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John Pollock (1940–2009) was an influential American philosopher who made important con-
tributions to various fields, including epistemology and cognitive science. In the last 25 years
of his life, he also contributed to the computational study of defeasible reasoning and prac-
tical cognition in artificial intelligence. He developed one of the first formal systems for
argumentation-based inference and he put many issues on the research agenda that are still
relevant for the argumentation community today. This paper presents an appreciation of Pol-
lock’s work on defeasible reasoning and its relevance for the computational study of argument.
In our opinion, Pollock deserves to be remembered as one of the founding fathers of the field
of computational argument, while, moreover, his work contains important lessons for current
research in this field, reminding us of the richness of its object of study.
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1. Introduction

John Pollock (1940–2009) was an influential American philosopher who made important contri-
butions to various fields, including epistemology and cognitive science. In the last 25 years of his
life, he also contributed to artificial intelligence (AI), first to the study of defeasible reasoning and
then to the study of decision-theoretic planning and practical cognition. In his work on defeasible
reasoning, Pollock developed one of the first formal systems for argumentation-based inference
and he put many issues on the research agenda that are still relevant for our community today. This
paper reviews the relevance of Pollock’s work on defeasible reasoning for the computational study
of argumentation.1 His later work on rational decision-making and practical cognition (including
decision-theoretic planning) will not be discussed since, unlike his work on defeasible reasoning,
it is not argumentation based.

There are many reasons to remember and acknowledge Pollock’s work in this journal. Many
important topics in our field were first studied by Pollock, or first studied in detail, such as argument
structure, the nature of defeasible reasons, the interplay between deductive and defeasible reasons,
rebutting versus undercutting defeat, argument strength, argument labellings, self-defeat, and
resource-bounded argumentation. Another reason to remember Pollock is that, these days, several
lessons to be learned from his work tend to be forgotten and several important issues that he studied
tend to be neglected for the sake of technical simplicity but at the expense of cognitive adequacy
– especially in two current research strands: namely, work on abstract argumentation and work
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on classical and deductive argumentation. This is particularly unfortunate since a central virtue
of an argumentation approach is its grounding in natural and intuitive concepts; if conceptual
naturalness is sacrificed for technical simplicity, then our field is in danger of becoming sterile and
inward looking and failing to realise its high potential. A secondary aim of this paper, therefore,
is to use Pollock’s legacy to remind the research community of the richness of its object of study.

A concise quote that summarises Pollock’s view on defeasible reasoning is as follows:

Defeasible reasoning is, a fortiori, reasoning. Reasoning proceeds by constructing arguments, where
reasons provide the atomic links in arguments. Conclusive reasons logically entail their conclusions.
Defeasibility arises from the fact that not all reasons are conclusive. Those that are not are prima facie
reasons. Prima facie reasons create a presumption in favour of their conclusion, but it is defeasible.
(1995, p. 85)

Pollock thus depicts arguments as inference trees, where the nodes are statements, with the
leaf nodes being premises, and the links are applications of ‘reasons’. He thus regarded reasons
as inference rules, but he did not identify inference rules with deductive inference rules alone.
Pollock strongly emphasised the importance of defeasible reasons in argumentation.2 He was
quite insistent that defeasible reasoning is not just some exotic, exceptional, add-on to deductive
reasoning – or, as is sometimes thought in computer science, only a heuristic matter – but is,
instead, an essential ingredient of our cognitive life:

It is supposed that defeasible reasoning is less secure than normal reasoning, and should be countenanced
only for the sake of computational efficiency. Its use is not just a matter of computational efficiency. It is
logically impossible to reason successfully about the world around us using only deductive reasoning.
All interesting reasoning outside mathematics involves defeasible steps. (Pollock 1995, p.41)

. . . we cannot get around in the world just reasoning deductively from our prior beliefs together with
new perceptual input. This is obvious when we look at the varieties of reasoning we actually employ.
We tend to trust perception, assuming that things are the way they appear to us, even though we know
that sometimes they are not. And we tend to assume that facts we have learned perceptually will remain
true, as least for a while, when we are no longer perceiving them, but of course, they might not. And,
importantly, we combine our individual observations inductively to form beliefs about both statistical
and exceptionless generalizations. None of this reasoning is deductively valid. (Pollock 2009, p. 173)

Starting in the 1980s, Pollock set out to formalise this view of defeasible reasoning and then to
implement it in an automated reasoner that he baptised as OSCAR. Besides giving a general account
of the structure of arguments and of the interplay between deductive and defeasible inferences,
he also formalised particular defeasible reasons that he found important in human cognition. In
particular, he formalised reasons for perception, memory, induction, the statistical syllogism, and
temporal persistence, as well as the so-called undercutting defeaters for these reasons. Pollock
extensively studied the problem of identifying the justified beliefs generated by a set of arguments
and their defeat relations, and his various solutions to this problem predated much current work
on argumentation-based semantics.

In what follows, we first give a historic sketch of Pollock’s work and its relation with other
work in philosophy and AI. We then review the essentials of his formal models, after which we
critically examine some of the current work on deductive argumentation in light of Pollock’s work.
We end with some observations on Pollock’s way of working and thinking and a summary of his
contributions to our field.

2. A historic sketch

In modern philosophy, the study of defeasibility and defeat originated in legal philosophy, in the
work of Hart (1949), who pointed out, first, how otherwise binding contracts might be compromised
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by the presence of defeating conditions and later emphasised the defeasible nature of legal rules
in general. The concept of defeasibility – echoing Ross’s notion of prima facie rules Ross (1930)
as well as some of Wittgenstein’s ideas – was originally studied solely within legal philosophy,
practical reasoning, and ethics. It made the jump from ethics to epistemology in the work of
Chisholm (1957), who appealed to the idea in both fields, and later in the work of Pollock,
beginning with his (1970) and developed in a number of articles leading up to his (1974) and
beyond.

