
Algorithmic Finance 6 (2017) 67–77
DOI:10.3233/AF-170176
IOS Press

67

Classification-based financial markets
prediction using deep neural networks

Matthew Dixona,∗, Diego Klabjanb and Jin Hoon Bangc

aStuart School of Business, Illinois Institute of Technology, Chicago, IL, USA
bDepartment of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA
cDepartment of Computer Science, Northwestern University, Evanston, IL, USA

Abstract. Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hid-
den layers. They have recently gained considerable attention in the speech transcription and image recognition community
(Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their appli-
cation to algorithmic trading has not been previously researched, partly because of their computational complexity. This
paper describes the application of DNNs to predicting financial market movement directions. In particular we describe the
configuration and training approach and then demonstrate their application to backtesting a simple trading strategy over
43 different Commodity and FX future mid-prices at 5-minute intervals. All results in this paper are generated using a
C++ implementation on the Intel Xeon Phi co-processor which is 11.4x faster than the serial version and a Python strategy
backtesting environment both of which are available as open source code written by the authors.

1. Introduction

Many of the challenges facing methods of financial
econometrics include non-stationarity, non-linearity
or noisiness of the time series. While the applica-
tion of artificial neural networks (ANNs) to time
series methods are well documented (Faraway and
Chatfield, 1998; Refenes, 1994; Trippi and DeSieno,
1992; Kaastra and Boyd, 1995) their proneness to
over-fitting, convergence problems, and difficulty
of implementation raised concerns. Moreover, their
departure from the foundations of financial econo-
metrics alienated the financial econometrics research
community and finance practitioners.

However, algotrading firms employ computer sci-
entists and mathematicians who are able to perceive
ANNs as not merely black-boxes, but rather a
semi-parametric approach to modeling based on min-
imizing an entropy function. As such, there has been
a recent resurgence in the method, in part facilitated

∗Corresponding author: Matthew Dixon, Stuart School of
Business, Illinois Institute of Technology, 10 West 35th Street,
Chicago, IL 60616, USA. E-mail: matthew.dixon@stuart.iit.edu.

by advances in modern computer architecture (Chen
et al., 2013; Niaki and Hoseinzade, 2013; Vanstone
and Hahn, 2010).

A deep neural network (DNN) is an artificial neu-
ral network with multiple hidden layers of units
between the input and output layers. They have
been popularized in the artificial intelligence com-
munity for their successful use in image classification
(Krizhevsky et al., 2012) and speech recognition. The
field is referred to as "Deep Learning".

In this paper, we shall use DNNs to partially
address some of the historical deficiencies of ANNs.
Specifically, we model complex non-linear rela-
tionships between the independent variables and
dependent variable and reduced tendency to overfit.
In order to do this we shall exploit advances in low
cost many-core accelerator platform to train and tune
the parameters of our model.

For financial forecasting, especially in multivari-
ate forecasting analysis, the feed-forward topology
has gained much more attention and shall be the
approach used here. Back-propagation and gradient
descent have been the preferred method for training
these structures due to the ease of implementation

2158-5571/17/$35.00 © 2017 – IOS Press and the authors. All rights reserved

mailto:matthew.dixon@stuart.iit.edu

68 M. Dixon et al. / Classification-based financial markets prediction using deep neural networks

and their tendency to converge to better local optima
in comparison with other trained models. However,
these methods can be computationally expensive,
especially when used to train DNNs.

There are many training parameters to be con-
sidered with a DNN, such as the size (number of
layers and number of units per layer), the learn-
ing rate and initial weights. Sweeping through the
parameter space for optimal parameters is not fea-
sible due to the cost in time and computational
resources. We shall use mini-batching (computing
the gradient on several training examples at once
rather than individual examples) as one common
approach to speeding up computation. We go fur-
ther by expressing the back-propagation algorithm
in a form that is amenable to fast performance on
an Intel Xeon Phi co-processor (Jeffers and Rein-
ders, 2013). General purpose hardware optimized
implementations of the back-propagation algorithm
are described by Shekhar and Amin (1994), how-
ever our approach is tailored for the Intel Xeon Phi
co-processor.

