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Abstract. We introduce an event based framework mapping financial data onto a state based discretisation of time series.
The mapping is intrinsically multi-scale and naturally accommodates itself with tick-by-tick data. Within this framework, we
define an information theoretic quantity that characterises the unlikeliness of price trajectories and, akin to a liquidity measure,
detects and predicts stress in financial markets. In particular, we show empirical examples within the foreign exchange market
where the new measure not only quantifies liquidity but also seems to act as an early warning signal.
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1. Introduction

The notion of market liquidity is nowadays ubiq-
uitous. It quantifies the ability of a financial market
to match buyers and sellers in an efficient way with-
out causing a significant price move thus delivering
low transaction costs. It is the lifeblood of financial
markets (Fernandez, 1999) without which market dis-
locations can show as for example in the 2008 crisis
(Brunnermeier, 2009), but also in many others cases
that go unnoticed but are potent candidates to become
the next crisis. While omnipresent, liquidity is an
elusive concept. For instance, the foreign exchange
(FX) market with its impressive daily turnover of
$5.3 trillion (Bank of International Settlement, 2013)
is mistakenly assumed to be always extremely liquid
since the generated volume is considered as a proxy
for liquidity but regularly shows illiquid episodes as
illustrated through the selected examples below.

Despite the obvious importance of liquidity there
is little agreement on the best way to measure and
define it (von Wyss, 2004; Sarr and Lybek, 2002;
Kavajecz and Odders-White, 2004; Gabrielsen et al.,
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2011). Liquidity measures can be classified into dif-
ferent categories. Volume-based measures: liquidity
ratio, Martin index, Hui and Heubel ratio, turnover
ratio, market adjusted liquidity index (see Gabrielsen
et al., 2011, for details) where, over a fixed period
of time, the exchanged volume is compared to price
changes. This class implies that non-trivial assump-
tions are made about the relation between volume and
price moves. Other classes of measures include price
based measures: Marsh and Rock ratio, variance ratio,
vector autoregressive models; transaction costs based
measures: spread, implied spread, absolute spread
or relative spread; or time based measures: number
of transactions or orders per time unit. There exists
plenty of studies that analyse measures of liquidity
in various contexts (see von Wyss, 2004; Gabrielsen
et al., 2011, and references therein) without reaching
a true consensus. In addition, it is worth highlighting
that some of the data used in these measures could be
hard to obtain or even not available at all as it is the
case for the full limit order book in the FX market
making therefore impossible the use of a majority of
these measures.

From our point of view, the aforementioned
approaches suffer from a major drawback. They
provide a top-down approach to explore financial
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markets where the impact of the variation of liquidity
is analysed through macroscopic assumptions rather
than providing a bottom-up approach where illiquid
times are identified and quantified from its possible
constituents. The former therefore requires one to
make appropriate, and non-trivial, assumptions about
the macroscopic system while the latter needs us to
identify the right constituents of the system as well
as quantifying their dynamics.

Hence this paper aims at looking at liquidity from
a different angle where multi-scale price moves are
analysed through an event based framework. It allows
us to track price moves occurring at different scales
(see details below) and, as we shall see, quantify-
ing the unlikeness of these price moves leading to
a novel measure of illiquidity as the unlikeliness
of the price trajectory with respect to a Brownian
motion. We shall observe below the ability of our
measure to detect and predict stress in financial mar-
kets, illustrated by examples within the FX market,
only requiring asset prices as an input.

The document is organised as follows; Section
2 describes the event based framework. Section 3
defines the state based discretisation of price trajec-
tory movement termed intrinsic network. In Section
4 we derive the transition probabilities of the Markov
chain modelling the transitions on the intrinsic net-
work, for the case of a Brownian motion. Section
5 describes the information-theoretic concept that
characterises the unlikeliness of price trajectories and
quantifies illiquidity. Finally, in Section 6 we demon-
strate the measurements ability to quantify liquidity
during extreme price movements and illustrate the
behaviour of the new measurement by focusing on
well documented financial crises.

2. The event based framework

Traditional high frequency finance models
(Dacorogna et al., 2001) use equidistantly spaced
data for their inputs, yet markets are known not to
operate in a uniform fashion: during the weekend
the markets come to a standstill, while unexpected
news can trigger a spur of market activity. The
non-uniformity is expressed in the markets through
the so-called stylized facts, consisting of long range
memory in volatility (Poon and Granger, 2003),
non-stationary fat tailed distribution of returns
(Mandelbrot, 1963), nonlinear serial dependencies
in returns (LeBaron, 1994), volatility seasonality
(Dacorogna et al., 2001) and scaling in financial

time series (Glattfelder et al., 2011b). The idea of
modelling financial series using a different time
clock can be traced back to the seminal work of
Mandelbrot and Taylor (1967) and Clark (1973),
advocating the use of transaction and volume based
clock. One other area of research that analyses
high-frequency time series from the perspective of
fractal theory was initiated by Mandelbrot (1963).
This seminal work has inspired others to search for
empirical patterns in market data - namely scaling
laws1. One of the most reported scaling laws in
financial markets (Müller et al., 1990; Galluccio
et al., 1997; Dacorogna et al., 2001; Di Matteo et
al., 2005) relates the average absolute price change
〈�x〉 and the time interval of its occurrence �t

〈�x〉 ∼ �t1/2

sparked an attempt to move beyond the constraints of
physical time devising a time-scale to account for sea-
sonal patterns correlated with the changing presence
of main market places in the FX market (Guillaume
et al., 1995). This approach was not flawless, since
aggregating and interpolating tick data amongst fixed
or predetermined time intervals, important infor-
mation about the market microstructure and trader
behaviour is lost (Bauwens and Hautsch, 2009).

The discovery of a scaling law that relates the num-
ber of rising and falling price moves of a certain
size (threshold), produced an event-based time scale
named intrinsic time that ticks according to an evo-
lution of price moves (Glattfelder et al., 1997). The
intrinsic time dissects the time series based on market
events where the direction of the trend alternates, see
Fig. 1. These directional change events are identified
by price reversals of a given threshold value set ex-
ante. Once a directional change event is confirmed an
overshoot event begins and continues the trend iden-
tified by the directional changes. An overshoot event
ends when the opposite directional change occurs.
With each directional change event, the intrinsic time
ticks one unit (Glattfelder et al., 2011a).