Pollock’s work on argumentation originated as an attempt to make formal sense of the intuitive
notion of defeasible reasoning that seemed to be at work in these papers and books. In fact, the
task had been attempted before. There is an early paper by Chisholm (1974), a heroic effort whose
failure is no surprise given the limited tools available at the time. Still, in spite of the blossoming
of philosophical logic in the 1960s and 1970s, the logical study of defeasible reasoning had
received almost no attention at all. It is fair to say that Pollock, working in isolation, was the first
philosopher working in the field of philosophy, as opposed to computer science, to outline an
adequate framework for defeasible reasoning

Pollock’s initial paper on the topic was his classic (1987). By the time that paper was published,
several researchers in AI had independently begun to explore an argument-based approach to
defeasible, or non-monotonic, reasoning. This early research includes the work of Touretzky
(1986) on inheritance systems, later developed along with several collaborators (Horty, Thomason,
and Touretzky 1987, 1990; Touretzky, Horty, and Thomason 1987), as well as the work of Nute
(1988) and Loui (1987). And of course, by the late 1980s, the field of non-monotonic reasoning
more generally, of which the argument-based approach was only a part, had been recognised
as an important subfield of AI. Although Pollock’s ideas originated in his efforts to understand
defeasible reasoning in a philosophical context, it was the formation, within AI, of a community
of researchers focused on non-monotonic reasoning that led to the publication of these ideas.
Concerning his 1987 paper, Pollock later wrote that he first developed the idea in 1979, but that he
did not initially publish it because, as he says, ‘being ignorant of AI, I did not think anyone would
be interested’ (Pollock 2007b, p. 469). It is interesting to note that if Pollock had published this
idea when it first occurred to him, the result would have been not only the first argument-based
theory of defeasible reasoning, but also one of the first systems of any kind for non-monotonic
reasoning.

In any case, the paper was eventually published and then several successive papers or books
on argumentation and defeasibility (Pollock 1992, 1994, 1995, 2002, 2007a,b, 2009, 2010), and
Pollock began a fruitful period of interaction with researchers in non-monotonic reasoning, AI
more generally, and of course, argumentation. Although Pollock learned much from these commu-
nities, they also learned much from him. Research in non-monotonic reasoning, at the time, was
motivated by a set of concerns from planning, logic programming, knowledge representation, and
database theory. Pollock brought a fresh set of concerns, from his earlier work in traditional epis-
temology, along with some fresh ideas. The most important of these may have been the distinction,
introduced by Pollock (1970) between two separate kinds of defeat: rebutting and undercutting.
In fact, something like this distinction had emerged independently in the field of knowledge repre-
sentation, in the ‘uncancel’ links from Fahlman’s (1979) semantic networks; but the idea quickly
evaporated in the formal treatments of these networks, for reasons of theoretical simplicity. It was
Pollock’s insistence on the importance of this distinction, for reasons of descriptive adequacy,
that reintroduced it into the fields of non-monotonic reasoning and argumentation, where it has
remained vitally important, for example, in representation problems involving legal reasoning.
Indeed, Pollock’s idea of an undercutting defeater is closely related to the notion of an exclu-
sionary reason, first introduced by Raz (1975), who himself cites Pollock; for more recent work
linking the two ideas, see Horty (2012).
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3. A closer look at Pollock’s work on defeasible reasoning

Let us now take a closer look at Pollock’s approach to modelling defeasible reasoning. His first
paper with a formal system for argumentation-based defeasible reasoning was his (1987), but
he published several later versions, notably his (1992, 1994, 1995, 2002, 2009), largely because
he changed his mind on several design issues, especially on the characterisation of defeasible
inference, and on the notion of argument strength.

3.1. Constant features

There are several constant features in Pollock’s formalisation of defeasible reasoning. Reasoning
proceeds from a knowledge base of classical-logic formulas by chaining reasons into inference
trees, where all reasons are either deductive or defeasible. Only applications of defeasible reasons
can be defeated, and there are two kinds of defeaters: rebutting defeaters attack the conclusion
of a defeasible inference by favouring a conflicting conclusion, while undercutting defeaters
attack the defeasible inference itself, without favouring a conflicting conclusion. The concept of
undercutting can be illustrated with Pollock’s own favourite example: if the object looks red, that
is a reason for concluding, defeasibly, that the object is red; but the presence of red illumination
interrupts the reason relation without suggesting any conflicting conclusion. In later iterations of
Pollock’s systems, inferences and conclusions have probabilistic strengths, and these strengths
partly determine defeat, in that an attempted defeater only succeeds if it is not weaker than its
target.

Pollock’s technical presentation of his system differs with his different publications, but the
basic ideas can be sketched as follows. Technically, Pollock considers sequences of lines from an
argument (in later work, he speaks of nodes from an inference graph). Each line from an argument
is a tuple (ϕ, r, l, s), where ϕ is a proposition, r is the reason applied to infer ϕ (where this reason
can also be that ϕ is taken from the knowledge base), l is the set of preceding lines from which
ϕ is inferred, and s is the line’s strength. A sequence of such lines is a (linear) argument if each
line is such that its proposition is either inferred from earlier lines or taken from the knowledge
base. Thus, Pollock’s notion of an argument is similar to the familiar notion of a deduction. In a
suppositional argument, lines also have a set of suppositions; these can be added to each line and
can also be used to infer conclusions; their retraction gives rise to conditional conclusions, just as
in natural deduction. In this paper, we will only consider linear arguments.

