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Using directional bit sequences to reveal
the property-liability underwriting cycle
as an algorithmic process

Joseph D. Haley*
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Abstract. This paper presents a computational economics model of the property-liability insurance underwriting cycle. This
computer experiment is built on downward-sloping demand, a simplistic version of the capacity constraint model of insurance
supply, and a simple pricing rule. The pricing rule has each experimental insurer determine its price from the expected losses
per-policy (a constant), the previous year’s policyholders’ surplus and the previous year’s number of customers. Through the
use of directional bit sequences a common structure is revealed between the simulated aggregate underwriting margin and
the actual aggregate underwriting margin, 1930-2000. The common structure between these aggregate variables is evidence
the property-liability underwriting cycle, in a consistent effort to reach equilibrium, follows an algorithmic process. Of
more general inference; the pursuit of equilibrium, as an attractor, is the only consistent characteristic of the algorithmically
generated process. This algorithmic process precludes the notion of a consistent continuous probability distribution being
the basis of a data generating process (DGP). The times series behavior of the simulated underwriting margin, as it fluctuates
around the equilibrium attractor, can assume a variety of shapes across many realizations of the algorithmic process. Finally,
behavior of the simulated individual companies is not, for the most part, correlated with the aggregate behavior, and virtually

all individual transactions are out-of-equilibrium transactions in the sense that they occur along the demand curve.

Keywords: Simulation, capacity constraint model, property-liability underwriting cycle, equilibrium

1. Introduction

Aggregate profits in the property-liability insur-
ance industry are characterized by irregular fluc-
tuations known as the underwriting cycle. The
downward portion of the cycle is known as a ‘soft’
market with falling premium rates, liberal underwrit-
ing and falling profits. The upward portion of the
cycle is called a ‘hard’ market, with rising prices,
restrictive underwriting and increasing profits. This
phenomenon is of interest because insurance com-
pany profits should, theoretically, behave in a more
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random fashion due to the randomness of insured
losses. Harrington, Niehaus, and Yu (2013) provide a
very complete summary of the lengthy underwriting
cycle literature.

Of particular interest in this article is the capacity
constraint model of the underwriting cycle described
by Winter (1994) and Gron (1994). In its most sim-
plistic form, the capacity constraint model holds that
an insurer’s ability to supply insurance coverage is
based on the amount of economic capital it holds.!
The capital (or surplus) is held as a buffer against
insolvency in the event actual insured losses deviate
too greatly from expected losses. The adverse loss

IThe ability to supply insurance is, of course, also based the
insurer’s ability to predict losses. It is assumed here that an insurer
is able to predict losses with reasonable accuracy.
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experience can occur in a single year, or in a series
of years. It is this simplistic form of the capacity
constraint model employed here. For a given amount
of surplus, each insurer decides, indirectly via price,
what level of total expected losses it wants to hold as
contingent liabilities.

This article simulates a computational economics
model of the property-liability insurance market.
The model combines a simplified capacity constraint
model with the notion of an equilibrium premium.
It is a discreet-time, agent-based, model with insur-
ers issuing one-year contracts, collecting premiums
at the beginning of each year, and then paying all
losses that arise from those contracts at the end of
each year. Despite the one-year lag between collect-
ing premiums and paying losses the insurers in this
model make no account for investment income. They
are only concerned with collecting enough dollars to
pay losses, i.e., the pure premium. The pure premium
assumption also eliminates expense load and risk (or
profit) load considerations of a fair premium.

The simulated model clearly reveals, with a very
simple pricing rule and the use of directional bit
sequences, a matching structure in the actual and sim-
ulated aggregate underwriting margin. Finding this
structure implies the underwriting cycle is the result
of information lags and a simple-as-can-be algo-
rithmic process. The algorithmic process precludes
the notion of a consistent continuous probabil-
ity distribution as the basis of a data generating
process (DGP). Successive simulations with the
simple pricing rule generates multiple continuous
distribution-based DGPs, but only one set of direc-
tional bit sequence probabilities. This computational
outcome is generalized to conclude economic forces
move a market of individual agents towards equilib-
rium, but the movement is not symmetrical through
time. The possible paths to equilibrium are infi-
nite with no definite governing distribution. Market
adjustments in one year can be much different from
adjustments in another year, despite the scenarios
appearing to be the same.

The next section presents the model and the sim-
ple pricing rule used by insurers. The simulation
results are then presented by concentrating on a typ-
ical set of results, called Simulation X. Reference is
also made to the results from eight other simulation
runs. The detailed results of these eight experiments
are listed in Appendix B. The final section provides
some general comments on the pursuit of equilibrium,
volatility and competition, and directions for future
research.
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where: P,; = policy premium charged at time t by insurer i
S = actual surplus at time t for insurer i
n.; = number of policyholders at time t for insurer i
Ly; = actual average loss (per insured) experienced at time t by insurer i

Fig. 1. A brief cash flow timeline.

2. The model

The property-liability insurance industry simu-
lated here is comprised of C companies, who service
an industry of N homogeneous customers. Insurance
is mandatory and each company follows a simple
pricing rule for determining the premium to charge
all of its customers. The model operates in discreet
time with insurers collecting premiums at time ¢ while
paying all losses at time (¢ 4 1). Insurers charge a
pure premium subject to a capacity consideration of
a target capital structure. The insurers do not raise
external capital. An insurer’s expected premium vol-
ume is based on the number of customers the insurer
had the previous time period. The insurer’s actual pre-
mium volume is determined by a downward-sloping
demand curve. A graphic of each year’s cash flows
iteration is displayed in Fig. 1.2

2.1. Target capital structure

It is assumed that each insurer desires to main-
tain a target capital structure, which may differ from
insurer to insurer, and the only liabilities faced by
each insurer are the total expected losses that are
acquired when policies are sold. For example, if an
insurer has a surplus of $2,000,000 and a target ratio
of 40%, the insurer will desire to hold a total expected
loss exposure of $3,000,000. The insurer will thereby
collect a total (pure) premium of $3,000,000. Insurers
do not engage in borrowing, or other forms of raising
new capital.