The main contribution of this paper is to describe
the application of deep neural networks to financial
time series data in order to classify financial mar-
ket movement directions. Traditionally, researchers
will iteratively experiment with a handful of sig-
nals to train a level based method, such as vector
autoregression, for each instrument (see for exam-
ple Kaastra and Boyd (1995); Refenes (1994); Trippi
and DeSieno (1992)). More recently, however, Leung
et al., (2000) provide evidence that classification
based methods outperform level based methods in
the prediction of the direction of stock movement and
trading returns maximization.

Using 5 minute interval prices from June 1989 to
March 2013, our approach departs from the literature
by using state-of-the-art parallel computing architec-
ture to simultaneously train a single model from a
large number of signals across multiple instruments,
rather than using one model for each instrument.
By aggregating the data across multiple instruments
and signals, we enable the model to capture a richer
set of information describing the time-varying co-
movements across signals for each instrument price
movement. Our results show that our model is able
to predict the direction of instrument movement to,
on average, 42% accuracy with a standard deviation
across instruments of 11%. In some cases, we are
able to predict as high as 68%. We further show how
backtesting accuracy translates into the P&L for a
simple long-only trading strategy and demonstrate

sample mean Annualized Sharpe Ratios as high as
3.29 with a standard deviation of 1.12.

So in summary, our approach differs from other
financial studies described in the literature in two
distinct ways:

1. ANNs are applied to historical prices on an indi-
vidual symbol and here 43 commodities and FX
futures traded on the CME have been combined.
Furthermore time series of lags, moving aver-
ages and moving correlations have been generated
to capture memory and co-movements between
symbols. Thus we have generated a richer dataset
for the DNN to explore complex patterns.

2. ANNs are applied as a regression, whereas here
the output is one of {−1, 0, 1} representing a nega-
tive, flat or positive price movement respectively.
The threshold for determining the zero state is
set to 1× 10−3 (this is chosen to balance the
class labels). The caveat is that restriction to a
discrete set of output states may not replace a clas-
sical financial econometric technique, but it may
be applicable for simple trading strategies which
rely on the sign, and not the magnitude, of the
forecasted price.

In the following section we introduce the
back-propagation learning algorithm and use mini-
batching to express the most compute intensive
equations in matrix form. Once expressed in matrix
form, hardware optimized numerical linear algebra
routines are used to achieve an efficient mapping of
the algorithm on to the Intel Xeon Phi co-processor.
Section 3 describes the preparation of the data used
to train the DNN. Section 4 describes the implemen-
tation of the DNN. Section 5 then presents results
measuring the performance of a DNN. Finally in Sec-
tion 6, we demonstrate the application of DNNs to
backtesting using a walk forward methodology, and
provide performance results for a simple buy-hold-
sell strategy.

2. Deep neural network classifiers

We begin with mathematical preliminaries. Let D
denote the historical dataset of M features and N

observations. We draw a training subset Dtrain ⊂ D
of Ntrain observations and a test subset of Dtest ⊂ D
of Ntest observations.

Denote the nth observation (feature vector) as
xn ∈ Dtrain. In an ANN, each element of the vec-
tor becomes a node in the input layer, as illustrated

M. Dixon et al. / Classification-based financial markets prediction using deep neural networks 69

in Fig. 1 below for the case when there are 7 input
variables (features) per observation. In a fully con-
nected feed-forward network, each node is connected
to every node in the next layer. Although not shown
in the figure, associated with each edge between the
ith node in the previous layer and the jth node in the
current layer l is a weight w

(l)
ij .

In order to find optimal weightings w :=
{w(l)}l:=1→L between nodes in a fully connected feed
forward network with L layers, we seek to minimize
a cross-entropy function1 of the form

E(w) = −
Ntest∑
n=1

en(w), en(w) :=
K∑

k=1

yknln (ŷkn) .

(1)
For clarity of exposition, we drop the subscript n.