The defeat relation first among argument lines and them among arguments can then be defined
as follows:

Definition 3.1 (Defeat among argument lines and arguments)

(1) An argument line (ϕ, r, l, s) defeats an argument line (ϕ′, r′, l′, s′) iff
(a) r′ is a defeasible rule,
(b) s ≥ s′, and
(c) ϕ = ¬ϕ′ or ϕ = ¬r′ (here ¬r is shorthand for saying that the antecedents of rule r do

not support its consequent).
(2) An argument A defeats an argument B iff a line of A defeats a line of B.

Consider by way of example the following (informal) version of the well-known Tweety
example, with the arguments displayed in tree form (as is well known, each deduction can be
converted into an inference tree, while each inference tree can be converted into several deductions,
each capturing an order in which a reasoner can construct the tree). Figure 1 shows three (maximal)
arguments: two arguments for the conclusions that Tweety flies, respectively, does not fly, and an
argument denying that the reason used to infer the first of these conclusions applies.



Argument and Computation 5

Figure 1. An example.

Figure 1 assumes four defeasible inference rules, informally paraphrased as follows:

r1: That an object looks like having property P is a defeasible reason for believing that the
object has property P

r2: That n/m observed P’s are Q’s (where n/m > 0, 5) is a defeasible reason for believing that
most P’s are Q’s

r3: That most P’s are Q’s and x is a P is a defeasible reason for believing that x is a Q
r4: That an ornithologist says ϕ about birds is a defeasible reason for believing ϕ

Rule r1 expresses that perceptions yield a defeasible reason for believing that what is perceived
to be the case is indeed the case, and rule r2 captures enumerative induction, while r3 expresses
the statistical syllogism. Rule r4 can be seen as a special case of the argumentation scheme from
expert testimony; cf. Walton (1996) (this is our way of illustrating that Pollock’s notion of prima
reasons is very similar to Walton’s notion of an argumentation scheme; Pollock would probably
have depicted this inference as an application of the statistical syllogism to the generalisation
‘most experts speak the truth about their field of expertise’).

Moreover, Figure 1 assumes an obvious strict inference rule plus an undercutting defeater for
r3:

r5: That P’s are a subclass of Q’s and a is a P is a deductive reason for believing that a is a Q
r6: That x is an R, most R’s are not Q’s and R’s are a subclass of P’s is a deductive reason for

believing ¬r3

Rule r6 is a special case of Pollock’s ‘subproperty defeater’ of the statistical syllogism, which says
that conflicting statistical information about a subclass undercuts the statistical syllogism for the
superclass.
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With these inference rules made explicit, the three arguments can be formally represented
as follows (ignoring strength, so that argument lines can be depicted as triples rather than as
four-tuples):

A:
1: (Tweety looks like a penguin, fact, ∅)
2: (Tweety is a penguin, r1, {1})
3: (Penguins are a subclass of birds, fact, ∅)
4: (Tweety is a bird, r5, {2, 3})
5: ( 9

10 observed birds fly, fact, ∅)
6: (Most birds can fly, r2, {5})
7: (Tweety can fly, r3, {4, 6})
B:
1: (Tweety looks like a penguin, fact, ∅)
2: (Tweety is a penguin, r1, {1})
3: (Penguins are a subclass of birds, fact, ∅)
8: (Bob is an ornithologist, fact, ∅)
9: (Bob says that most penguins cannot fly, fact, ∅)

10: (Most penguins cannot fly, r4, {8, 9})
11: (¬r3, r6, {2, 3, 10})
C:
1: (Tweety looks like a penguin, fact, ∅)
2: (Tweety is a penguin, r1, {1})
8: (Bob is an ornithologist, fact, ∅)
9: (Bob says that most penguins cannot fly, fact, ∅)

10: (Most penguins cannot fly, r4, {8, 9})
12: (Tweety cannot fly, r3, {2, 10})

Note that these arguments have several ‘subarguments’, since any sequence of lines of which all
elements are a fact or inferred from previous elements in the sequence is an argument.3

In Figure 1, deductive, respectively, defeasible, inferences are visualised with, respectively,
solid and dotted lines without arrow heads, while defeat relations are displayed with arrows.
Naming arguments according to their last line, it can be seen that argument B11 strictly defeats
argument A7 since line 11 undercuts line 7, while arguments A7 and C12 defeat each other since
lines 7 and 12 rebut each other.

As should be apparent from this example, Pollock’s notion of an argument as a tree or sequence
of inferences is quite natural; its only remarkable features are that arguments interleave application
of deductive and defeasible inference rules and that arguments can have varying strengths. His
notion of defeat is also quite natural. First, given that deductive reasons provide conclusive support
for their conclusion, it is natural that their application cannot be attacked: one cannot at the same
time rationally accept the premises and deny the conclusion of a deductive inference. Second,
Pollock’s distinction between rebutting and undercutting defeat, while new when he introduced it
in 1970, has meanwhile proven its value.4

3.2. Semantics

While, throughout his career, Pollock left his notions of argument construction and defeat essen-
tially unchanged, he more than once changed the semantics for his system. For Pollock, a semantics
was an account of how the set of constructed arguments, taken together with their defeat relations,
determines what a cogniser should believe. For today’s students of computational argument, the
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approach to follow might seem to be obvious: since Pollock’s system results in a set of arguments
together with a binary relation of defeat, he could simply have appealed to any of Dung’s (1995)
semantics of abstract argumentation frameworks. However, much of Pollock’s work was published
before Dung’s seminal paper, and Pollock never explicitly used Dung’s semantics. Nevertheless,
his first two proposals have each been proven to be equivalent to one of Dung’s proposals.