Figure 1 shows a price curve with its many peaks
and valleys. We choose a threshold of δ > 0 percent
of the data series. The detailed sampling rule is as fol-
lows - we start in the upward mode - we queue all the
recorded prices one by one and keep in memory the
highest price; as soon as the price drops by δ, then this
is thefirst intrinsiceventandwesample thisdatapoint.
We discard the old queue and now start a downward

1A scaling law establishes a mathematical relationship between
two variables that holds true over multiple orders of magnitude.
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Fig. 1. Price evolution example over a week-end. Directional change events (squares) act as natural dissection points, decomposing a total-
price move between two extremal price levels (bullets) into so-called directional-change (solid lines) and overshoot (dashed lines) sections.
Time scales depict physical time ticking evenly across different price curve activity regimes, whereas intrinsic time triggers only at directional
change events, independent of the notion of physical time. The time period where the exchange rate does not change corresponds to the
weekend.

queue. We keep in memory the lowest observed data
point until we record an up move of δ; this is then the
second intrinsic time point. The data series thus deter-
mines the pace of sampling and generates itself the
intrinsicevent-basedtimescale; themethodisendoge-
nous of the price.

The benefits of this approach in the analysis of
high-frequency data are threefold; firstly, it can be
applied to non-homogeneous time series without the
need for further data transformations. Secondly, mul-
tiple directional change thresholds can be applied at
the same time for the same tick-by-tick data. And
thirdly, it captures the level of market activity at any
one time.

Financial markets are noisy by nature and are there-
fore expected to oscillate around price levels. Such
oscillations produce alternating directional changes
which thresholds reflect the noise amplitude. In
between any two directional changes shows an over-
shoot, as previously described, that length reflects the
ability of buyers and sellers to agree upon prices.
A long overshoot is then susceptible to be the foot-
print of a lack of liquidity. We will later show that
our intuition of illiquidity is indeed suitable, since

we shall observe in section 6 that long overshoots
exhibit during market liquidity crisis episodes.

3. The intrinsic network

The concept of intrinsic time is self-similar, i.e.
fractal and described by few scaling laws as seen
above. What is occurring at a certain threshold is sim-
ilarly occurring at another. This activity is happening
simultaneously without however being synchronised:
a set of thresholds may exhibit up moves whereas
other scales may be in down moves. Representing
such a rich activity is cumbersome when not handled
in an appropriate framework. This is the subject of
this section where we introduce the so-called intrin-
sic network that not only elegantly handle the activity
but also precisely quantify the unlikeness of price
trajectories.

We consider n ordered thresholds δ1 < δ2 < · · · <

δn that dissect the price curve into directional changes
of fixed length δi and overshoots ωi of varying length.
We assign the states of the market for a directional
change threshold δi either to be 1 or 0, depend-
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ing whether the corresponding overshoot is moving
upwards or downwards. At each time we assign a
binary vector b = (b1, . . . , bn) consisting of 1 or 0,
describing the market over various scales. The binary
encoding b = (b1, . . . , bn) therefore expresses the
state of the market s in numeric terms as fol-
lows s = b1 · 20 + b2 · 21 + · · · + bn · 2n−1. We will
interchangeably use both notations and it is straight-
forward to notice there is a total of 2n possible states.

A large enough price move makes the market state
to evolve in two possible ways. Firstly, in any state
a move in the time series of the opposite direction
would first flip the smallest b1, flipping a previous
move down b1 = 0 into an upward state b1 = 1, and
similarly a move down would flip the first state b1 = 1
state into an b1 = 0 state. In case the time series con-
tinues with the move in the same direction, it would
flip the first state bi that shows the opposite direc-
tion, bi = 0 would flip to bi = 1, likewise bi = 0 to
bi = 1. The precise rule is then

b = (b1, . . . , bn) can transition to{
b′ = (b1, b2, . . . , bn), if b1 mirrors price move direction

b′′ = (b1, . . . , bi, . . . , bn) i = min{k : bk /= b1}, otherwise

where 1 = 0 and 0 = 1.
Defining W as the transition probability matrix of

the underlying stochastic process, we have created the
so-called intrinsic network IN (n; {δ1, . . . , δn}; W)
or in short IN .

The intrinsic network exhibits a couple of peculiar
states where the network is non-reactive: the down-
ward blind-spot (0, . . . , 0) where a downward price
move has no effect and, conversely when the market
can keep on moving down and the upward blind-spot
(1, . . . , 1) when the market can keep on moving up
without being traced. From a blind spot, the available
transition is unique; (1, 1, . . . , 1) can only to transi-
tion to (0, 1, . . . , 1) and (0, 0, . . . , 0) to (1, 0, . . . , 0).
Regardless of the dimension of the intrinsic network,
blind spots will be present, and do present a flaw that
will be addressed in the future.

Figure 3 demonstrates an example of transitions
on a 2-dimensional intrinsic network for a given time
series.

4. Transition probabilities

In this section we compute the transition prob-
abilities W corresponding to the intrinsic network.

We assume that the price obeys a Brownian motion
and that the transitions are modelled as a first order
Markov process. We will use these probabilities to
compute the unlikeliness of a price trajectory mapped
onto the intrinsic network, Brownian motion being
used as the reference model of a liquid market.

Firstly, we stress that given a Brownian motion
modelling the price

dPt = σtdWt, (1)

the transitions on intrinsic networks is in fact a non-
Markovian process, since the process requires the full
history to derive the transition probabilities. In what
follows, for the sake of simplicity, we will never-
theless adopt a Markovian description, as we have
noticed that even with the error induced by the sim-
plified approach, for the application we have in mind
- namely quantifying market liquidity - our measure-
ment seems rather insensitive to whether or not we
take memory effects into account (Golub et al., 2015).

Secondly, we have conducted numerical simula-
tions for price process with time-varying volatility
and concluded that the distribution of overshoot
length did not change with introduction time-varying
volatility. In what follows we shall therefore consider
a Brownian motion with constant volatility, i.e.

dPt = σdWt. (2)

We now present the analytical expressions for transi-
tion probabilities.