The binary target y and output variables ŷ have a 1-of-
ks encoding for each symbol, where yk ∈ {0, 1} and∑i+ks

k=i
ŷk = 1 and i = {1, 1+ ks, 1+ 2ks . . . , K − ks}, so

that each output state associated with a symbol can
be interpreted as a probabilistic weighting. To both
ensure analytic gradient functions under the cross-
entropy error measure and that the probabilities of
each state sum to unity, the output layer is activated
with a softmax function of the form

ŷk := φsoftmax(s(L)) = exp(s(L)
k)∑ks

j=1 exp(s(L)
j)

, (2)

Fig. 1. An illustrative example of a feed-forward neural network
with two hidden layers, seven features and two output states. Deep
learning network classifiers typically have many more layers, use
a large number of features and several output states or classes. The
goal of learning is to find the weight on every edge that minimizes
the out-of-sample error measure.

1The use of entropy in econometrics research has been well
established (see for example Golan et al., (1996); Wu and Perloff
(2007)).

where for a fully connected feed-forward network,
s

(l)
j is the weighted sum of outputs from the previous

layer l− 1 that connect to node j in layer l:

s
(l)
j =

n(l−1)∑
i=1

w
(l)
ij x

(l−1)
i + bias(l)

j , (3)

where n(l) are the number of nodes in layer l. The

gradient of the likelihood function w.r.t. s
(L)
k takes

the simple form:

∂e(w)

∂s
(L)
k

= ŷk − yk. (4)

The recursion relation for the back propagation using
conjugate gradients is:

δ
(l−1)
i =

n(l−1)∑
j=1

δ
(l)
j w

(l)
ij σ(s(l−1)

i)(1− σ(s(l−1)
i)), (5)

where we have used the analytic form of the derivative
of the sigmoid function

σ′(v) = σ(v)(1− σ(v)) (6)

to activate all hidden layer nodes. So in summary, a
trained feed-forward network can be used to predict
the probability of an output state (or class) for each
of the symbols concurrently, given any observation
as an input, by recursively applying Equation 3.
The description of how the network is trained now
follows.

Stochastic Gradient Descent. Following Rojas
(1996), we now revisit the backpropagation learning
algorithm based on the method of stochastic gradient
descent (SGD) algorithm. Despite only being first
order, SGD serves as the optimization method of
choice for DNNs due to the highly non-convex form
of the utility function (see for example Li et al.
(2014)). After random sampling of an observation
i, the SGD algorithm updates the parameter vector
w(l) for the lth layer using

w(l) = w(l) − γ∇Ei(w(l)), (7)

where γ is the learning rate. A high level description
of the sequential version of the SGD algorithm is
given in Algorithm 1. Note that for reasons of keep-
ing the description simple, we have avoided some
subtleties of the implementation.

70 M. Dixon et al. / Classification-based financial markets prediction using deep neural networks

Algorithm 1 Stochastic Gradient Descent
1: w← r, ri ∈ N (μ, σ), ∀i
2: E← 0
3: for i = 0 to n− 1 do
4: E← E + Ei(w)
5: end for
6: while E ≥ τ do
7: for t = 0 to n− 1 do
8: i← sample with replacement in [0, n− 1]
9: w← w− γ∇Ei(w)

10: end for
11: E← 0
12: for i = 0 to n− 1 do
13: E← E + Ei(w)
14: end for
15: end while

2.1. Mini-batching

It is well known that mini-batching improves the
computational performance of the feedforward and
back-propagation computations (Shekhar and Amin,
1994; Li et al., 2014). We process b observations in
one mini-batch. This results in a change to the SGD
algorithm and the dimensions of data-structures that
are used to store variables. In particular, δ, x, s and
E now have a batch dimension. Note however that
the dimensions of w(l) remain the same. The above
equations can be now be modified.