In his initial paper (Pollock 1987), after specifying an argument as self-defeating if one of its
lines defeats another of its lines, Pollock defined his semantics by introducing the concepts of
arguments that are in or out at various levels, and then ultimately undefeated, as follows:

Definition 3.2 (Semantics of Pollock 1987)

(1) All arguments that are not self-defeating arguments are in at level 0.
(2) An argument is in at level n + 1 iff it is not defeated by any argument in at level n.
(3) An argument is ultimately undefeated iff there is an m such that for every n ≥ m, the

argument is in at level n.

In the example shown in Figure 1, all displayed arguments are in at level 0. The only arguments
that are not in at level 1 are B7 and C12. Of these, only C12 is in at level 2, since its only defeater,
which is A7, is not in at level 1. Furthermore, all other arguments, including B11, remain in at all
levels, so A7 remains not in at all levels; hence all arguments except A7 are ultimately undefeated.

Dung (1995) proved that if there are no self-defeating arguments, then Definition 3.1 is
equivalent to his grounded semantics. More precisely, Dung first observed that the ideas from
Definition 3.1 can be defined in terms of a operator that, for a given set of arguments, returns the
set of arguments undefeated by any argument in that set. Dung then proved that his ‘characteristic
function’ of argumentation frameworks, which for a given set of arguments returns all arguments
all of whose defeaters are themselves defeated by some argument from that set, can be defined as
a double application of this operator. Finally, Dung proved that Pollock’s own level construction
yields the least fixed point of this characteristic function, leading to what Dung calls the grounded
extension.

After his initial semantics, Pollock later (1994, 1995) turned to a labelling-based approach,
which, moreover, does not refer to arguments but instead relies on the notion of an inference graph:
nodes in such a graph correspond to lines of argument and links represent either reason or defeat
relations. An example of such an inference graph is that shown in Figure 1. Despite his new focus
on inference graphs, rather than on sets of arguments, Pollock continued to present his work as
argumentation based:

The theory of defeasible reasoning adumbrated in this book is an ‘argument-based’ theory, in the sense
that it characterizes defeasible consequence in terms of the interactions between the inference steps of
all possible arguments that can be constructed from a given set input using a fixed set of defeasible
reasons and defeaters. (Pollock 1995, p. 105)

Pollock’s new definition moves through the idea of a partial defeat status assignment, which
again labels nodes as in or out, to that of a maximal defeat status assignment, which is as complete a
status assignment as possible.Arguments are then characterised as ultimately undefeated, defeated
outright, or provisionally defeated depending upon their behaviour in the various maximal status
assignments.

Definition 3.3 (Semantics of Pollock 1994, 1995) An assignment σ of in and out to a subset of
the nodes of an inference graph is a partial defeat status assignment iff

(1) σ assigns in to any initial node;
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(2) σ assigns in to a non-initial node α iff σ assigns in to all immediate ancestors of α and σ

assigns out to all nodes defeating α; and
(3) σ assigns out to a node α iff σ either assigns out to an immediate ancestor of α or assigns

in to a node defeating α.

A defeat status assignment is a maximal partial defeat status assignment; a node is ultimately
undefeated if it is in in all defeat status assignments, defeated outright if it is in in no defeat status
assignments and provisionally defeated otherwise.

In the example shown in Figure 1, lines 1, 3, 5, 8, and 9 must be assigned in by clause (1). Then,
all lines except lines 7 and 12 must be assigned in by clause (2) since they have no defeaters. Then,
line 7 must be assigned out by clause (3), since it is defeated by line 11, which must be assigned
in. Then, line 12 must be assigned in by clause (2) since its only defeater must be assigned out.

Jakobovits (Jakobovits and Vermeir 1999; Jakobovits 2000) proved Definition 3.3 to be equiv-
alent to another of Dung’s proposals, the preferred semantics. Indeed, it is easy to see that the
conditions on defeaters in (2) and (3) are the same as the conditions of preferred labellings in the
sense of Caminada (2006). Such labellings label arguments of a Dung-style abstract argumentation
framework as in, out, or undecided, in a way that satisfies the following constraints:

1. An argument is in if all arguments defeating it are out.
2. An argument is out if it is defeated by an argument that is in.
3. An argument is undecided otherwise.

A labelling is preferred if it maximises the set of in arguments, while it is grounded if it minimises
this set. Jakobovits’s result indicates that Pollock could also have formulated his new semantics
by retaining his old notions of argument and defeat and directly using the above definition of
preferred labellings. In any case, we can say that the idea of argument labellings was introduced
in our field by Pollock, although its use in non-monotonic logic ultimately goes back to Doyle’s
(1979) justification-based truth maintenance systems.

The main reason for Pollock changing his mind between 1987 and 1994 was to refine his treat-
ment of self-defeating arguments. While in his (1987) semantics, they were all unable to affect
the status of other arguments, Pollock later realised that there are two kinds of self-defeating
arguments, one of which should still be capable of preventing other arguments from being ulti-
mately undefeated. The first kind of self-defeat he considered results in a situation in which two
arguments for contradictory conclusions rebut each other (see Figure 2; in the examples given
below, we assume for simplicity that all arguments are of equal strength). Here, r1 says that q is a
defeasible reason for p, while r2 says that r is a defeasible reason for ¬p. Given q and r as facts,
this results in two arguments rebutting each other. The contradictory conclusions can then be com-
bined by applying a strict rule expressing the Ex Falso principle (an inconsistent set of formulas
deductively implies everything) to support any formula. Thus, a rebuttal can be constructed for any
other defeasible argument line, such as line 7 here. Clearly, such self-defeating rebuttals should
not prevent any other argument from being ultimately undefeated, and Definition 3.1 respects this
by declaring all self-defeating arguments as not in at level 0, so that they do not interfere with
other arguments.