When the simulation is initiated, each insurer starts
in equilibrium with the same number of customers
paying a premium equal to expected average loss.
Each insurer is then given an initial surplus to match

21t needs to be noted that, at any point in time, the deter-
mination of P; is done prior to L;. That is, P; is exclusively a
function of a constant target capital structure, L, S;—1) and n¢_1).
See Equation (5).
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its desired capital structure. From this equilibrium
starting point, the simulated insurers adjust their
prices according to their respective surplus levels and
most recent risk-pool size.

An insurer’s target capital structure, in this model,
is representative of the insurer’s risk preference.
Since the insureds are homogeneous, the target cap-
ital structure defines what level of loss exposure
an insurer is willing to bear for a given amount
of surplus. The beginning market equilibrium is an
important ideal. Each experimental insurer has the
exact total expected loss exposure it is willing to
bear given its initial capital. Since the long-run equi-
librium price gives an underwriting margin of zero,
the long-run equilibrium objective of each insurer
is to maintain its beginning surplus. An implica-
tion of this is when an insurer has excess capital,
there is the incentive to set its price below the long-
run equilibrium price, thus creating the possibility
of a soft market. (See Harrington, Niehaus, and Yu
(2013), page 659.) And when an insurer has a short-
age of capital, it will set a price above the long-run
equilibrium price. The premiums charged by each
insurer, as well as the average price in the market-
place, will fluctuate around the long-run equilibrium
price.

Asindicated in Fig. 1, and similar to Berger (1988),
the capital structure numbers are subject to a one-year
lag. Premiums at time ¢ are, in part, a function of the
surplus level at time (r — 1). The losses associated
with these premiums are paid at time (z + 1).> And
keeping the cash flow lags in mind, and in accordance
with the simplified capacity constraint model, each
insurer’s desired level of loss exposure is a fixed ratio
of the level of surplus.

2.2. Downward sloping demand curve

In the simulated market insurance coverage is
mandatory and modeled with a downward-sloping
demand curve. These notions work together by
assuming every insurer will maintain a minimal
portion of the market and insureds, each year, are
paying a range of prices for the same insurance
coverage.

The number of insureds who buy a policy from the
ith insurer is:

3 A detailed timeline of modeled cash flows for £ = 0 through
t = 5 is provided in Appendix A.

4The dashed arrow in Fig. 1 is an effort to indicate the workings
of the demand function shown in Equation (1).
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where:

Q; = quantity of customers purchasing
a policy from insureri
P; = price per policy charged by insurer i
N = total number of customers in the market

¢ = number of insurers.

This demand function is convex to the origin.
The convexity increases with the range of prices.
If prices are in a narrow range the demand curve
appears quite linear. If an insurer charges an unusually
large price, it will receive a very small propor-
tion of customers. This style of demand curve
is realistic. In practice, identical (or near identi-
cal) insurance policies are available at a range of
prices.

Figure 2 displays a generic example of the mod-
eled demand curve. Each curve is based on a market
of 15,000 customers and 19 companies. Panel A is
computed from a wide range of prices ($50-$375),
while Panel B is computed from a narrow price range
($50-$75). The convexity of the demand function
is much more apparent in Panel A. The leftmost
point in Panel A shows a price of $369, giving the
company only 407 customers, the rightmost point
in Panel A shows a price of $67 giving the com-
pany 2,240 customers. The leftmost point in Panel
B has a price of $75 and 632 customers, while the
rightmost point has the price of $50 giving 948
customers.

2.3. Expected losses

Each modeled insurance company’s losses are sep-
arately, and randomly, generated from an identical,
stationary mixed loss distribution. Loss frequency is
modeled as a Bernoulli variable with a 5% chance
of loss. Loss severity is modeled (a little haphaz-
ardly) using the SkewNormalDistribution function
in Mathematica with location parameter of 39,000,
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Panel A: Uniform Random Prices in the Range 50-375
Total Customers = 15,000, Number of Companies =19
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Fig. 2. Two examples of modeled demand curve.

scale parameter of 30,000, and shape parameter
of 5°.

A series of losses is created for each company by
multiplying, in pairwise fashion, each Bernoulli vari-
able with arandomly generated severity number. This
creates a list containing mostly zeros with a small
proportion (expected to be 5%) of highly skewed
losses.

2.4. Simple pricing rule

The simple pricing rule constructed here is based
on the idea of each insurer wanting to maintain a
target capital structure, r = SK;fg‘Ss. Using the previ-
ous example, an insurer who is holding a $2,000,000
surplus desires to sell policies totaling $3,000,000 in
pure premium, giving the insurer an expectation of
$3,000,000 in total loss liabilities.5

For insurer i the target premiums-to-surplus ratio

is’:

Lonf _(1—r) o

ka ri

1

>The goal of modeling loss severity was to create a
highly and positively skewed set of possible losses. 1 arbitrar-
ily selected the parameters for the SkewNormalDistribution.
More details are provided in Appendix C. More information
about SkewNormalDistribution can be found at reference.
wolfram.com.