Theorem 4.1. Let δ1 < · · · < δn be directional
change thresholds of an intrinsic network IN n and
(b1, . . . , bn) be the current state of the market. Let

i = min{k : bk /= b1},

for i = 2

P
(
(b1, b2, . . . , bn) → (b1, b2, . . . , bn)

) = e
− δ2−δ1

δ1

(3)

P
(
(b1, b2, . . . , bn) → (b1, b2, . . . , bn)

) = 1 − e
− δ2−δ1

δ1

(4)
while for i > 2

P
(
(b1, b2, . . . , bn) → (b1, . . . , bi, . . . , bn)

)
=

∏i

k=2 e
− δk−δk−1

δk−1

1 −∑i−1
k=2

(
1 − e

− δk−δk−1
δk−1

)∏i

j=k+1 e
− δj−δj−1

δj−1

(5)
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Fig. 2. From left to right: 2-, 3- and 4-dimensional intrinsic networks IN , where transitions between states s are represented. Shaded nodes
represent blind-spots. Each transition is associated with a probability.

P

(
(b1, b2, . . . , bn) → (b1, . . . , bi, . . . , bn)

)
= 1−

∏i

k=2 e
− δk−δk−1

δk−1

1 −∑i−1
k=2

(
1 − e

− δk−δk−1
δk−1

)∏i

j=k+1 e
− δj−δj−1

δj−1

. (6)

It is remarkable to note that Theorem 4.1 does
not depend on volatility for which proof is given in
Appendix C.

In addition we stress that it is certainly possible
to assume different price generating processes at the
cost of losing analytic tractability. Another possibility
is to estimate the transition probabilities from empir-
ical data. In what follows, however, we choose to use
Theorem 4.1 corresponding to a Brownian motion
with constant volatility.

We have numerically checked that the transition
probabilities presented in Theorem 4.1 are in good
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0 → 1
1 → 0
1 → 3
3 → 2
2 → 3
2 → 0

Fig. 3. Example of transitions on 2-dimensional intrinsic network for a time series. Transitions are coloured and depicted on the graph.

agreement with Monte Carlo simulations considering
Brownian motion as an underlying process. The small
observed discrepancy is mainly due to the Markovian
assumption made to derive Theorem 4.1. We have
indeed noticed that a Brownian motion on a network
is in fact non-Markovian, it has memory. However
this assumption and its related error appear to only
marginally affect our liquidity measure.

5. Price trajectory unlikeliness

Here we introduce the quantity L, an information
theoretic value that measures the unlikeliness of price
trajectories mapped onto the intrinsic network. We
argue and demonstrate below that L is an alternative
definition of liquidity.

We first consider the surprise γij (Cover and
Thomas, 1991) of a transition from state si to state
sj as

γij = − log P(si → sj) (7)

which is nothing but the point-wise entropy that is
large when the probability to transition from state si
to state sj is small and vice versa.

We further define the surprise of a price trajectory
within a time interval [0, T ] that have experienced K

transitions as

γ
[0,T ]
i1,...,iK+1

= − log P(si1 → si2 → · · · → siK → siK+1 ) (8)

=
K∑

k=1

− log P(sik → sik+1 ) (9)

=
K∑

k=1

γik,ik+1 (10)

that we denote γ
[0,T ]
K if the transition path is defined

from the context. Notice that we can factorise the
probability in expression (8) since we assumed the
transitions follow a first order Markov chain. Hence,
the value γ

[0,T ]
K measures the unlikeliness of price

trajectories, which is a path dependent measurement;
two price trajectories of same volatility can have very
different surprise values.

Since the number of transitions is a variable, some
time periods might exhibit large surprise purely due
to large number of transitions. In order to remove this
effect we center the surprise by its expected value, the
entropy rate multiplied by the number of transitions
K · H (1), and divide it by the square root of its vari-
ance, the second order of informativeness multiplied
by the number of transitions

√
K · H (2) (Pfister et al.,

2001). According to the central limit theorem (Pfister
et al., 2001), the obtained expression converges to the
normal distribution
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γ
[0,T ]
K − K · H (1)

√
K · H (2)

→ N(0, 1), for K → ∞. (11)

Following (Pfister et al., 2001), the entropy rate of
the Markov chain equals

H (1) = −
2n−1∑
i=0

μi

ni∑
k=0

log P(si → sik ) P(si → sik )

while the second orders of informativeness equals

H (2) =
2n−1∑
i=0

2n−1∑
j=0

μiμj

( ni∑
k=0

nj∑
l=0

log P(si → sik )

log P(sj → sjl
) P(si → sik , sj → sjl

)

−
ni∑

k=0

log P(si → sik )P(si → sik )

nj∑
l=0

log P(sj → sjl
)P(sj → sjl

)

)
where μ is the stationary distribution of the corre-
sponding Markov process.

The expression (11) allows us to introduce liquidity
L defined as

L = 1 − �

(
γ

[0,T ]
K − K · H (1)

√
K · H (2)

)
∈ [0, 1], K � 0

(12)
where � is the cumulative distribution function of
normal distributions. Thus, an unlikely price trajec-
tory would lead to a large surprise and a low liquidity
L. Inversely, a likely price to a large L.

To summarize, we have mapped any price tra-
jectory onto an intrinsic network modelling the
underlying process as a first order Markov chain,
and derived the transition probabilities for the case
of a Brownian motion. We defined the surprise of a
sequence of transitions that we normalised so as it
follows a normal distribution. Finally we quantified
liquidity by assessing the likelihood L of the surprise
that indicates illiquid times when the value is close
to zero, while liquid times are indicated with value
close to one.

6. Empirical analysis

In this section we present the liquidity L mea-
surement in an empirical setting. Firstly, we begin
by describing the dataset used in this study. Next,
we evaluate the predictive capabilities of liquidity L

measurement on extreme price movement. Then we
present the measurement on well-known FX market
crises. Finally, we present the intra-week seasonality
of liquidity L and compare it to seasonality in spread
and volatility.