However, there is a second kind of self-defeating argument, which should be able to prevent
other arguments from being justified. Consider the following version of the argument scheme from
witness testimony plus an undercutter in case the witness is incredible:

r1: That a witness says ϕ is a defeasible reason for ϕ

r2: That a witness is incredible is a deductive reason for ¬r1
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Figure 2. Parallel self-defeat.

Assume as given that Witness John says that he is incredible. Then (again ignoring strength), we
can construct the following argument (on the left of Figure 3):

1: (Witness John says he is incredible, fact, ∅)
2: (John is incredible, r1, {1})
3: (¬r1, r2, {2})

The argument up to line 3 is self-defeating, since line 3 undercuts line 2. Thus, according to
Definition 3.1, the argument up to line 3 is at no level in. But then the argument up to line 2 is
ultimately undefeated since its only defeater is at no level in, while yet a deductive consequence of
the conclusion of line 2 (the conclusion of line 3) cannot be drawn, since the argument up to line
3 is not ultimately undefeated. This is strange.5 By contrast, according to Definition 3.3, there is
a unique preferred status assignment for this example, in which line 1 is in and both lines 2 and 3
are undefined. Thus, although both lines 2 and 3 are defeated outright, line 3 still retains its ability
to prevent other argument lines from being ultimately undefeated, and this is desirable. Suppose
witness John also says something completely unrelated, such as ‘The suspect hit the victim.’ We
then also have the following argument (on the right of Figure 3):

Figure 3. Serial self-defeat.
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Figure 4. A self-defeating witness.

4: (Witness John says that the suspect stabbed the victim, fact), ∅)
5: (The suspect hit the victim, r1, {4})

According to Definition 3.1, line 5 is ultimately undefeated, while yet it is based on a statement
of a witness who says of himself that he is incredible. This seems counterintuitive. By contrast,
according to Definition 3.3, line 5 is also defeated outright, since its status is undefined.6

In conclusion, Definition 3.3 captures that there are two classes of self-defeating arguments,
which are both always defeated outright, but one of which still has the power of preventing other
arguments from being ultimately undefeated. This observation also implies that self-defeating
arguments cannot simply be ruled out from consideration by definition.

In one of his last publications (2009), Pollock again revised his semantics, motivated by
concerns similar to those of Baroni and Giacomin (2005). He realised that his (1994) and (1995)
distinction between two types of self-defeat in fact also gave different treatments to odd and
even defeat cycles of arbitrary length, and he regarded that as counterintuitive. Let us extend the
above example by replacing the single self-defeating witness with first an even defeat cycle of two
witnesses and then an odd defeat cycle of three witnesses (Figure 5). Suppose first we have two
witnesses Albert and Bob, who say of each other that they are unreliable, thus undercutting each
other. Imagine also that Albert and Donald rebut each other on the issue whether the suspect hit the
victim. We then have two maximal labellings: in one, lines 3 and 8 are in, while lines 6 and 10 are
out, so both lines 8 and 10 are provisionally defeated and we can believe neither Bob nor Donald
on whether the suspect hit the victim. However, consider next three witnesses Albert, Bob, and
Carole, where Albert says that Bob is unreliable, Bob says that Carole is unreliable, and Carole
says that Albert is unreliable, while Albert and Donald still rebut each other on whether the suspect
hit the victim (Figure 6). Then, there is only one maximal labelling, in which line 10 is in while
line 8 is out (and all of 3, 6, and 13 undecided). We cannot create a labelling in which we believe
both Albert and Carole but not Bob or Donald, since Albert and Carole are involved in an odd
defeat cycle. So, this yields that line 10 is ultimately undefeated while line 8 is defeated outright,
so we can believe Donald that the suspect did not hit the victim. Thus, the justification status of
Donald’s testimony depends on whether its attacker, Albert, is involved in an odd or an even defeat
cycle. Baroni and Giacomin (2005) and Pollock (2009) regard this as counterintuitive.7



Argument and Computation 11

Figure 5. An even defeat cycle.

Figure 6. An odd defeat cycle.

3.3. Argument strength

Although Pollock’s earliest system, from 1987, did not yet include a notion of strength, Pollock
later took the notion of strength of arguments very seriously. Since his system was meant for
epistemic reasoning, he always formulated strength in terms of numerical degrees of belief. He
was interested in computing the degree of justification of a statement P, that is, the degree of
belief in P that an agent rationally ought to have. His approach here was non-standard. Against
Bayesian approaches, he argued that degrees of belief and justification do not conform to the
laws of probability theory. One argument he gave for this is that according to probability theory,
necessary truths have probability 1, but if this is a degree of justification, then we would be equally
justified in believing Fermat’s conjecture before and after Andrew Wiles proved it.

In his papers published in 1994 and 1995 (Pollock 1994, 1995), Pollock used a weakest-link
approach to compute the strength of arguments: the strength of each conclusion is the minimum
of the strengths of the inference with which it was derived and of the premises or intermedi-
ate conclusions from which it was derived. While these arguments can have various strengths,
defeat is still an all-or-nothing matter in that defeaters that are weaker than their target cannot
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affect the status of their target at all. In consequence, the justification status of a proposition
for which arguments can be constructed is three valued: arguments can be ultimately defeated,
ultimately undefeated, or provisionally defeated. However, in his (2002, 2007a, 2010), Pollock
explored the idea that weaker defeaters can still weaken the justification status of their stronger
targets. To formalise this, he now made the justification status of statements a matter of numerical
degree, being a function of the strengths of both supporting and defeating arguments. In fact,
Pollock seemed not fully sure that his 2002 account was the right one, witness the following
quote:

In my (1995) I extended the above semantics to deal with reason strengths, but I am now convinced that
the (1995) proposal was not correct. I tried again in my (2002), and that semantics or a minor variation
of it may be correct, but I have not yet implemented it in OSCAR. (Pollock 2007b, p. 459)

Nevertheless, the basic idea that epistemic beliefs can be justified in varying degrees is very natural,
and Pollock was right that the relation between defeasible reasoning and differing degrees of belief
deserves more attention than it receives. His own proposal provides a good basis for further work
on this topic.