With slight abuse of notation, we redefine the
dimension δ(l), X(l), S(l) ∈ Rnl×b, ∀l, E ∈ RnL×b,

where b is the size of the mini-batch.
Crucially for computational performance of the

mini-batching, the computation of the sum in each
layer of the feed-forward network can be expressed
as a matrix-matrix product:

S(l) =
(
X

(l−1)
i

)T

w(l). (8)

For the ith neuron in output layer L and the jth obser-
vation in the mini-batch

δ
(L)
ij = σ

(L)
ij (1− σ

(L)
ij)Eij. (9)

For all intermediate layers l < L, the recursion rela-
tion for δ is

δ
(l−1)
ij = σ

(l)
ij (1− σ

(l)
ij)w(l)

ij δ
(l)
ij . (10)

The weights are updated with matrix-matrix products
for each layer

�w(l) = γX(l−1)
(
δ(l)

)T

. (11)

3. The data

Our historical dataset contains 5 minute mid-prices
for 43 CME listed commodity and FX futures from
March 31st 1991 to September 30th, 2014. We use
the most recent fifteen years of data because the pre-
vious period is less liquid for some of the symbols,
resulting in long sections of 5 minute candles with
no price movement. Each feature is normalized by
subtracting the mean and dividing by the standard
deviation. The training set consists of 25,000 con-
secutive observations and the test set consists of the
next 12,500 observations. As described in Section 6,
these sets are rolled forward ten times from the start
of the liquid observation period, in 1000 observation
period increments, until the final 37,500 observa-
tions from March 31st, 2005 until the end of the
dataset.

The overall training dataset consists of the aggre-
gate of feature training sets for each of the symbols.
The training set of each symbol consists of price dif-
ferences and engineered features including lagged
prices differences from 1 to 100, moving price aver-
ages with window sizes from 5 to 100, and pair-wise
correlations between the returns and the returns of all
other symbols. The overall training set contains 9895
features. The motivation for including these features
in the model is to capture memory in the historical
data and co-movements between symbols.

4. Implementation

The architecture of our network contains five
learned fully connected layers. The first of the four
hidden layers contains 1000 neurons and each subse-
quent layer is tapered by 100. The final layer contains
129 output neurons - three values per symbol of each
of the 43 futures contracts. The result of including a
large number of features and multiple hidden layers
is that there are 12,174,500 weights in total.

The weights are initialized with an Intel MKL VSL
random number generator implementation that uses
the Mersenne Twistor (MT19937) routine. Gaussian
random numbers are generated from transforming the
uniform random numbers with an inverse Gaussian
cumulative distribution function with zero mean and
standard deviation of 0.01. We initialized the neuron
biases in the hidden layers with the constant 1.

We used the same learning rate for all layers. The
learning rate was adjusted according to a heuristic
which is described in Algorithm 2 below and is simi-

M. Dixon et al. / Classification-based financial markets prediction using deep neural networks 71

Algorithm 2 Deep Learning Methodology
1: for γ := 0.1, 0.2, . . . , 1 do
2: w

(l)
i,j ← r, r ∈ N (μ, σ), ∀i, j, l �Initialize all weights

3: for e = 1, . . . , Ne do �Iterate over epochs
4: Generate De

5: for m = 1, . . . , M do �Iterate over mini-batches
6: Generate Dm

7: for l = 2, . . . , L do
8: Compute all x

(l)
j �Feed-Forward network construction

9: end for
10: for l = L, . . . , 2 do
11: Compute all δ

(l)
j := ∇

s
(l)
j

E �Backpropagation

12: Update the weights: w(l) ← w(l) − γX(l−1)
(
δ(l)

)T

13: end for
14: end for
15: end for
16: If cross entropy(e) ≤ cross entropy(e-1) then γ ← γ/2
17: end for
18: Return final weights w

(l)
i,j

lar to the approach taken by Krizhevsky et al. (2012)
except that we use cross entropy rather than the val-
idation error. We sweep the parameter space of the
learning rate from [0.1, 1] with increments of 0.1.
We further divide the learning rate γ by 2 if the
cross-entropy does not decrease between epochs.