6.1. Dataset

The data used in this study is quoted by Oanda
(Oanda, 2015), one of the major market makers which
proposed stable spreads until December 2012. The
data set represents the quotes of the major currency
pairs from 2006-01-01 to 2014-11-01 at the finest
resolution: tick-by-tick. Each tick contains a time-
stamp, bid and offer prices for transactions up to
$10 million. The following pairs composed in the
dataset: AUD/CAD, AUD/NZD, AUD/JPY, AUD/
USD, CAD/JPY, CHF/JPY, EUR/AUD, EUR/CAD,
EUR/CHF, EUR/GBP, EUR/JPY, EUR/NZD, EUR/
USD, GBP/AUD, GBP/CAD, GBP/CHF, GBP/JPY,
GBP/USD, NZD/CAD, NZD/JPY, NZD/USD, USD/
CAD, USD/CHF and USD/JPY. Furthermore, for
the event studies in section 6.4, where we read
spread information, we use tick data from Dukas-
copy (Dukascopy, 2015), a company gathering bids
and offers from market participants through an order
book that contains time-stamp, bid and offer price,
but unlike Oanda data, it also contains bid and offer
quoted volume.

6.2. An intrinsic network

We now present the intrinsic network used in the
following subsections. Firstly, as we are concerned
with high frequency market conditions we choose the
first threshold δ1 to be 0.025% and taking each next
threshold as the double of its predecessor. We use a
total of twelve thresholds

δi = 2 · δi−1 = 2i−1 · δ1 = 2i−1 · 0.025%,

i = 2, . . . , 12.

The proposal to set the thresholds in an optimal
manner can steam from Maximum Entropy Principle
applied on the surprise γ

[0,T ]
K which is known, when

properly adjusted, to converge to normal distribution
for K � 0. Reshuffling the expression of surprise, for
large but fixed K the distribution is approximately
normal γK ∼ N(K · H (1), K · H (2)). The entropy
of surprise equals H(γK) = 1

2 log
(
2πe(K · H (2))

)
hence we conclude that the optimal choice of thresh-
olds is the one that maximizes H (2). We note that
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the aforementioned optimisation process is a highly
complex mathematical problem, which is intended
to be solved using numerical procedures. Briefly, we
remark that one should at least double the consec-
utive thresholds, i.e. δi � 2 · δi−1. The closed form
expression for the optimal thresholds is subject to fur-
ther research. The Brownian motion assumption is
indirectly expressed through the values of transition
probability matrix that feed into the H (2). The corre-
sponding probability transition matrix W is obtained
from the analytical expressions in Theorem 4.1, hence
we will not need a training set to obtain the transi-
tion probabilities. We numerically approximate with
Monte Carlo simulation, the first H (1) = 0.4604 and
second order informativeness H (2) = 0.70818, by
running a path of one million transitions of process set
by the transition probability matrix W on the intrinsic
network and computing the average, standard devi-
ation of the resulting surprises and the stationary
distribution. We consider a sliding window for the
analysis of price trajectory arbitrary set to T = 1 day.

6.3. Extreme events

We start by systematically exploring the relation-
ship between liquidity L and price moves to assess
its predictive power.

For all exchange rates in our dataset, we compute
the daily absolute price changes |Rt| and compare it
with L on the same day, up to five days before the
observed absolute price changes, Lt , . . . , Lt−5. We
proceed by selecting all daily absolute price changes
larger than an amplitude x and compute the average
liquidity L for the same day and up to five days before
the absolute price change larger than x

〈Lt−k〉(x) = 1∑
t 1|Rt |≥x∑

t

Lt−k · 1|Rt |≥x k = 0, 1, . . . , 5 (13)

where 1A is the indicator function of set A. We also
explore the reverse relationship, for a given magni-
tude y ∈ [0, 1], we select all days when liquidity L
was smaller than y, and compute the average daily
absolute price changes for the same day, and up to
five days in advance of the liquidity L smaller than y

〈|Rt+k|〉(y)
1∑

t 1L≤y∑
t

|Rt+k| · 1Lt≤y k = 0, 1, . . . , 5 (14)

Figure 4 shows the behaviour of 〈Lt−k〉(x), for
the 5 previous days. The right graph shows the rela-
tionship between the liquidity L and 〈|Rt+k|〉(y). We
note that, as expected, the larger the amplitude x, the
smaller average liquidity 〈Lt−k〉(x), ∀k. Likewise, the
smaller liquidity L the larger the average absolute
price change, for up to 5 days into the future. This
seems to indicate that L is capable of predicting large
price moves for at least 5 days ahead, suggesting that
the measurement might be a good early warning sig-
nal. Note that we did not investigate the predictability
over more than 5 days.

6.4. Liquidity shocks

It is also instructive to examine how the measure-
ment behaves during well-known crises. We therefore
choose to focus on well documented events: August
2007 Yen carry trade collapse (Brunnermeier et al.,
2008) and the Swiss National Bank implementation
of 1.20 floor on EUR/CHF (Dorgan, 2012).

First we present the liquidity measurement L dur-
ing the 2007 Yen carry trade unwind, when massive
price drops in Yen related pairs were the result of
unwinding of large positions from major market play-
ers; many hedge funds and banks with proprietary
trading desks had large positions at risk and decided to
buy back yen to pay back low-interest loans (Chaboud
et al., 2014).

The upper graph in Fig. 5 shows the time evolution
of the tick-by-tick USD/JPY exchange rate, as well
as the evolution of the liquidity L over the past 24
hour period graphed every minute. We notice notable
shocks to market liquidity occurred in mid July with
almost 2% drop in USD/JPY in matter of hours. From
there on, illiquid conditions is shown by the measure-
ment. Liquidity L decreases three weeks preceding
the spectacular 6% drop, which occurred on August
16th 2007.

On the other hand, to compare with alternative liq-
uidity measurements, in the lower part of the Fig. 5 we
depict the average price weighted quoted volume over
the 24 hour period plotted every minute. It also shows
a decrease in the price weighted quoted volume in the
three weeks preceding the carry trade unwind, having
its lowest value on August 16th 2007. With the delay
of around 2 weeks, comparable conclusions could be
drawn with the two techniques, even though L only
needs the time series of prices.

Next we focus on the Swiss National Bank (SNB)
setting the floor on EUR/CHF (Schmidt, 2011).
The upper graph in Fig. 6 shows the time evolu-
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Fig. 4. The left graph shows the relationship between absolute daily price changes larger than x and average liquidity 〈Lt−k〉(x), for up to
5 days before the occurrence of the price change. The right graph shows the relationship between liquidity 〈Lt−k〉(x) smaller than x and
average absolute daily price changes, for up to 5 days after the occurrence of the price change.