3.4. Defeasible reasons and argumentation schemes

An important distinguishing feature of Pollock’s account of defeasible inference rules is that he
meant them to be general patterns of reasoning. While in AI there is a tradition to let defeasible
inference rules express domain-specific information, as in, for example, default logic of Reiter
(1980), Pollock’s defeasible reasons are general patterns of epistemic defeasible reasoning. In
particular, he formalised reasons for perception, memory, induction, temporal persistence and the
statistical syllogism, as well as undercutters for these reasons. Here is how he contrasted his work
with default logic:

In spirit, the theory of defeasible reasoning seems close to Reiter’s default logic [34], with prima facie
reasons and defeaters corresponding to Reiter’s defaults. But there are also profound differences between
the two theories. First, prima facie reasons are supposed to be logical relationships between concepts.
It is a necessary feature of the concept red that something’s looking red to me gives me a prima facie
reason for thinking it is red. (To suppose we have to discover such connections inductively leads to an
infinite regress, because we must rely upon perceptual judgments to collect the data for an inductive
generalization.) By contrast, Reiter’s defaults often represent contingent generalizations. If we know
that most birds can fly, then the inference from being a bird to flying may be adopted as a default. In the
theory of defeasible reasoning, the latter inference is instead handled in terms of the following prima
facie reason schema: Most A’s are B’s, and this is an A is a prima facie reason for B . . . This is the
statistical syllogism . . . (Pollock 1992, p. 9).

There is an interesting connection here with the literature of argumentation schemes (Walton,
Reed, and Macagno 2008). Argumentation schemes are stereotypical non-deductive patterns of
reasoning. Their use in building arguments is evaluated in terms of critical questions specific to
a scheme. In the literature on argumentation theory, many collections of argumentation schemes
have been proposed, for both epistemic and practical reasoning. Pollock’s defeasible inference
rules can in fact be seen as formalisations of some epistemic argumentation schemes. This also
suggests a way to formalise reasoning with argumentation schemes (Prakken 2010b): they can
be seen as defeasible inference rules and critical questions can be regarded as pointers to coun-
terarguments. Some critical questions challenge an argument’s premise and therefore point to
premise attacks, others point to undercutting attacks, while again other questions point to rebut-
ting attacks. Pollock’s emphasis on the general nature of defeasible reasons plus his distinction
between rebutting and undercutting defeat provided a basis for a formal framework for modelling
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reasoning with argumentation schemes; the ASPIC framework as presented in Prakken (2010a)
adds premise attack to Pollock’s rebutting and undercutting attack and thus arguably provides a
full framework for modelling reasoning with argumentation schemes.

3.5. Suppositional reasoning

In his earlier work, Pollock extended his system with suppositional reasoning, by allowing sets of
assumptions to be introduced into and retracted from lines of argument just as in natural deduction.
This validates, for example, a defeasible derivation of the material implication p ⊃ q from the fact
that p is a defeasible reason for q. In fact, this feature of his system has not been taken up by others
and Pollock himself did not use it any more in his later work.

3.6. Partial computation

Pollock also addressed the issue of partial computation. To deal with the intractability of the full
version of his system, he suggested several alternative notions of defeat status, all making his
system non-monotonic not just in the set of input beliefs but also in the amount of computation.
One of these notions, ‘justification’, simply computes defeat status relative to the inference graph
computed at a certain moment. Pollock also developed an alternative notion of adequacy of algo-
rithms for defeasible reasoning, given that to be tractable, they cannot be sound and complete with
respect to the ideal, that is, with respect to the set of all arguments that can be computed. For the
details, we refer the reader to (Pollock 1995, chap. 4).

4. A critique of current computational models of argument in light of Pollock’s work

Much current formal and computational work on argumentation is on abstract argumentation, as
introduced by Dung (1995). However, to be useful and realistic, abstract models must be combined
with accounts of the structure of arguments and the nature of attack and defeat. While this should
be obvious, it is less obvious what such accounts should be. While almost all early work on
argumentation in AI made a distinction between deductive (or ‘strict’) and defeasible inference
rules, currently there is a growing body of work that models argumentation as inconsistency
handling in classical or, more generally, deductive logic. In this section, we shall argue that
Pollock’s work strongly suggests that deductive argumentation is of limited applicability and that
many, if not most, forms of argumentation can only be naturally modelled by combining deductive
and defeasible inference rules.

As we have seen above, Pollock strongly emphasised the importance of defeasible reasons in
argumentation. According to him, any full theory of argumentation should give an account of the
interplay between deductive and defeasible reasons. In the 1980s and early 1990s, this view was
quite in agreement with most of the then current research on non-monotonic logic.8 Default logic
(Reiter 1980), still one of the most influential non-monotonic logics, added defeasible inference
rules to the proof theory of classical logic. Several systems for inheritance with exceptions (Horty
and Thomason 1988) combined strict and defeasible inheritance rules. Simari and Loui (1992)
fully formalised Loui’s (1987) initial ideas on argumentation with strict and defeasible inference
rules. This work in turn led to the development of Defeasible Logic Programming (Garcia and
Simari 2004). Lin and Shoham (1989) proposed the idea of abstract argumentation structures with
strict and defeasible rules and showed how a number of existing non-monotonic logics could be
reconstructed as such structures. Gerard Vreeswijk further developed these ideas in his abstract
argumentation systems (Vreeswijk 1997). Nute (1994) published the first version of Defeasible
Logic, which also combines strict and defeasible domain-specific inference rules. Finally, Prakken
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and Sartor (1997) formalised an argumentation logic with strict and defeasible inference rules and
defeasible priorities explicitly as an instance of Dung’s (1995) abstract argumentation frameworks.
Currently, the proponents of the ASPIC framework (Prakken 2010a, Modgil and Prakken 2011)
try to unify and further develop this work into a general framework for structured argumentation
with both strict and defeasible inference rules.