Since each insurer faces identical, stationery loss distribu-
tions, incorporating a risk (profit) load factor based on the variance
of expected losses would only result in a scalar adjustment to the
simulation’s results.

"Given the assumption of all losses being paid at the end of
each year, the premiums-to-surplus ratio is also the debt-equity
ratio.

where:

S¥ = target surplus for insurer i

L = expected average loss per insured

3
Il

number of policyholders for insurer
ito be in equilibrium

r; = target capital structure ratio for insurer i.

Rearranging Equation (2) gives;

st= | L. 3
i_{(l—ri)}' i @

Through time, each company’s actual average loss
will deviate from expected. The number of actual pol-
icyholders will vary as well due to price competition
and the downward-sloping demand curve. As these
two deviations occur each insurer’s actual surplus
will deviate from the target surplus. The pricing rule
modeled here incorporates an adjustment term that
attempts to account for the out-of-equilibrium sur-
plus position. Each insurer will (likely) have a unique
out-of-equilibrium position.

Out-of-Equilibrium Position, ;

=([aZ) v) -5 @

The first rhs term in Equation (4) is the target sur-
plus for insurer i, at time z.

Given an insurer’s out-of-equilibrium position, as
defined in Equation (4), and setting n} = n(_1),; the
premium charged to each policyholder is;
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Equation (5) is the model’s simple pricing rule.
It is the expected average loss, L, plus the out-of-
equilibrium position divided by n(_1) ;. The out-of-
equilibrium position is divided by n(;_1),; to have the
adjustment be on a per-policy basis.

_ S(t—lm) 5)

n—1),i

2.4.1. Considering ny;

An insurer’s current surplus, S;;, is equal to the
prior surplus, S;—1),;, plus the profits (or losses) from
the policies sold this year. This computation is;

Sti = Se—1),i + (P(t—l),i - L;,i) (”hi) (©6)

The nj variable in Equation (2) represents the num-
ber of policyholders that, on expectation, will result
in insurer i being in equilibrium. An insurers achieve-
ment of equilibrium is determined by (i) how closely
actual average loss, L;,i, approaches expected aver-
age loss, L and (ii) how far the actual number of
policyholders deviate from nf. An insurer’s actual
number of policyholders is determined by the demand
curve shown in Equation (1). The out-of-equilibrium
adjustment factor in the simple pricing rule, Equation
(5),1s based on each insurer expecting to maintain last
year’s level of policyholders, n(;—1),;.

3. Simulation results

As with all simulations, specific results vary from
run to run, yet some properties are identifiable across
all runs. Of significance with this simple pricing-rule
simulation is how skewness and kurtosis of the under-
writing margin time series differ considerably across
runs. That is, the shape of the apparent probability
distribution of the simulated aggregate underwriting
margin differs considerably from one experiment to
the next. Using the fact that the real world under-
writing margin data is a single realization, one can
possibly conclude that certain continuous structural
measures are not reliable broad-based pieces of anal-
ysis. The rule-based approach allows for different
continuous probability structures to occur along-
side other stable structural properties. The rule-based
approach is looking for an algorithmic process.

The simulation results are presented by concentrat-
ing, primarily, on one specific representative outcome
(referred to as Simulation X) that is interesting and
typical. Other simulation runs, identified by number

and reported in Appendix B, are referenced along the
way.

3.1. Simulation X

Simulation X created a property-liability insurance
industry of 75 companies that operated for 200 years®.
The target capital structures of these 75 companies
are chosen randomly from a discrete uniform dis-
tribution containing the numbers {0.37, 0.38, 0.39,
0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48,
0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55}. The pricing
rule, Equation (5), is subject to maximum increases
and decreases. The maximum increase is 150%,
while the maximum price decrease is 50%. These
constraints are included to indicate (hypothetically)
insurers are more hesitant to reduce prices drastically
than increase them substantially. Figure 3, Panel A,
shows the average underwriting margin for the sim-
ulated industry. The industry margin is a weighted
average based on premiums.

It is clear in Fig. 3 that the cycle is drawn out.
Casual counting from trough-to-trough gives a very
typical length of 6 years — though it should be noted
that the actual underwriting cycle is irregular. Fig-
ure 3, Panel B, displays the industry average loss,
weighted by number of insureds. The losses are ran-
dom with no cyclical-type behavior.

Table 1 presents summary data of the actual
industry underwriting margin for 1930-2000. The
aggregate data for the property-liability industry
shows a negative average underwriting margin with
greater volatility and skewness than the simulated
data (Table 2). The negative aggregate margin can
be an indication of expected losses being discounted
to their present value (i.e. accounting for investment
income). The greater volatility and skewness isn’t
surprising considering the uncertainty of actual loss
distributions.

Table 2 contains summary statistics from Simula-
tion X. The average underwriting margin of —0.00012
shows the simulated industry generally achieves
equilibrium. The industry, on average, collects pure
premium equal to losses paid. The distribution is quite
narrow, nearly symmetrical, and a little platykur-
tic. The average correlation of underwriting margins
across the 75 companies (2,775 terms) is slightly pos-
itive at 0.1604.