Fig. 5. The upper graph shows tick-by-tick USD/JPY exchange rate (left axis) and the corresponding one minute liquidity measurement L
(right axis) around the period of August 2007 carry trade unwind. The lower graph shows average price weighted quoted volume over a 24
hour period, graphed every minute. The shaded area marks August 16th 2007, day of the carry trade unwind, resulting in a 6% drop.
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Fig. 6. The upper graph shows tick-by-tick EUR/CHF exchange rate (left axis) and the corresponding one minute liquidity L (right axis)
in the months of Swiss National Bank intervention, setting the floor of 1.20 on EUR/CHF. The lower graph shows average price weighted
quoted volume over a 24 hour period, graphed every minute. The shaded area marks September 6th 2011, day of SNB intervention.

tion of the tick-by-tick EUR/CHF exchange rate and
minute-by-minute liquidity L in the months of the
SNB intervention. Our measurement shows slow but
steady deterioration of liquidity conditions during the
time of Franc appreciation. The graph highlights that
the liquidity L decreases during the week proceed-
ing spectacular near 10% gain in Franc against Euro,
reaching near parity on August 9th 2011. In addition,
our measurement shows that illiquid market condi-
tions continue in the next weeks following a almost
20% reversal, and the liquidity L recovers after the
SNB intervention on September 6th 2011. Again, for
comparison, we show in the lower part of the Fig. 6
the average price weighted quoted volume over a 24
hour period. We note that the decrease in the measure-
ment follows the decrease in liquidity L, with only
difference that it stays reduced after the intervention,
while liquidity L recovers. These examples tend to
indicate that the liquidity L tends to indicate illiquid-
ity earlier, both indicate illiquidity at the same time,
even though liquidity L uses only price information.

6.5. Intra-week seasonality

In this subsection we present intra-week season-
ality in liquidity L, bid-ask spread and squared

logarithmic price changes. Liquidity varies during the
day, seasonally at the open and close of major FX
markets, and also during scheduled news events (Ito
and Hashimoto, 2006). The FX trading hours move
around the world as follows: New York opens at 13:00
and closes at 22:00; Asia opens at 22:00 and closes
at 7:00; London opens at 8:00 and closes at 17:00.
Market zones are denoted on graphs as follows: Asia
- orange, London - green, New York - purple. In this
subsection we demonstrate that liquidity L can iden-
tify these predictable liquidity events. We create a 5
minute time grid from Monday 00:00 till Friday 24:00
and compute the average liquidity L, average bid-ask
spread and average squared logarithmic price changes
for each point of the grid using the data in the whole
sample of Oanda data for NZD/USD exchange rate,
as the chosen exchange rate displays clear seasonality
patterns.

Figure 7 shows the intra-week (Monday to Fri-
day) pattern of the liquidity L, the bid-ask spread and
the volatility, proxied by squared logarithmic price
changes. We note that all three measurements exhibit
seasonality patterns. Liquidity L is high during Lon-
don and New York trading sessions, while during the
Asian trading session it drops, indicating illiquid mar-
ket conditions. Spread is the tightest during London
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Fig. 7. The graph shows intra-week seasonality pattern for liquidity L, spread and volatility, for NZD/USD. Market zones are denoted as
follows: Asia - orange, London - green, New York - purple.

and New York trading sessions, it is highest during
the transitions to Asian markets. Volatility increases at
the beginning of London trading and the transition to
New York trading session. The volatility is the lowest
during the transitions from Asian to London trading
sessions. Figure 7 reveals several interesting features
among the presented measurements. First, a negative
relationship between the liquidity L and the bid-ask
spread is found in the NZD/USD exchange market -
when bid-ask spread increases the liquidity L drops.

7. Conclusion

Liquidity is often measured following top-down
approaches that require one to make firm assump-
tions about market behaviours and often elude market
micro-structures that we believe have a rich con-
tent somewhat still largely unexploited. In our point
of view, a bottom-up multi-scale approach provides
an alternative to describe liquidity where market
micro-structures is fullyembracedandwhereminimal
assumptions have to be made.

We have indeed presented above an alternative
measure where we only use the price evolution of
the asset that is dissected by identifying directional
changes of price. After a directional change, the
price can further move to form a so-called overshoot

region before exhibiting another directional change.
Inspired by the idea that a long overshoot might be
the signature of a lack of liquidity we propose a new
measure of liquidity by mapping the price trajectory
onto a multi-scale Markov chain framework termed
intrinsic network. We compute the transition prob-
abilities of the network for a benchmark Brownian
motion that allows us to define illiquidity by quanti-
fying unlikeliness of price trajectories.

The new measure is applied to empirical FX data
where we systematically analyse market events to
observe that low liquidity is indeed correlated to large
price moves. We then concentrate our attention on a
couple of well-known liquidity shocks and observe
the way our measure shows low liquidity during, but
also before, these episodes. These empirical analyses
therefore not only show the success of our approach
but also tend to indicate that it has a potential to
be an early warning indicator, highly appreciated to
possibly announce forthcoming crises.
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A. The analytical Gaussian benchmark

In the special case where the price follows a Brow-
nian motion, the transition matrix can be derived
analytically. Since the hierarchical nature of the
intrinsic network allows deducing the transition
matrix for any number of thresholds by a contracting
process, the problem actually boils down to solving
the two-thresholds case, which we do now. In case the
transitions on the intrinsic network are modelled as
first order Markov Chain, the matrix has the following
form

W =

⎛⎜⎜⎜⎜⎝
0 1 0 0

1 − α 0 0 α

β 0 0 1 − β

0 0 1 0

⎞⎟⎟⎟⎟⎠ (15)

with the convention that the states are numbered
(0, 0) = 0, (1, 0) = 1, (0, 1) = 2 and (1, 1) = 3.
We thus only calculate two probabilities α and β.
For reasons of convenience and without loss of
generality, we will simplify the calculations by
considering the case where the thresholds are fixed
in terms of absolute value instead of a percentage.