In Algorithm 2, the subset of the training set used
for each epoch is defined as

De := {xnk
∈ Dtrain | nk ∈ U(1, Ntrain),

k := 1, . . . , Nepoch} (12)

and the mini-batch with in each epoch set is defined
as

Dm := {xnk
∈ Dep | nk ∈ U(1, Nepoch),

k := 1, . . . , Nmini-batch}. (13)

As mentioned earlier, the mini-batching formu-
lation of the algorithm facilitates efficient parallel
implementation, the details and timings of which are
described by Dixon et al. (2015). The overall time
to train a DNN on an Intel Xeon Phi using the data
described above is approximately 8 hours when fac-
toring in time for calculation of error measures on the
test set and thus the training can be run as an overnight
batch job should daily retraining be necessary. This
is 11.4x faster than running the serial version of the
algorithm.

5. Results

This section describes the backtesting of DNNs for
a simple algo-trading strategy. The purpose is to tie
together classification accuracy with strategy perfor-
mance measurements and is not intended to provided
an exhaustive exploration of trading strategies or their
performance. For each symbol, we calculate the clas-
sification accuracies for each 130 day moving test
window. This is repeated to give a set of ten clas-
sification errors. Figure 2 shows a box plot of the
classification accuracy of the DNN for all the 43 CME
Commodity and FX futures. Each symbol is repre-
sented by a box and whisker vertical bar - the box
represents the region between the lower and upper
quartiles of the sample distribution of classification
accuracies. The median of the sample distribution
of classification accuracies is represented as a red
horizontal line.

Figure 3 below shows the distribution of the aver-
age classification accuracy over 10 samples of the
DNN across the 43 CME Commodity and FX futures.
There’s a heavier density around an accuracy of 0.35
which is slightly better than a random selection.

Table 1 shows the top five instruments for which
the sample mean of the classification rate was highest
on average over the ten walk forward experiments.
Also shown are the F1-scores (‘harmonic means’)
which are considered to be a more robust measure of
performance due to less sensitivity to class imbalance

72 M. Dixon et al. / Classification-based financial markets prediction using deep neural networks

Fig. 2. This figure shows the classification accuracy of the DNN applied to 43 CME Commodity and FX futures. Each symbol is represented
by a box and whisker vertical bar - the box represents the region between the lower and upper quartiles of the sample distribution of
classification accuracies. The median of the sample distribution of classification accuracies is represented as a red horizontal line.

Fig. 3. This figure shows the distribution of the average classifi-
cation accuracy of the DNN applied to 43 CME Commodity and
FX futures.

than classification accuracies. The mean and stan-
dard deviation of the sample averaged classification
accuracies and F1-scores over the 43 futures are also
provided.

Note that the worst five performing instruments
performed no better or even worse than white noise
on average over the ten experiments.

6. Strategy backtesting

The paper has thus far considered the predictive
properties of the deep neural network. Using com-
modity futures historical data at 5 minute intervals
over the period from March 31st 1991 to September
30th, 2014 this section describes the application of a
walk forward optimization approach for backtesting
a simple trading strategy.

Following the walk forward optimization approach
described in Tomasini and Jaekle (2011), an initial
optimization window of 25,000 5-minute observa-
tion periods or approximately 260 days (slightly
more than a year) is chosen for training the model
using all the symbol data and their engineered time
series. The learning rate range is swept to find the
model which gives the best out-of-sample prediction
rate - the highest classification rate on the out-
of-sample (‘hold-out’) set consisting of 12,500
consecutive and more recent observations.

M. Dixon et al. / Classification-based financial markets prediction using deep neural networks 73

Table 1
This table shows the top five instruments for which the sample mean of the classification rate was highest over the ten

walk forward experiments. F1-scores are also provided. The mean and standard deviation of the sample mean
classification accuracies and F1-scores over the 43 futures are also provided

Symbol Futures Classification F1-score
Accuracy

HG Copper 0.68 0.59
ST Transco Zone 6 Natural Gas (Platts Gas Daily) Swing 0.67 0.54
ME Gulf Coast Jet (Platts) Up-Down 0.67 0.54
TU Gasoil 0.1 Cargoes CIF NWE (Platts) vs. Low Sulphur Gasoil 0.56 0.52
MI Michigan Hub 5 MW Off-Peak Calendar-Month Day-Ahead Swap 0.55 0.5
mean - 0.42 0.37
std - 0.11 0.1

Fig. 4. An illustration of the walk forward optimization method
used for backtesting the strategy.