Nowadays, however, there is a growing body of work that models argumentation as inconsis-
tency handling in either classical logic or some other standard deductive logic (Besnard and Hunter
2001, 2008; Amgoud and Cayrol 2002; Parsons, Wooldridge, and Amgoud 2003; Amgoud and
Besnard 2009; Gorogiannis and Hunter 2011). In Pollock’s terms, this work regards all reasons
as deductive. Accordingly, in these approaches arguments can only be attacked on their premises.
If such a reduction is possible, then there is no need for new logics but just for a proper way of
modelling inconsistency handling in deductive logic, which, so it is said, has the advantage that it
is well understood (Besnard and Hunter 2008, p. 16).

Pollock did not include premise attack in his work, since he was only interested in what can be
defeasibly inferred from a consistent body of information. When arguments are constructed with
defeasible reasons, they can be attacked even if all their premises are accepted, since the premises
only presumptively support their conclusion: it is rationally possible to accept all premises of a
defeasible inference but still not accept its conclusion (at least if there are good reasons for not
accepting it). Here, the philosophical distinction between plausible and defeasible reasoning is
relevant; see Rescher (1976, 1977) and Vreeswijk (1993, chap. 8). Following Rescher, Vreeswijk
described plausible reasoning as valid deductive reasoning from an uncertain basis and defeasible
reasoning as deductively invalid (but still rational) reasoning from a solid basis. In these terms,
models of deductive argumentation formalise plausible reasoning, while Pollock modelled defea-
sible reasoning. The question then becomes: can defeasible reasoning be reduced to plausible
reasoning?

This question is not new. The current attempts to model argumentation on the basis of ordinary
deductive logic have their parallel in the history of non-monotonic logic, in which there have
been several attempts to reduce non-monotonic reasoning to some kind of inconsistency handling
in classical logic; see, for example, Israel (1980), Poole (1988), Brewka (1989), and Baker and
Ginsberg (1989).9

Now whether such a reduction is possible or not, it should at least be clear that it is a somewhat
unnatural way to model defeasible reasoning, since the very idea of defeasible inference rules is
that it is rationally possible to accept all their premises but still deny their conclusion. Consider the
following well-known example: it is given that Quakers are normally pacifists, that Republicans
are normally not pacifists, and that Nixon was both a Quaker and a Republican. There is nothing
inconsistent in these givens – indeed, it is natural to think that they are all true. The reason is
that ‘If Q then normally P’ and ‘Q’, taken together, do not deductively imply ‘P’, since things
could be abnormal: Nixon could be an abnormal Quaker or an abnormal Republican. A defeasible
reasoner therefore does not have to reject any of the givens. Instead, such a reasoner wants to
assume whenever possible that things are normal, in order to jump to conclusions about Nixon in
the absence of evidence to the contrary.

Typical reductions of defeasible reasoning to inconsistency handling express such default
assumptions as additional premises with a lower status than the rest of a knowledge base and
model attacks on a defeasible inference as an attack on such premises. However, these approaches
have been criticised for producing counterintuitive results due to the use of the material impli-
cation, which is claimed to be logically too strong for representing defeasible conditionals; see,
for example, (Brewka 1991; Ginsberg 1994). While a review of this discussion goes beyond the
scope of this paper (see for more details Prakken forthcoming), we can at least conclude from the
existence of this debate – together with the vast body of work on defeasible reasons in philosophy,
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non-monotonic logic, and argumentation theory – that the study of defeasible reasons deserves
a central place in the formal and computational study of argumentation. One of Pollock’s main
contributions to our field is the first formal account of defeasible reasons that is both technically
mature and philosophically grounded. What he did not address, however, was the integration of
defeasible with plausible reasoning, since he left no room for premise attack. Such an integra-
tion is one aim of the current ASPIC framework (Prakken 2010a; Modgil and Prakken 2011),
which combines Pollock’s work on defeasible reasons with the more recent work on deductive
argumentation.

5. Working style

In this section, we present some brief observations on Pollock’s way of working and thinking.
A remarkable aspect of Pollock’s work, especially given that he was a philosopher, is that he

always implemented his theories of defeasible reasoning. Moreover, while most AI researchers
have teams of graduate students to do their coding, Pollock mostly wrote his own code, in Common
Lisp.

It is sometimes said that Pollock’s formalism for defeasible reasoning is too complex, but we
do not think that this criticism is entirely fair. The main reason for the complexity of Pollock’s
work is that his primary aim was not to design elegant and simple formalisms but to formalise
defeasible reasoning in its full complexity. Therefore, the option to oversimplify formalisms just
to be understood or to score theorems was not open to him. Moreover, as discussed above, several
relations have been established between his work and Dung (1995)’s influential work on abstract
argumentation, so that the place of his formalisms in the spectrum of argumentation approaches
is now quite well understood.

However, an admirable aspect of his writings is that Pollock was always exceptionally clear and
explicit about the reasons for and against his design choices. This relates to an equally admirable
aspect of his thinking, namely his willingness to keep re-thinking and re-thinking his approach to
defeasible reasoning. When he saw what he recognised as an error, Pollock was always willing
to re-think even the most fundamental aspects of his existing theories. This is, for example, true
for his final paper Pollock (2010), where he rejected his (1994, 1995) semantics and proposed an
alternative. It is hard not to admire his intellectual honesty and his willingness, even at this late
stage, to reformulate fundamental ideas in the face of a perceived difficulty.

