting the parameters in the intension of the conclusion
(Table 3). For instance, if it finds a counterexample to the conclusion, “All artists are cadgers”, it
reduces the value of the parameter specifying the default number of artists who are cadgers from
4 to 3. The result is an intension for the assertion, “Some of the artists are cadgers”. The weaker
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conclusion is then checked against both the initial model and the counterexample. If it does not
hold in both these models, system 2 weakens it still further. Also, if it is ultimately weakened
until it expresses no information, the program responds that no valid conclusion exists. In this
way, mReasoner accounts for how individuals infer that no valid conclusion follows from some
premises, which many theories of monadic reasoning cannot do. In contrast, if the search fails to
find a counterexample, the system asserts that the conclusion is valid, i.e. it holds in all models of
the premises.

mReasoner predicts that certain valid inferences should be more difficult than others, and it
even predicts that certain valid inferences are beyond the ability of logically naïve individuals.
Consider, for instance, the following problem:

No atheists are believers.
All believers are credulous.
What follows?

System 1 predicts the conclusion that no atheists are credulous. System 2 finds a counterexample
and weakens this conclusion to some atheists are not credulous. However, this conclusion is invalid,
and the valid conclusion – Some credulous individuals are not atheists – cannot be obtained by
any further weakening. Hence, mReasoner predicts that naïve reasoners should fail to draw the
valid conclusion reliably. Indeed, across six studies, individuals drew the valid conclusion only
3% of the time, which was not reliably different from 0% (Khemlani and Johnson-Laird in press).
mReasoner infers this conclusion by forming the converse of the heuristic conclusion, i.e.: “No
credulous individuals are atheists”, and then searching for a counterexample. It finds such a model
in which all the atheists are credulous and all the believers are credulous too, and these latter
credulous individuals are not atheists. No further weakening is possible, and so the valid conclusion
is indeed that some credulous individuals are not atheists. mReasoner marks any conclusion that
makes use of this conversion operation as beyond the capacity of naïve reasoners.

We have assessed the theory as it applies to syllogistic reasoning. In our meta-analysis (Khem-
lani and Johnson-Laird in press), we examined seven extant theories: the atmosphere hypothesis
(Begg and Denny 1969), an analogous hypothesis in which reasoners are supposed to draw conclu-
sions matching the mood of a premise (Wetherick and Gilhooly 1990), the hypothesis that reasoners
make illicit conversions of premises (Revlis 1975), the probability heuristics model (Chater and
Oaksford 1999), a theory based on rules of inference (Rips 1994), a program implementing an
earlier mental model theory (Johnson-Laird and Byrne 1991), and another model-based program
in which verbal formulations are central and no search for alternative models occurs (Polk and
Newell 1995). Other theories of syllogisms exist, but their proponents did not consider them com-
plete enough to be entered into the meta-analysis, and the predictions of still another theory have
never been published (Khemlani and Johnson-Laird in press). In the meta-analysis, we compared
the predictions of each of the seven theories to the conclusions that the participants had drawn in
six studies of syllogistic reasoning. The accuracy of a theory depends on the extent to which its
predicted responses occur in the data, and the extent to which the responses that it does not predict
do not occur in the data. Figure 1 combines these two measures into a single measure of “prediction
accuracy”. We have recently examined the performance of mReasoner, and, as Figure 1 shows, it
outperforms in accuracy all seven of the theories in our previous meta-analysis.

Other inferential tasks in mReasoner

We have described how mReasoner makes inferences from monadic premises. However, the gen-
eral procedure of a rapid heuristic inference followed by an attempted falsification is general. It
applies to many sorts of valid inference in many sorts of reasoning. Of course, there are limits on
the kinds of heuristics the system can implement. At present, the system does not use heuristics
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Figure 1. The percentages of accurate predictions of seven different theories of syllogistic reasoning for
six experiments (in a meta-analysis in Khemlani and Johnson-Laird in press) to which we have added
the predictions of mReasoner. The theories in the original meta-analysis are the matching hypothesis, the
probability heuristics model: probability heuristics model PSYCOP, the atmosphere hypothesis, the original
mental models theory, the illicit conversion model, and verbal models theory (see the text for references to
these theories).

for models of three or more premises. The constraint reflects the intuition that individuals use
heuristics only for limited sets of premises, and tend to be lost about what to conclude from a
large set of premises.