Using the optimized model, the expected P&L of
the trading strategy is then evaluated over the out-
of-sample period consisting of 12,500 consecutive
5-minute observation periods or approximately 130
days. Even though all symbols are trained together
using one DNN model, the cumulative P&L is calcu-
lated independently for each symbol. As illustrated
in Fig. 4, this step is repeated by sliding the training
window forward by 1000 observation periods
and repeating the out-of-sample error analysis
and strategy performance measurement for ten
windows.

Fig. 5. This figure shows a box plot of the sample distribution of the time-averaged daily returns of the strategy applied separately to each of
the 43 CME Commodity and FX futures over the 130 day trading horizons. The red square with a black border denotes the sample average
for each symbol.

74 M. Dixon et al. / Classification-based financial markets prediction using deep neural networks

Fig. 6. This figure shows the cumulative unrealized net dollar profit
of a simple strategy. In order to quantify the impact of information
loss, the profit under perfect forecasting information is denoted
as ‘perfect foresight’ (green line) and the profit using the DNN
prediction is denoted as ‘predict’ (blue line). The graph is shown
for one 130 day trading horizon in front month Platinum (PL)
futures.

6.1. Example trading strategy

In order to demonstrate the application of DNNs
to algorithmic trading, a simple buy-hold-sell intra-
day trading strategy is chosen contingent on whether
the instrument price is likely to increase, be neutral,

Fig. 8. This figure shows a box plot of the distribution of the
annualized Sharpe ratios sampled over ten walk forward exper-
iments of 12,500 observation points. Only the top five performing
futures contracts have been considered. The simple trading strat-
egy is described above. Key: PL: Platinum, NQ: E-mini NASDAQ
100 Futures, AD: Australian Dollar, BP: British Pound, ES: E-mini
S&P 500 Futures.

or decrease over the next time interval respectively.
For simplicity, the strategy only places one lot market
orders. The strategy closes out a short position and
takes a long position if the label is 1, holds the posi-
tion if the label is zero and closes out the long position
and takes a short position if the label is –1. In calcu-
lating the cumulative unrealized P&L, the following
simplifying assumptions are made:

Fig. 7. This figure shows a box plot of the maximum drawdown of a simple strategy applied over ten walk forward experiments for each
symbol.

M. Dixon et al. / Classification-based financial markets prediction using deep neural networks 75

Table 2
This table shows the top five instruments for which the mean annualized Shape ratio was highest on average over

the ten walk forward optimizations. The values in parentheses denote the standard deviation over the ten
experiments. Also shown, are the mean and standard deviation of the Capability ratios under

the assumption of normality of returns

Symbol Futures Annualized Sharpe Ratio Capability Ratio

PL Platinum 3.29 (1.12) 12.51 (4.27)
NQ E-mini NASDAQ 100 Futures 2.07 (2.11) 7.89 (8.03)
AD Australian Dollar 1.48 (1.09) 5.63 (4.13)
BP British Pound 1.29 (0.90) 4.90 (3.44)
ES E-mini S&P 500 Futures 1.11 (1.69) 4.22 (6.42)

Table 3
This table lists the initial margin, maintenance margin and
contract size specified by the CME used to calculate the

cumulative P&L and strategy performance for the top five
performing futures positions

Symbol initial margin maint. margin contract size

PL 2090 1900 50
NQ 5280 4800 50
AD 1980 1800 100000
BP 2035 1850 62500
ES 5225 4750 50

� the account is opened with $100k of USD;
� there is sufficient surplus cash available in

order to always maintain the brokerage account
margin, through realization of the profit or oth-
erwise;

� there are no limits on the minimum or maxi-
mum holding period and positions can be held
overnight;

� the margin account is assumed to accrue zero
interest;

� transaction costs are ignored;
� no operational risk measures are deployed, such

as placing stop-loss orders.
� the market is always sufficiently liquid that a

market order gets filled immediately at the mid-
price listed at 5 minute intervals and so slippage
effects are ignored; and

� The placing of 1 lot market orders at 5 minute
intervals has no significant impact on the market
and thus the forecast does not account for limit
order book dynamics in response to the trade
execution.