Let us now focus on the situation where the system
just turned to the (1, 0) state. As we can read it from
W , it was previously in (0, 0) and just bounced back
from some minimum by an amount δ1. Two events
may occur now

• either the upward move goes further by an
amount δ2 − δ1 and the system turns to the (1, 1)
state,

• either after having reached some maximum M <

δ2 − δ1 the walk goes downward by an amount
δ1 and the system turns back to (0, 0).

The question is therefore to determine the proba-
bility of each of these two scenarios to occur. This is
somewhat reminiscent of the famous gambler’s ruin,
but the situation is more involved here due to the
presence of two absorbing barriers, one of which is
moving in time.

Let us denote A ≡ x0 + � the upper fixed barrier
and B ≡ M − δ the moving lower one (for the sake
of notation we put � ≡ δ2 − δ1 and δ ≡ δ1). We now
dissect the interval (x0, A) in small intervals (x0, x0 +
ε), (x0 + ε, x0 + 2ε), ..., (A − ε, A) with ε ≡ �/n for
some n. In order for the walk to reach A before B, it
has, as a very first step, to reach reach x0 + ε before
x0 − δ and then to reach x0 + 2ε before x0 + ε − δ,

and so on. We are thus led to rewrite the probability
(let us denote it P(A\B)) to reach the fixed threshold
A before the moving one B as

P(A\B) =
�/ε∏
k=1

P(x0 + kε\x0 + (k − 1)

ε − δ|x0 + (k − 1)ε\x0 + (k − 2)ε − δ). (16)

But then invariance properties (Markovianity and
translation invariance) of Brownian motion allow us
to simplify this expression as

P(A\B) = (P(x0 + ε\x0 − δ)
)�/ε (17)

and it remains to take the limit ε → 0.
Let us now simplify a bit further the notation and

assume we have a Brownian motion with mean μ

and variance σ2 starting at a position x0 somewhere
between two absorbing barriers U (upper) and L

(lower). The probability density of finding the walk at
position x at time t will obey the backward diffusion
equation

∂tp(x0, x, t) = μ∂x0p(x0, x, t) + σ2

2
∂2
x0

p(x0, x, t)

(18)
with boundary conditions p(x0, x, 0) = δ(x0) and
p(x0, U, t) = p(x0, L, t) = 0. The best way to pro-
ceed is now to define

g(x0, t) ≡ −∂t

∫ U

L

p(x0, x, t)dx, (19)

which denotes the probability to be absorbed around
time t by any of the barriers, and then take the Laplace
transform

G(x0, s) ≡
∫ ∞

0
e−stg(x0, t)dt (20)

which has the very interesting property that evalu-
ating it at s = 0 yields exactly the probability to be
caught by any of the barriers. Some standard manip-
ulations allow us to transfer the backward equation
to the Laplace domain so as to obtain

sG(x0, s) = μ∂x0G(x0, s) + σ2

2
∂2
x0

G(x0, s) (21)

with boundary conditions G(U, s) = G(L, s) = 1
(which means nothing but immediate absorption if
the walk starts on either barrier).

We then split the total probability of absorption
as g−(x0, t) + g+(x0, t), where g±(x0, t) denotes the
probability of absorption by the upper, respectively
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lower, barrier. The transform is split accordingly
as G−(x0, s) + G+(x0, s) with boundary condi-
tions G+(U, s) = G−(L, s) = 1 and G+(L, s) =
G−(U, s) = 0. Equation (21) can thus be solved sep-
arately for G+ and G−. We use the standard ansatz
G± = exp(θx0) which boils down the differential
equation to a quadratic algebraic equation for θ easily
solved to yield

θ1,2 = −μ ∓
√

μ2 + 2sσ2

σ2 (22)

(21) is then solved by

G±(x0, s) = K1e
θ1x0 + K2e

θ2x0 (23)

for constants chosen to match the boundary condi-
tions. We skip the details to quote the expression
for G+, taking according to our previous notations
U = x0 + ε and L = x0 − δ, and putting s = 0,

G+(x0, 0)= 1 − exp
(−2δ|μ|

σ2

)
1 − exp

(−2(δ+ε)|μ|
σ2

) exp

(
ε(μ − |μ|)

σ2

)
.

(24)

This quantity is therefore the probability to get
caught by the upper barrier without having ever met
the lower one, which is P(x0 + ε\x0 − δ) we intro-
duced at the beginning. It thus remains to calculate

lim
ε→0

G+(x0, 0)�/ε (25)

which is easily found to be

P(A\B)

= exp

(
− �

σ2
· (|μ|−μ)+(|μ| + μ) exp

(−2δ|μ|
σ2

)
1 − exp

(−2δ|μ|
σ2

) )
.(26)

This expression happens to simplify in the driftless
case to the harmless formula

P(A\B) = exp

(
−�

δ

)
. (27)

This is the expression we were searching for the prob-
ability of transitioning from (1, 0) to (1, 1). The very
same reasoning applies using G− for the transition
from (0, 1) to (0, 0), while other transitions are now
trivial. W for a two-thresholds system can therefore
be written as

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

1 − exp
(
− δ2−δ1

δ1

)
0 0 exp

(
− δ2−δ1

δ1

)
exp
(
− δ2−δ1

δ1

)
0 0 1 − exp

(
− δ2−δ1

δ1

)
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(28)
Obviously in that case the ratio of the thresholds only
matters, and not the thresholds themselves.

The derivation established that the probability of
overshoot ω(δ1; σ) reaching the length δ2 − δ1 equals

exp
(
− δ2−δ1

δ1

)
, i.e.

P(ω(δ1; σ) ≥ δ2 − δ1) = exp

(
−δ2 − δ1

δ1

)
(29)

hence we conclude that the overshoot lengths are
exponentially distributed.

B. Implicit hierarchy

Here we demonstrate that intrinsic networks have
a convenient multi-scale property where one can
dismiss the smallest threshold from the frame-
work and still preserve the structure. In order
words, if we remove the directional change thresh-
old δ1 of an n-dimensional intrinsic network
IN (n; {δ1, . . . , δn}; W), the resulting structure is
an n − 1-dimensional intrinsic network IN (n −
1; {δ2, . . . , δn}; Ŵ), whereas there is an explicit con-
nection between transition matrices W and Ŵ ,
assuming the transitions on the network are modelled
as first order Markov chain process.