8 As noted earlier and in Appendix A, the simulations are initi-
ated by assigning arbitrary values to Sp, Pp, and ng that have each
insurer start in equilibrium. The description and analysis of results
does not include the ¢ = 0 values.
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Panel B: Weighted Average Loss, Per Insured

200

Fig. 3. Underwriting margin and average loss, per insured, of simulated property-liability insurance industry (200 years).
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Table 1
Summary statistics from U.S. stock property-liability insurers,
1930-2000
Average Underwriting Margin (Industry)
Overall Average -0.01623
Standard Deviation 6.1459
Skewness -0.87164
Kurtosis 3.8493
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6|
Histogram 4
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Eight additional runs of the simulation, displayed
in Table 1B of Appendix B, show a variety of
distributional outcomes for the aggregate under-
writing margin. All of the histograms are centered

(essentially) on zero, indicating the simulated mar-
ket’s effort to achieve equilibrium, while the shape of
the histograms differ significantly. When one consid-
ers the fact that only one outcome is actually realized
through time, e.g., Table 1, it can be concluded that
analyzing the distributional shape of the realized out-
come may be misleading.

3.2. Directional bit sequences

Zenil and Delahaye (2011) show that direc-
tional bit sequences are another way to look for
a consistent structure across all possible realiza-
tions. Directional bit sequences are constructed by
looking at the directional changes from observa-
tion to observation. Using the notation, 0=down
and 1=up, any time series can be converted into
a directional bit sequence. For example, in Simula-
tion X, the first seven aggregate average underwriting

Table 2
Summary statistics from simulation X
Average Underwriting Margin
(Industry) Average Loss per Insured (Industry)
Overall Average -0.00012 $3117.45
Standard Deviation 0.0095 4.7421
Skewness -0.0765 -0.2904
Kurtosis 2.3476 2.7372
Average Correlat.non 0.1604 -0.0021
Across Companies
20
20
15
15
Histogram 10 i
5 5
ol ol
~002  -001 000 001 0.02 3105 3110 3115 3120 3125
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Table 3
Directional bit sequence probabilities for the actual and
simulated underwriting margin

Point on Bit Actual Simulated
Figure 6 Sequence Underwriting Underwriting
Margin Margin
Probability Probability
(n=67) (n=196)
1 {1,1,1,1} 0.0000 0.0153
2 {1,1,1,0} 0.1045 0.1429
3 {1,1,0,1} 0.0299 0.0051
4 {1,1,0,0} 0.1343 0.1684
5 {1,0,1,1} 0.0299 0.0051
6 {1,0,1,0} 0.0299 0.0000
7 {1,0,0,1} 0.0299 0.0255
8 {1,0,0,0} 0.1194 0.1429
9 {0,1,1,1} 0.0896 0.1429
10 {0,1,1,0} 0.0597 0.0306
11 {0,1,0,1} 0.0299 0.0000
12 {0,1,0,0} 0.0149 0.0000
13 {0,0,1,1} 0.1194 0.1684
14 {0,0,1,0} 0.0149 0.0000
15 {0,0,0,1} 0.1045 0.1378
16 {0,0,0,0} 0.0896 0.0153

margin outcomes are {0.091%, —0.084%, —0.105%,
-0.002%, 0.264%, -0.075%, —0.002%}.° This
sequence generates three 4-tuple directional bit
sequences {0,0,1,1}, {0,1,1,0}, {1,1,0,1}. The first
directional bit sequence represents changes from ¢ =1
through 7=35. These changes are {down, down, up,
up}. Each successive bit sequence is created by shift-
ing the starting point one time period.

A 4-tuple bit sequence has 2* = 16 possible out-
comes. Any time series, real or simulated, can be
converted to directional bit sequences from which a
set of probabilities can be determined indicating the
frequency with which each possible sequence occurs.
These probabilities present a different way of analyz-
ing the structure of a time series.

3.3. Comparing simulation X to ‘real world’
data using directional bit sequences

4-tuple directional bit sequences were compiled
from the actual underwriting margin data and Simu-
lation X results. The actual data has 71 observations
and therefore generated 67 four-tuple bit sequences,
while Simulation X has 200 observations and 196
four-tuple sequences. Table 3 presents the probabili-
ties of each possible sequence for the two data series.
The probabilities are graphed in Fig. 4.

9The t =0 time period is dropped from the simulated insurance
market series.

015} H
.

0.10
A= Actual Data

==X== Simulated Data
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Fig. 4. Probabilities of All Possible 4-tuple directional bit
sequences.

The plotted points in Fig. 4 clearly form similar
shapes'?. The correlation between the probability sets
is 0.9053. It appears the structure of the simulated
data is quite similar to the structure of the actual data.

Table 2B in Appendix B contains the directional
bit sequence probability plots of the average under-
writing margin for the eight additional simulations.
All of these simulations reveal probabilities with high
correlation to those of the actual underwriting margin
directional bit sequences.

The matching structure of directional bit sequences
between multiple runs of simulated data and the
actual underwriting margin lends strong support to
the property-liability insurance industry following
an algorithmic process. The simulation shows the
simple discrete-time pricing rule moving the indus-
try towards equilibrium while generating a simulated
aggregate underwriting cycle possessing much of the
same structure as the actual underwriting cycle. The
rule is a simple-as-can-be algorithm that has each
company determine P; from S;_1) and n_y).

3.3.1. Behavior of individual companies’
directional bit sequences

With each individual insurer following the simple
pricing rule and the simulated aggregate underwriting
margin possessing a directional bit sequence structure
very similar to the actual industry underwriting mar-
gin, an obvious question to ask is ‘what is the structure
of the directional bit sequences of the underwriting
margins of the individual companies?’

Table 4 contains the directional bit sequence prob-
ability plots of companies {1, 7, 14,21, 28, 35,42, 49,
56, 63, 70, and 75}.11 The individual company plots

10The points plotted are discreet. The connecting lines are
drawn to aid interpretation. Directional bit sequence probabilities
were computed and plotted to sequences of length 2, 3, 5, and 6.
The results were qualitatively similar to the 4-tuple bit sequences.