These assumptions, especially those concerning
trade execution and absence of live simulation in
the backtesting environment are of course inadequate
to demonstrate alpha generation capabilities of the
DNN based strategy but serve as a starting point for
commercial application of this research.

Returns of the strategy are calculated by first aggre-
gating intraday P&L changes to daily returns and then
annualizing them.

Figure 5 show a box plot of the sample distribu-
tion of the time-averaged daily returns of the strategy
applied separately to each of the 43 CME front month
Commodity and FX futures over the 130 day trading
horizons.

Figure 6 compares the cumulative unrealized net
dollar profit of the strategy for the case when perfect
forecasting information is available (‘perfect fore-
sight’) against using the DNN prediction (‘predict’).
The graph is shown for one 130 day trading horizon
for front month Platinum (PL) futures.

Figure 7 shows a box plot of the maximum draw-
down of a simple strategy applied over ten walk
forward experiments for each symbol.

Table 4
This table shows the correlation of the daily returns of the strategy on each of the five most liquid instruments in the

list of 43 CME futures with their relevant ETF benchmarks. The values represent the summary statistics of the
correlations over the ten experiments. Key: NQ: E-mini NASDAQ 100 Futures, DJ: DJIA ($10) Futures, ES:

E-mini S&P 500 Futures, YM: E-mini Dow ($5) Futures, EC: Euro FX Futures.

Symbol Benchmark ETF Mean Correlation Max Min
Std. Dev.

NQ PowerShares QQQ ETF (QQQ) 0.013 0.167 0.237 –0.282
DJ SPDR Dow Jones Industrial Average ETF (DIA) 0.008 0.194 0.444 –0.257
ES SPDR S&P 500 ETF (SPY) –0.111 0.110 0.057 –0.269
YM SPDR Dow Jones Industrial Average ETF (DIA) –0.141 0.146 0.142 –0.428
EC CurrencyShares Euro ETF (FXE) –0.135 0.108 0.154 –0.229

76 M. Dixon et al. / Classification-based financial markets prediction using deep neural networks

Figure 8 shows the range of annualized Sharpe
ratios measured over each moving period of 12,500
observation points for the top five performing futures
contracts2. This figure is also supplemented by
Table 2 which shows the top five instruments for
which the sample mean of the annualized Sharpe ratio
was highest over the ten walk forward experiments.
The values in parentheses denote the standard devi-
ation over the ten experiments. Also shown, are the
sample mean and standard deviations of the Capabil-
ity ratios (where n = 130) under the assumption of
normality of returns.

Table 3 shows the correlation of the daily returns
of the strategy on each of the five most liquid instru-
ments in the list of 43 CME futures with their relevant
ETF benchmarks. The values represent the summary
statistics of the correlations over the ten experiments.
When averaged over ten experiments, the strategy
returns are observed to be weakly correlated with
the benchmark returns and, in any given experi-
ment, the absolute value of the correlations are all
under 0.5.

Table 4 lists the initial margin, maintenance mar-
gin and contract size specified by the CME used to
calculate the cumulative unrealized P&L and strat-
egy performance for the top five performing futures
positions.

7. Conclusion

Deep neural networks (DNNs) are a powerful type
of artificial neural network (ANN) that use several
hidden layers. In this paper we describe the imple-
mentation and training of DNNs. We observe, for
a historical dataset of 5 minute mid-prices of mul-
tiple CME listed futures prices and other lags and
filters that DNNs have substantial predictive capa-
bilities as classifiers if trained concurrently across
several markets on labelled data. We further demon-
strate the application of DNNs to backtesting a simple
trading strategy and demonstrate the prediction accu-
racy and its relation to the strategy profitability.
All results in this paper are generated using a C++
implementation on the Intel Xeon Phi co-processor
which is 11.4x faster than the serial version and
a Python strategy backtesting environment both of
which are available as open source code written by the
authors.

2No benchmark has been used in the calculation of the Sharpe
ratios.