Firstly, we introduce the concept of islands which
are subsets of all possible states S = {0, 1, . . . , 2n −
1} the set of states of an n-dimensional intrinsic
network IN (n; {δ1, . . . , δn}; W). We define the k-th
island as the following subset of states

Ik =
{

s ∈ S : � s

2
� = k

}
, (30)

where �·� denotes the floor function. In our cases, the
k-th island equals Ik = {2k, 2k + 1}. For instance,
island I0 equals to subset {0, 1} or island I7 equals
to subset {14, 15}. It is easy to notice that for an n-
dimensional intrinsic network with 2n states, there
are 2n−1 islands. Note that we can again label the
islands in numeric terms,

Ik = k,
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creating a new set of states with numeric labels S(1) =
{0, . . . , 2n−1 − 1}. Let us remark on the transitions
among islands Ik. Given the numeric notation s =
b1 · 20 + · · · + bn · 2n−1 for states of S, each state
s(1) ∈ S(1) can be written in numeric notation as

s(1) = b2 · 20 + · · · + bn · 2n−2,

hence the transitions among islands are equivalent
to occurrences of directional changes for thresholds
δ2, . . . , δn. In other words, transitions among islands
are insensitive to changes in the market state related
to first directional change thresholds δ1, hence the
resulting structure is an n − 1 dimensional intrinsic
network IN (n − 1; {δ2, . . . , δn}, Ŵ). The probabil-
ities of transition matrix Ŵ and its connection to
transition matrix W is established later in this section.
We refer to the presented method as state contraction.

Let us extend the concept of state contraction by
defining islands of level 0, I(0)

k as the states of an
n-dimensional intrinsic network

I(0)
k = {k}, k = 0, 1, . . . , 2n − 1.

If S(0) = {0, 1, . . . , 2n − 1} = {I(0)
0 , . . . , I(0)

2n−1} de-
notes the states of n dimensional intrinsic network
then we define islands of level 1, in notation I(1)

k as
subsets

I(1)
k =

{
I(0) ∈ S(0) : �I(0)

2
� = k

}
(31)

for k = 0, 1, . . . , 2n−1 − 1. Using the aforemen-
tioned iterative process we can obtain islands of level
j, in notation I(j), by applying the process of state
contraction j times, hence we can then define an
intrinsic network of level j + 1, IN (j+1) whereas the
states space S(j+1) are defined as islands I(j+1), in
other words S(j+1) = {I(j+1)

0 , . . . , I(j+1)
2n−j−1}. In more

general sense, we can define islands of level i as a
subset of islands of level i − 1, i.e.

I(i)
l =

{
I(i−1) ∈ S(i−1) : �I(i−1)

2
� = l

}
.

Having started with an intrinsic network with a total
of 2n, the intrinsic network of level j + 1, IN (j+1)

will have a total of 2n−j states.
Figure 8 illustrates the process of state con-

traction, of 4-dimensional intrinsic network
IN (4; {δ1, . . . , δ4}; W) whereas the islands
I(0)

0 , . . . , I(0)
15 are contracted in the following manner

I(0)
1

I(0)
0

I(0)
2

I(0)
3

I(0)
5

I(0)
4 I(0)

7

I(0)
6

I(0)
9

I(0)
8 I(0)

11

I(0)
10

I(0)
13

I(0)
12 I(0)

15

I(0)
14

I(1)
0

I(1)
1

I(1)
3

I(1)
2

I(1)
5

I(1)
4 I(1)

7

I(1)
6

Fig. 8. Illustration of the contraction procedure of a 4-dimensional
intrinsic network IN (4; {δ1, δ2, δ3, δ4}; W) to a 3-dimensional
intrinsic network IN (3; {δ2, δ3, δ4}; Ŵ), whereas coloured shad-
ing graphs islands, contracted states and the resulting new states.

I(1)
i =

{
I(0)

2i , I(0)
2i+1

}
.

The coloured shading graphs islands, contracted
states and the resulting new states of the three dimen-
sional intrinsic network IN (3; {δ2, δ3, δ4}; Ŵ).

Assuming the transitions on the intrinsic network
are modelled as a first order Markov chain, there is an
explicit connection between the transition matrix W

of the n-dimensional intrinsic network and transition
matrix Ŵ of the n − 1 dimensional intrinsic network
obtained through the contraction process described
above.

Let us assume that the current state of the network
is I(i)

k and we are interested in finding the probability

of transitioning to state I(i)
j . Note that observing the

process from viewpoint of islands of level (i − 1), the
system can oscillate among states I(i−1)

2k and I(i−1)
2k+1

arbitrarily many times before taking the transition
that links the islands I(i)

k and I(i)
j . Hence, the desired

probability can be easily derived using the closed
form of geometric series. The three distinct cases are
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presented bellow, with the proof in Appendix C,
for mod (k + j, 2) = 0

P(I (i)
k → I (i)

j )

= P(I (i−1)
2k+1 → I (i−1)

2j+1 )

1 − P(I (i−1)
2k+1 → I (i−1)

2k ) · P(I (i−1)
2k → I (i−1)

2k+1 )
(32)

for mod (k + j, 2) = 1 and k > j

P(I (i)
k → I (i)

j )

= P(I (i−1)
2k → I (i−1)

2j ) · P(I (i−1)
2k+1 → I (i−1)

2k )

1 − P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2k )
(33)

for mod(k + j, 2) = 1 and k < j

P(I (i)
k → I (i)

j )

= P(I (i−1)
2k+1 → I (i−1)

2j+1 ) · P(I (i−1)
2k → I (i−1)

2k+1 )

1 − P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2k )
. (34)

C. State contraction probabilities

We demonstrate that assuming the transitions
on the intrinsic network are modelled as a first
order Markov Chain, there is an explicit connection
between the transition matrix W of the n-dimensional
intrinsic network and transition matrix Ŵ of the n − 1
dimensional intrinsic network obtained through the
contraction process.