Psychological experiments on reasoning typically call for the participants to draw a valid
conclusion from premises, or else to evaluate the validity of a given conclusion. Sometimes the
conclusion is about what is necessarily the case, and sometimes it is about what is possibly the case,
though this latter task occurs less often, and some theories of reasoning offer no account of how
reasoners carry it out, e.g. Rips’s (1994) formal rule theory. It is straightforward in mReasoner: a
conclusion about what is possible is valid if there is a model of the premises in which it holds. In
daily life, many other sorts of reasoning occur. Individuals may need to infer a likely conclusion,
to create an explanation that resolves an inconsistency, and even to detect the inconsistency in the
first place. mReasoner is already able to carry out many of these tasks. They include:

(1) The evaluation of a stated conclusion to determine whether, given the premises, it is
necessarily the case.

(2) The similar task of assessing whether a stated conclusion is possibly the case.
(3) The spontaneous formulation of such conclusions from premises.
(4) The assessment of whether or not a set of assertions is consistent, i.e. whether they could

all be true at the same time.
(5) Given a putative but invalid inference, the formulation of a counterexample that refutes it.

Each of these tasks depends on a high-level procedure, and each of them is carried out using dual-
processes: system 1 builds initial models and, where necessary, formulates heuristic conclusions;
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and system 2 searches for alternative models and, where necessary, reformulates or rejects con-
clusions. In this way, mReasoner makes predictions about various inferential tasks at both naïve
and expert levels of performance. It provides the beginnings of a unified computational account
of reasoning.

General discussion

Inferences come in many flavors: modal inferences about what’s necessary or possible, spatial
inferences about relations among entities, causal inferences about agents and enablers, and many
other inferences besides. In the past, many theories of reasoning concerned only a particular
domain or a particular task. Perhaps this compartmentalisation was necessary for researchers to
begin to investigate reasoning. It was also successful in that it produced three powerful frameworks
for theories of reasoning: formal rules of inference, the probability calculus, and mental models.
So far, however, none of them gives a unified account of reasoning covering all domains and all
inferential tasks. The mind does not compartmentalise reasoning: conclusions often depend on
combinations of different sorts of inference – modal, spatial, causal, temporal – and reasoners
reach them without difficulty. Consider the following problem:

When Samantha stands to the right of Fred, she makes him nervous.
Samantha is standing next to Fred.
Is it possible that he’s nervous?
Is it necessary that he’s nervous?

It is trivial to infer that it’s possible but not necessary that Fred is nervous. The modal conclusion
depends on a spatial relation causing a particular state of mind. However, the ease of the inference
contrasts with the difficulty of accounting for it any current computational model of reasoning.
The problem is easy for reasoners, but hard for cognitive scientists. It demands a unified system
of reasoning.

This article has described both an architectural organisation that unifies the mental model
theory and its computational implementation in mReasoner. Both rest upon three core systems:

(0) The production of an intensional representation of the meaning of a premise under the control
of a parser.

(1) The construction of an initial model and the use of heuristics to derive an intuitive response
or conclusion.

(2) The search for alternative models, which may invalidate a conclusion, or, say, show that a set
of assertions is consistent.

For inferences from monadic assertions, such as “some artists are bohemians”, system 0 constructs
intensions that include parameters that capture set-theoretic relations, system 1 draws heuristic
conclusions based on intensions and their corresponding initial models, and system 2 searches for
alternative models, which may either validate the initial conclusion or lead to its weakening or
rejection. The system is unified in its computational structure by incorporating both rapid heuristics
and more deliberate, memory intensive, searches for models.Also, the theory is unified by building
upon the successes of heuristic-based accounts (Chater and Oaksford 1999) and relying on the
representations and high-level procedures of model-based accounts.

Syllogisms are just one domain of monadic reasoning, but we have begun to assess the theory’s
predictions in other domains, including immediate inferences from one premise to a conclusion
(Khemlani et al. under review b), judgments of consistency, inferences about set-membership,
and systematic fallacies in reasoning with quantifiers (Kunze et al. 2010). Likewise, we are
expanding the theory to handle still other domains of reasoning, including sentential reasoning
and probabilistic reasoning (see Table 1 for what is implemented in mReasoner, version 0.8).
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Yet, the theory and its implementation are far from a unified account of reasoning. They have
several major shortcomings. As Table 1 provides, they have yet to be extended to many domains
of reasoning. They embody no general procedures that translate the instructions for different sorts
of reasoning tasks into procedures that carry out these tasks. They make no numerical predictions
about either accuracy or latency. They embody no principles of learning, and so they cannot learn
heuristics. Finally, they offer no account of differences in ability or strategy from one individual
to another.
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