Acknowledgments

The authors gratefully acknowledge the support
of Intel Corporation in funding this research and the
anonymous reviewers for useful comments.

References

Chen, J., Diaz, J.F., Huang, Y.F., 2013. High technology ETF fore-
casting: Appli-cation of Grey Relational Analysis and Artificial
Neural Networks, Frontiers in Finance and Economics 10(2),
129–155.

Dixon, M., Klabjan, D., Bang, J.H., 2015. Implementing
deep neural networks for financial market prediction on
the Intel Xeon Phi. In Proceedings of the 8th Work-
shop on High Performance Computational Finance, WHPCF
’15, pp. 6:1–6:6, New York, NY, USA. ACM. ISBN
978-1-4503-4015-1. doi: 10.1145/2830556.2830562. URL
http://doi.acm.org/10.1145/2830556.2830562

Faraway, J., Chatfield, C., 1998. Time series forecasting with neu-
ral networks: A comparative study using the air line data,
Journal of the Royal Statistical Society: Series C (Applied
Statistics) 47(2), 231–250.

Golan, A., Judge, G., Miller, D., 1996. Maximum Entropy Econo-
metrics: Robust Estimation with Limited Data. John Wiley &
Sons, March. ISBN 0471953113.

Jeffers, J., Reinders, J., 2013. Intel Xeon Phi Coprocessor High Per-
formance Pro-gramming. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition. ISBN 9780124104143,
9780124104945.

Kaastra, L., Boyd, M.S., 1995. Forecasting futures trading vol-
ume using neural networks, Journal of Futures Markets 15(8),
953–970. ISSN 1096-9934. doi: 10.1002/fut.3990150806.
URL http://dx.doi.org/10.1002/fut.3990150806

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classi-
fication with deep convolutional neural networks. In Advances
in neural information processing systems, pp. 1097–1105.

Leung, M., Daouk, H., Chen, A., 2000. Forecasting stock indices:
A comparison of classification and level estimation models,
International Journal of Forecasting 16(2), 173–190.

Li, M., Zhang, T., Chen, Y., Smola, A.J., 2014. Eff-
cient minibatch training for stochastic optimization. In
Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’14, pp. 661–670, New York, NY, USA. ACM. ISBN
978-1-4503-2956-9. doi: 10.1145/2623330.2623612. URL
http://doi.acm.org/10.1145/2623330.2623612

Niaki, S., Hoseinzade, S., 2013. Forecasting S&P 500 index using
artificial neural networks and design of experiments, Journal of
Industrial Engineering International 9(1), 1. ISSN 1735-5702.

Refenes, A.-P., 1994. Neural Networks in the Capital Markets. John
Wiley & Sons, Inc., New York, NY, USA. ISBN 0471943649.

Rojas, R., 1996. Neural Networks: A Systematic Introduction.
Springer-Verlag New York, Inc., New York, NY, USA. ISBN
3-540-60505-3.

Shekhar, V.K.S., Amin, M.B., 1994. A scalable parallel formu-
lation of the backpropagation algorithm for hypercubes and
related architectures, IEEE Transactions on Parallel and Dis-
tributed Systems 5, 1073–1090.

Tomasini, E., Jaekle, U., 2011. Trading Systems. Har-
riman House Limited. ISBN 9780857191496. URL
https://books.google.com/books?id=xGIQSLujSmoC

http://doi.acm.org/10.1145/2830556.2830562
http://dx.doi.org/10.1002/fut.3990150806
http://doi.acm.org/10.1145/2623330.2623612
https://books.google.com/books?id=xGIQSLujSmoC

M. Dixon et al. / Classification-based financial markets prediction using deep neural networks 77

Trippi, R.R., DeSieno, D., 1992. Trading equity index futures with
a neural network, The Journal of Portfolio Management 19(1),
27–33.

Vanstone, B., Hahn, T., 2010. Designing Stock Market Trading
Systems: With and Without Soft Computing. Harriman House.
ISBN 1906659583, 9781906659585.

Wu, X., Perloff, J.M., 2007. GMM estimation of a maximum
entropy distribution with interval data, Journal of Econometrics
138, 532–546.