6. A summary and evaluation of Pollock’s contributions to the field of computational
argument

In summary, Pollock’s main contributions to the formal and computational study of argument are
as follows:

• He proposed one of the first non-monotonic logics with explicit notions of argument and
defeat.

• He introduced the important and now familiar distinction between rebutting and undercutting
defeat.

• He was the first in AI to regard defeasible reasons as general principles of reasoning. He
thus grounded his formalism in his work on epistemology and laid the basis for formalising
argumentation schemes.
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• The grounding of his theory in his work on epistemology allowed him to show that a full
model of reasoning must include defeasible reasons and that defeasible reasoning cannot in
general be reduced to inconsistency handling in deductive logic.

• He was the first to use a labelling approach in the semantics of argumentation (although
derived directly from Doyle 1979).

• He took self-defeating arguments more seriously than anyone else, showing that they cannot
simply be ruled out by definition but that some self-defeating arguments can still prevent
other arguments from being justified.

• He took argument strength seriously and raised the issue of modelling degrees of justification.

His work also has some limitations.

• Some aspects of his work have not survived, such as his work on suppositional reasoning
and on resource-bounded reasoning.

• While Pollock took argument strength seriously, he did not explicitly distinguish between
attack and defeat, which sometimes leads to confusion (this matter is fully discussed in
Horty 2012). Currently, there is a trend to clearly separate attack and defeat, e.g. Bench-
Capon (2003), Prakken (2010a), Amgoud and Vesic (2011), Modgil and Prakken (2011),
which, among other things, allows for clean explicit modellings of arguments about relative
argument strength (Modgil 2009).

• In his work on argumentation, Pollock only modelled epistemic reasoning. He fully
ignored normative reasoning and modelled practical reasoning (in his words ‘rational
decision-making and practical cognition (including decision-theoretic planning)’)10 without
argumentation concepts (Pollock 1998, 1999, 2005). This makes his work less relevant for
current argumentation models of practical reasoning, which is an important current theme
in our field. Among other things, he gave no argumentation-based account of how practical
reasoning depends on epistemic reasoning. Also, his work on argument strength is only
relevant for epistemic reasoning.

• A related limitation is that since Pollock was focused on probabilistic strength of epistemic
arguments, he always assumed that defeasible reasons can be arranged in a linear order of
strength and never thought of incomparable strengths or about defeasible reasoning about
the strength of defeasible arguments.

In conclusion, we can say that, above all, Pollock deserves to be remembered as one of the
founding fathers of our field. Moreover, despite some limitations and imperfections, his work has
historically been very influential while it still contains some important lessons for current research.
Most importantly, Pollock’s work reminds us of the richness of our object of study, sometimes
ignored in current work on, for example, abstract or deductive argumentation.

Notes
1. We will confine ourselves to argumentation-based inference, since Pollock never studied argumentation-

based dialogue.
2. Pollock varied in his terminology: in his earlier papers, he exclusively spoke of ‘conclusive’ and ‘prima

facie’ reasons, while later he also referred to ‘deductive’ and ‘defeasible’ reasons (and sometimes to
‘inference rules’ instead of ‘reasons’). We will speak of deductive and defeasible reasons/inference rules.
By ‘deductive argumentation’, we mean argumentation where all arguments are built with deductive
inference rules, and by ‘classical argumentation’, we mean the special case of deductive argumentation
where the inference rules consist of all valid propositional or first-order inference rules.
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3. In systems like the ASPIC framework of Prakken (2010a), the notion of a subargument is refined to
sequences which in graph form are trees. For example, according to Pollock (1987), the sequence (1, 3)

is an argument but not according to Prakken (2010a).
4. Although some terminological confusion has arisen since others (Krause, Ambler, Elvang-Gøransson,

and Fox 1995, Besnard and Hunter 2001, 2008, Amgoud and Cayrol 2002) have used it for attack on a
premise instead of on the application of a defeasible inference rule.

5. Indeed, it violates Caminada andAmgoud’s (2007) rationality postulate of closure of argument extensions
under deductive inference.

6. In fact, Caminada (2005) showed that this treatment of self-defeat is not yet optimal. Consider again
two rebutting arguments combined with Ex Falso to an argument for any proposition. Pollock thought
that always at least one of the rebutting subarguments would be out so that the Ex Falso argument would
also be out. However, Caminada showed that if both rebutting arguments have self-defeating arguments
of the second type as a subargument, then (if there are no other defeaters) they are both undefined, so
the Ex Falso argument is also undefined and retains its power to prevent other arguments from being in.

7. Against this this, Bench–Capon, personal communication, has argued that odd and even defeat cycles
are logically different. According to him, odd defeat cycles are paradoxes, while even defeat cycles are
dilemmas. If he is right, then a different treatment of odd and even defeat cycles is justified and Pollock
would not have needed to revise his (1994, 1995) semantics.

8. Although Pollock’s study of reasons as general patterns of reasoning sets his work apart from most other
work in this vein, which often uses defeasible reasons for expressing domain-specific regularities.

9. Assumption-based argumentation (Bondarenko, Dung, Kowalski, and Toni 1997; Dung, Kowalski, and
Toni 2009) is similar but more general; on the one hand, it only allows for premise attack and, on the
other hand, it does not commit to classical or deductive logic as the source of its inference rules.

10. http://oscarhome.soc-sci.arizona.edu/ftp/publications.html, accessed on 28 November 2011.
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