1T arbitrarily chose the first company, the last company, and
those that are multiples of seven. The companies are not ‘cherry-
picked’.
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Table 4
Directional bit sequence probability plots for 12 companies in simulation X
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Table 5
Correlations of directional bit sequence probabilities from
random times series (n=100,000)

Normal Beta Uniform Cauchy
distribution distribution distribution distribution
Normal
Distribution 1 0.9997 0.9999 0.9996
Beta
Distribution 1 0.9996 0.9999
Uniform
Distribution 1 0.9995
Cauchy
Distribution 1

show a wide range of outcomes when compared to the
simulated industry underwriting margin. The corre-
lations range from —0.2076 to 0.6875. The directional
bit sequences of individual company underwriting
margins do not, in general, have the same structure
as the sequences of the simulated industry margin.

3.4. Emergent behavior

Can the behavior of the directional bit sequences
of the aggregate underwriting margin be consid-
ered emergent behavior? Maybe, maybe not. While
acknowledging that “emergence is a property without
a sharp demarcation” Holland (2013, page 4) prefers
to concentrate “on interactions where the aggregate
exhibits properties nor attained by summation”!2.
The aggregate underwriting margin is a weighted
average, based on premium volume, of the individual
company underwriting margins. However, the aggre-
gate directional bit sequence probabilities are not an
average of the individual bit sequence probabilities.

Page (2012) discusses emergent behavior as
an aggregate property not exhibited by individual
agents. This appears to mostly be the case in Simu-
lation X. Of the 12 companies listed in Table 4, only
two of them have directional bit string correlations
greater than 0.5.

3.5. Randomness

It is important to distinguish randomness from
the matching structure discovered between the algo-
rithmic simulated data and the actual data. This is
done by converting randomly generated time series
to directional bit sequences. Table 5 contains corre-
lation coefficients for the directional bit sequences of
randomly generated time series from four continuous
probability distributions — the normal distribution,

12See also, Holland (1995) pages 10-12, and page 125.

~——©— Actual Data
~— % — Simulation X

------- Random Beta Distribution

Fig. 5. Directional bit sequence probabilities from several time
series.

beta distribution, uniform distribution, and Cauchy
distribution. It is clear that all distributions generated
nearly identical discrete 4-tuple bit sequence proba-
bilities.

Figure 5 overlays the directional bit sequences of
the random beta distribution with the directional bit
sequences from the actual aggregate underwriting
margin and the simulated industry margin. The bit
sequences from the random series is clearly distinct
from the other two series.

3.6. Observations on correlated behavior
amongst the simulated insurers

The results of Simulation X and the other eight
simulations show higher standard deviations of
the aggregate underwriting margin associated with
higher average underwriting margin correlations
across all 75 companies (Tables 2 and 1B). To fur-
ther investigate this another 27 simulations were run.
Nine simulations each for pretend insurance indus-
tries of sizes 55 companies, 35 companies, and 15
companies. The results are displayed in Fig. 6.

Figure 6 shows that higher standard deviations of
company underwriting margins are associated with
higher average correlation across companies. Fig-
ure 6 also shows that industries with fewer companies
tend to be associated with both higher volatility and
correlations.

Average Correlation
08 15

285 75 Companies
55 Companies
35 Companies
15 Companies

Standard Deviation
0.010 0.015 0.020 0.025 0.030 0.035 0.040

Fig. 6. The Relationship between the Standard Deviation of Sim-
ulated Underwriting Margins and the Average Correlation of
Simulated Underwriting Margins across Multiple Companies.
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Table 6
Aggregate underwriting margin statistics after splitting
simulation #7 into two sub-periods

t=1-125 t=126-200
Average Correlatlo.n 11257 52784
Across 75 Companies
Minimum Aggregate -1.72% -3.455%
Underwriting Margin
Maximum Aggregate 1.70% 3.368%
Underwriting Margin
Standard Deviation
of the Aggregate 776% 2.22%

Underwriting Margin

s °'°Wm,aur\nﬁmnmhhhAMAJ\M(
P

-0.02

-0.03

Simulation #7, in which the aggregate underwrit-
ing margin becomes more volatile around ¢=125,
provides another perspective on the relationship of
increased correlation across companies during peri-
ods of higher volatility. The average correlation
across companies for the entire Simulation #7 is
0.3338. Table 6 displays the results of splitting the
200 time periods into two subsections, = 1-125 and
t=126-200. The sub-period with greater volatility,
t=126-200, also has a greater correlation amongst
the simulated companies’ underwriting margins.

Observing periods of higher correlation across
companies being associated with greater volatility
makes economic sense. Although a company’s under-
writing margin is subject to the randomness of insured
losses, it can still be considered a proxy for price.
During periods of higher price volatility companies
will tend to behave in what appears to be a more
coordinated manner. If price-cutting during a drawn
out soft market becomes severe enough almost all
companies have to participate to avoid having their
risk-pools shrink significantly. (The so-called ‘race to
the bottom’.) After a period of strong price-cutting,
all companies eventually need to recover surplus by
raising prices.

The graph in Table 6 shows relatively mild
underwriting cycles for 125 time periods. Insurer’s
underwriting margins (prices) during these 125 peri-
ods have low correlation indicating the companies
are competing yet behaving independently. The last
75 time periods are different however. The margin
fluctuations are larger and the companies’ behavior
is more correlated.

The additional outcome of a market with fewer
companies having greater correlated activity (Fig. 6)

also makes economic sense. Competition, generally,
is greater with more companies in an industry and
the greater the competitive behavior the lower the
correlated activity.