Let us assume that the current state of the network
is I(i)

k and we are interested in finding the probabil-

ity of transitioning to state I(i)
j . Note that Island I(i)

k

consists of states {I(i−1)
2k , I(i)

2k+1}, while Island I(i)
j

consists of state {I(i−1)
2j , I(i)

2j+1}. For mod(k + j, 2) =
0, from I(i−1)

2k+1 the system can directly transition to

I(i−1)
2j+1 with probability P(I(i−1)

2k+1 → I(i−1)
2j+1 ). On the

other hand, the system can oscillate once within
Island I(i)

k before proceeding to Island I(i)
j , i.e. tran-

sition from I(i−1)
2k+1 to I(i−1)

2k and back to I(i−1)
2k+1 , before

transitioning to I(i)
2j+1, with probability

P(I(i−1)
2k+1 → I(i−1)

2k ) · P(I(i−1)
2k

→ I(i−1)
2k+1 ) · P(I(i−1)

2k+1 → I(i−1)
2j+1 ).

Likewise, oscillation within Island I(i)
k can occur k

times, before proceeding to Island I(i)
j , with proba-

bility,

(
P(I(i−1)

2k → I(i−1)
2k+1 ) · P(I(i−1)

2k+1

→ I(i−1)
2k )

)k · P(I(i−1)
2k+1 → I(i−1)

2j+1 ),

hence the probability to transition from Island I(i)
k to

Island I(i)
j equals

P(I (i)
k → I (i)

j ) =
∞∑

k=0

(
P(I (i−1)

2k → I (i−1)
2k+1 )

·P(I (i−1)
2k+1 → I (i−1)

2k )
)k · P(I (i−1)

2k+1 → I (i−1)
2j+1 ) (35)

= P(I (i−1)
2k+1 → I (i−1)

2j+1 )

1 − P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2k )
. (36)

For mod(k + j, 2) = 1 and k > j, the system has
to make an interim transition from I(i−1)

2k+1 to I(i−1)
2k ,

before transitioning from Island I(i)
k to Island I(i)

j ,
with probability

P(I(i−1)
2k+1 → I(i−1)

2k ) · P(I(i−1)
2k → I(i−1)

2j ).

Likewise, as before the system can oscillate k times
within Island I(i)

k before proceeding to Island I(i)
j ,

with probability

P(I(i−1)
2k+1 → I(i−1)

2k ) · (P(I(i−1)
2k → I(i−1)

2k+1 )

·P(I(i−1)
2k+1 → I(i−1)

2k )
)k · P(I(i−1)

2k → I(i−1)
2j ),

hence the probability to transition from Island I(i)
k

before to Island I(i)
j equals

P(I (i)
k → I (i)

j )

=
∞∑

k=0

P(I (i−1)
2k+1 → I (i−1)

2k ) · (P(I (i−1)
2k → I (i−1)

2k+1 )

·P(I (i−1)
2k+1 → I (i−1)

2k )
)k · P(I (i−1)

2k → I (i−1)
2j ) (37)

= P(I (i−1)
2k+1 → I (i−1)

2k ) · P(I (i−1)
2k → I (i−1)

2j )

1 − P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2k )
. (38)

Similarly, it can be shown that for mod(k + j, 2) = 1
and k < j, it can be shown
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P(I (i)
k → I (i)

j )

=
∞∑

k=0

P(I (i−1)
2k → I (i−1)

2k+1 ) · (P(I (i−1)
2k → I (i−1)

2k+1 )

·P(I (i−1)
2k+1 → I (i−1)

2k )
)k · P(I (i−1)

2k+1 → I (i−1)
2j+1 ) (39)

= P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2j+1 )

1 − P(I (i−1)
2k → I (i−1)

2k+1 ) · P(I (i−1)
2k+1 → I (i−1)

2k )
. (40)

D. Transition probability derivation

We demonstrate the derivation of the analytic
expressions of transition probabilities presented in
Section 5. Firstly, we prove the claim holds for
3-dimensional intrinsic network, let δ1 < δ2 < δ3
denote the ordered directional change thresholds,
IN (3; {δ1, δ2, δ3}; W) 3-dimensional intrinsic net-
work and IN (2; {δ2, δ3}; Ŵ) the contracted intrinsic
network. Since the contracted intrinsic network is
2-dimensional, it is know that

P
(
(1, 0) → (1, 1)

) = e
− δ3−δ2

δ2 ,

while the explicit analytic expression of tran-
sition probabilities between 3- and contracted
2-dimensional intrinsic network presented in Section
4 states that

e
− δ3−δ2

δ2

= P
(
(1, 1, 0) → (1, 1, 1)

)
1 −
(

1 − P
(
(1, 1, 0) → (1, 1, 1)

))(
1− e

− δ2−δ1
δ1

)
and untangling the formula we find

P
(
(1, 1, 0) → (1, 1, 1)

) = e
− δ3−δ2

δ2 e
− δ2−δ1

δ1

1 − e
− δ3−δ2

δ2

(
1 − e

− δ2−δ1
δ1

)
(41)

yielding the desired expression. Let us assume
that the claim holds for n-dimensional intrin-
sic network, and we will prove that the claim
holds for n + 1. Let δ1 < · · · < δn+1 denote the
ordered directional change thresholds, IN (n +
1; {δ1, . . . , δn+1}; W) n + 1-dimensional intrinsic
network and IN (n; {δ2, . . . , δn+1}; Ŵ) the con-
tracted intrinsic network. Since the contracted
intrinsic network is n-dimensional, together with
explicit analytic expression of transition probabil-
ities between n + 1- and contracted n-dimensional
intrinsic network presented in Section 4 states that∏n+1

k=3 e
− δk−δk−1

δk−1

1 −
∑n

k=3

(
1 − e

− δk−δk−1
δk−1

)∏n+1
j=k+1 e

− δj−δj−1
δj−1

=
P

(
(1, . . . , 1, 0) → (1, . . . , 1, 1)

)
1 −
(

1 − P

(
(1, . . . , 1, 0) → (1, . . . , 1, 1)

))(
1 − e

− δ2−δ1
δ1
)

we find

P
(
(1, . . . , 1, 0) → (1, . . . , 1, 1)

) = (42)∏n+1
k=3 e

− δk−δk−1
δk−1 · e

− δ2−δ1
δ1

1 −∑n
k=3

(
1 − e

− δk−δk−1
δk−1

)∏n+1
j=k+1 e

− δj−δj−1
δj−1 − (1 − e

− δ2−δ1
δ1 ) ·∏n+1

k=3 e
− δk−δk−1

δk−1

(43)

obtaining the desired formula.