4. Concluding comments

This paper presents a computational economics
model, and experiment, showing the property-
liability insurance industry following a simple
algorithmic process. The simple algorithmic pro-
cess has individual insurers base their premium on
expected average loss and, with a one-year lag, the
size of their risk-pool and level of policyholders’ sur-
plus. There is also a one-year lag between premiums
collected and payment of actual losses. This simple
algorithm does not have an adaptive, or learning, fea-
ture. The insurers repetitively apply the same pricing
rule year after year.

The model is an agent-based explanation of market
behavior that reveals a common structure between the
simulated and observed data with the use of direc-
tional bit sequences. The directional bit sequence
probabilities of Simulation X, as well as the eight
other simulations reported in Appendix B, are all
highly correlated with the actual property-liability
aggregate underwriting margin, 1930-2000.

Finding this discrete common structure and assert-
ing a simple algorithmic process at least partially
removes the value of determining what sort of con-
tinuous probability distribution governs the DGP of
the aggregate underwriting margin. The histograms
presented in Tables 2 and 1B show a wide variety of
shapes on the probability distributions of the simu-
lated underwriting margins. Relaxing the constraint
of a continuous DGP on the time series opens the anal-
ysis by separating the pursuit of equilibrium from the
movement around equilibrium.

4.1. Pursuit of equilibrium

Haley (1993, 2007) uses cointegration method-
ology to conclude the property-liability insurance
industry consistently pursues equilibrium. The stud-
ies show there is a linear equilibrium attractor
between the aggregate underwriting margin and the
90-day T-bill rate.!3 These studies, however, do not

13 Haley (1995) demonstrates the cointegration between under-
writing margin and 90-day T-bill rate exists for only a subset of
individual insurance lines.
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offer any description of behavior around the equilib-
rium attractor other than mean stationarity of (error
term) deviations from equilibrium, i.e. the under-
writing margin has the tendency to move towards
equilibrium.

The algorithmic pricing process demonstrated here
shows that it is unnecessary to determine a definite
continuous DGP for a time series when evaluat-
ing equilibrium behavior. Any continuous DGP that
appears will be temporary. Economic circumstances
will eventually lead to a structural change. Studying
structural DGP changes are of significance in a his-
torical context, but are not needed when determining
the existence of equilibrium behavior.

One key mechanical component of the modeled
market’s pursuit of equilibrium is its agent-based con-
struct. This construct of individual actions leading
to the aggregate pursuit of equilibrium, according to
Farmer and Geanakoplos (2008), is an important fea-
ture of equilibrium theory. A second key mechanical
component of the modeled market is the downward-
sloping demand curve. After each insurer sets its
price, the demand curve allocates the population of
insureds across companies. In each time period, insur-
ance coverage is sold along the demand curve at a
range of prices. Virtually all of these transactions
occur out-of-equilibrium in the sense that the trans-
acted prices deviate from the intersection point of
aggregate supply and aggregate demand. The sim-
ulated market perpetually pursues equilibrium, yet
never settles on it.

Equilibrium, whether evaluated as a point or some
higher-dimensional attractor space, has a gravity-like
pull on economic activity. However, due to the myriad
exogenous factors typical of even narrow economic
settings, the gravity-like pull of equilibrium is not
uniform (or symmetrical) across time. In one circum-
stance, a deviation from equilibrium may be adjusted
to rapidly, whereas another circumstance may result
in slow adjustment. The directional bit sequences
presented here provide an analysis tool whereby the
probabilities of specific directional change patterns,
not the momentum of changes, can be compared
between times series.

Analyzing direction of change separately from
magnitude of changes is a stronger statement
than simply acknowledging heteroscedasticity, e.g.
ARCH-type models. In arule-based system with time
series not governed by a continuous DGP, separating
the analysis of direction and momentum explicitly
acknowledges that the two phenomena are indepen-
dent of one another.

4.2. Volatility and competition

The individual companies of this experimental
insurance industry, who are repetitively applying the
simple pricing rule described by Equation (5), pos-
sess some intuitively appealing outcomes. First, the
behavior of the companies, when evaluated as direc-
tional bit sequences, tend to be uncorrelated with the
behavior of the industry. This can be compared to
the classic bird flocking example of emergent behav-
ior. Individual companies are following the simple
pricing rule, are connected via the downward-sloping
demand curve, and exhibit an aggregate behavior
apart from that of the individuals.

A second economic outcome is that company
behavior is more correlated during periods of
volatility. Volatility changes in the simulation are
endogenous with no obvious cause. The higher cor-
relation amongst companies during periods of higher
volatility, however, is clear. The economic interpreta-
tion of this increased correlation holds that companies
eventually have to participate in large price reductions
or risk losing customers.

A final note on company behavior in this simulated
insurance industry — industries with fewer compa-
nies tend to display more correlated behavior and
more volatility. Fewer companies in an industry is
indicative of a less competitive market.

4.3. Future research

One direction for future research is to build on
the computational model presented here and pro-
vide further explanation of the movement of the
aggregate underwriting margin around the equilib-
rium attractor. A second, more general, direction for
future research is to determine if the computational
thinking of rule-based decisions and directional bit
sequences applies to other markets/industries. And
finally, a third avenue for future research is to use
the directional bit sequence probabilities to develop
a predictive model.

Acknowledgments

The author would like to acknowledge the help
and encouragement of Stephen Wolfram, Matthew
Szudzik, Hector Zenil, and all the participants of the
2013 Wolfram Science Summer School. I would also
like to thank the editor, Philip Maymin, and an anony-
mous reviewer for very helpful comments.



14 J.D. Haley / Using directional bit sequences to reveal an algorithmic process

References

Berger, L., 1988. A model of the underwriting cycle in the
property/liability insurance industry, The Journal of Risk and
Insurance 55(2), 298-306.

Farmer, J.D., Geanakoplos, J., 2008. The virtues and vices of
equilibrium and the future of financial economics, Complexity
14(3), 11-38.

Gron, A., 1994. Capacity constraints and cycles in property-
casualty insurance markets, RAND Journal of Economics
25(1), 110-127.

Haley, J.D., 1993. A Cointegration analysis of the relationship
between underwriting margins and interest rates: 1930-1989,
The Journal of Risk and Insurance 60(3), 480-493.

Haley, J.D., 1995. A by-line cointegration analysis of underwriting
margins and interest rates in the property-liability insurance
industry, The Journal of Risk and Insurance 62(4), 755-763.

Haley, J.D., 2007. Further considerations of underwriting mar-
gins, interest rates, stability, stationarity, cointegration, and
time trends, Journal of Insurance Issues 30(1), 62-75.

Harrington, S., Niehaus, G., Yu, T., 2013. Insurance Price Volatil-
ity and Underwriting Cycles, in Handbook of Insurance, 2nd
edition, Dionne, G., editor, (Springer).

Holland, J. 1995. Hidden Order, (Addison-Wesley).

Holland, J. 2013. Complexity: A Very Short Introduction,
(Oxford).

Page, S.E. 2012. Aggregation in agent-based models of economies.
The Knowledge Engineering Review 27, 151-162.

Winter, R.A., 1994. The dynamics of competitive insurance mar-
kets, Journal of Financial Intermediation 3(4), 379-415.

Zenil, H., Delahaye, J.-P., 2011. An algorithmic information-
theoretic approach to the behavior of financial markets, Journal
of Economic Surveys 25(3), 431-463.



J.D. Haley / Using directional bit sequences to reveal an algorithmic process 15

Appendix A — Modeled Cash Flows for t =0 through t =5. (Company #1 from Simulation X)

Appendix C describes the loss generating function and the parameters used. The theoretical expected annual
loss, per insured, is $3,123.59. All simulation runs are initialized by giving each insurer a risk pool of size,
ng = 100,000, and an identical initial premium. The initial premium is equal to the average of 2,000,000 simulated
loss observations.

t=0 Three values initialize the simulation
Py =$3,118 Py=L =$3,118 ~ $3,123.59
ng = 100,000 no = starting value of 100000 insureds
So = $235,217,544 So = '(“I'E,r)’ the equilibrium surplus given the values of ng, Py and
the insurer’s desired S/‘;;f e’;’: ratio
t=1
P, =$3,118 P =L+ ([(l:—’n)] L — %) (subject to the ‘up’ and ‘down’ constraints)
n1 = 100,000 ny is determined using Equation (1) with P; = $3,118.
L/1 = $3,149 L/1 =the average of n| randomly generated losses.

S; = $232,117,544

S1 =S8+ (P()—L/l)no

=2

Py = $3,149
ny = 98,902
L), = $3,160

Sy = $227,917,544

P,=L+ ([12},»] L — f—:) (subject to the ‘up’ and ‘down’ constraints)
ny is determined using Equation (1) with P, = $3,149.
L,2 =the average of n| randomly generated losses.

$=81+ (P —Ly)m

t=3

P3 = $3,165.70
n3 = 98,520
L, =$3,120

S3 = $230,785,702

Py=L+ ( [12},] L — %) (subject to the ‘up’ and ‘down’ constraints)

n3 is determined using Equation (1) with P; = $3,165.70.
L’3 =the average of n, randomly generated losses.
S3=58 + (Pz - L3) np

t=4

Py = $3,127.65
ng = 99,763
L, =$3,053

S4 = $241,888,593

Py=L+ ( I:liir,'] <L — %) (subject to the ‘up’ and ‘down’ constraints)
n4 is determined using Equétion (1) with Py = $3,127.65.
L; =the average of n3 randomly generated losses.

Sy =83+ (P3 7L;) n3
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Appendix B Table 1B: Summary Statistics from Simulations #1 through #8

Average Underwriting Margin (Industry)

|

Average Loss per Insured (Industry)

Simulation #1

Target Capital Structures

{.37, .41, .45, .47, .49, .55}

Across Companies

Histogram

Overall Average -0.00019 $3132.84
Standard Deviation 0.0117 5.2336
Skewness 0.0125 -0.0296
Kurtosis 1.9027 2.2854
Average Correlatllon 0.2277 -0.0001
Across Companies
L 20
: 15
Histogram : 1
45- 5
;
0 -0.02 -0.01 0.00 0.01 0.02 0! 3125 130 135 140
Simulation #2
Target Capital Structures {.37, .41, .45, .49, .55}
Overall Average -0.0005 $3131.78
Standard Deviation 0.0179 5.0179
Skewness -0.2376 0.2846
Kurtosis 4.2006 2.9731
Average Correlat‘lon 0.4076 -0.0012
Across Companies _
30; Zoé_
25t 15|
2} ?
Histogram 15 F
|
] | I
TI’LFh ot [T o
-0.04 -0.02 0.00 0.02 0.04 3120 12! 3130 13! 14 3145
Simulation #3
Target Capital Structures {.43, .47, .51}
Overall Average -0.0001 $3118.1
Standard Deviation 0.0107 5.5009
Skewness -0.0463 -0.0031
Kurtosis 2.2784 3.3036
Average COrreIaiflon 0.2004 0.0014
Across Companies
20
"
Histogram i
o
ili] 0.m
3108 m 11! 3120 3125 3130 3135
Simulation #4
Target Capital Structures {.39, .43,.49, .55}
Overall Average -0.0001 $3117.60
Standard Deviation 0.0092 5.1315
Skewness 0.0116 -0.0223
Kurtosis 2.6848 3.1952
A lati
verage Correlation 0.1542 -0.0001

ol .M
3100 3105 311 11 3120 12! 3130
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Average Underwriting Margin (Industry)

I

Average Loss per Insured (Industry)

Simulation #5

Target Capital Structures

{.37, .41, .45, .49, .53}

Overall Average -0.00057 $3115.18
Standard Deviation 0.0279 4.9060
Skewness -0.0651 -0.2303
Kurtosis 2.0914 3.2256
Average Correlat.|0n 0.6380 -0.0015
Across Companies
2 20
20 15
15
Histogram 10
10
5
5
ol -0.04 -0.02 0.00 0.02 0.04 0 - 3105 3110 3115 3120 3125
Simulation #6
Target Capital Structures {.37, .39, .43, .49, .53, .55}
Overall Average -0.0001 $3115.48
Standard Deviation 0.0075 5.3349
Skewness -0.1131 0.2107
Kurtosis 3.1125 2.4679
Average Correlaiflon 0.0985 0.0007
Across Companies
25 15
20
10
Histogram *
10 5
5
o -0.01 0.00 0.01 0.02 U'n 3105 3110 3115 3120 3125 3130
Simulation #7
Target Capital Structures {.43, .45, .47, .49}
Overall Average -0.0004 $3114.88
Standard Deviation 0.0149 5.1679
Skewness -0.1311 -0.0911
Kurtosis 3.0794 3.0567
Average Correla1E|on 0.3338 -0.0003
Across Companies
15 M 15
Histogram ° 1 hi
| [h o
-0.0: -0.02 _-0.01 X .01 0.02 .03 3105 3110 3115 3120 3125 3130
Simulation #8
Target Capital Structures {.37, .39, .47, .49, .53, .55}
Overall Average -0.0003 $3097.57
Standard Deviation 0.0155 5.2510
Skewness -0.0703 0.2703
Kurtosis 2.5424 2.6419
Average Correlat'lon 0.3491 0.0006
Across Companies
15
15
10
10
Histogram
s 5
0 -003 -0.02 -0.01 0.00 0.01 0.02 003 ° 3090 3095 100 105 3110
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Appendix C — Losses generated

Losses are generated for each company using a mixed distribution of frequency and severity. Frequency
is modeled by a Bernoulli distribution with 5% probability of ‘success’. Severity is modeled using the
SkewNormalDistribution [39000, 30,000, 5] function in Mathematica.
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Each component distribution generates a list of 2,000,000 random numbers. These lists are multiplied, in
pairwise fashion, to generate a list of possible losses. A 15 element sample list of losses is presented in Figure 1C.

Figure 1C: A 15 Element Sample of the Mixing Distribution for Random Loss Generation

0: 98988.7 0.
0 120299. 0.
1 75889.5 75889.5
0 91429.4 0.
0 53555.7 0.
0 58 606.6 0.
0 82650.5 0.
o| X | s3730. = 0.
o 78801.7 0.
0 66427.7 0.
0 100263. 0.
0 51058.9 0.
o 43559.8 0.
0 41262.7 0.
1 45423.1 45423.1

For each simulated company, each year, n; random losses are chosen from the list of 2,000,000 potential losses.
Most of the list is, of course, zeros. These individual losses, however, are not recorded as part of the simulation,

only the average loss, per insured, for each company is recorded.

C.1. Theoretical parameters

The mean, variance, and standard deviation of the 5% Bernoulli distribution are;
wp = 0.05
0% = (0.05)(0.95) = 0.0475
op = v0.0475 = 0.217945
The mean, variance, and standard deviation of the SkewNormalDistribution function are;
uskp = $62,471.70
o¥xp = 349,079,000
oskp = $18,683.70
The mean, variance, and standard deviation of the mixed distribution of losses are;
Wmixea = (0.05) ($62,471.70) = $3,123.59
‘7/2v1ixed = (0.0475) (349,079,000) + (349,079,000) (0.052) =+ (0.0475) (62,471.702>

= 202,833,000
OMixed = $14,241.90

(1A)
(2A)
(3A)

(4A)
(5A)
(6A)

(7TA)

(8A)
(9A)

The simulated industry average loss numbers reported in Tables 2 and 1B are from a sampling distribution of
sample size 7,500000. (That is 75 companies, and a starting value of 100,000 insureds per company.) The mean,

variance, and standard deviation of this sampling distribution are;

nz = (0.05) ($62,471.70) = $3,123.59

(10A)
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202,833,000

0r = T —27.044 (11A)
7,500,000

o7 = /27.044 = $5.20 (12A)

These theoretical numbers correspond reasonably well to the numbers reported in Tables 2 and 1B.

Each company’s losses are a sampling distribution of approximate sample size 100,000. The actual sample
size varies from year to year. Fixing the sample size at 100000, the mean, variance, and standard deviation of
each company’s sampling distribution are;

pg7 = (0.05) ($62,471.70) = $3,123.59 (13A)
, 202,833,000
07, = " =2028.33 (14A)
100,000
ori = 1/2028.33 = $45.037 (15A)

As mentioned earlier, the individual losses for individual companies are not tracked in the simulation. Only
the average loss per insured, per company is recorded.



