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Pricing complexity options
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Abstract. We consider options that pay the complexity deficiency of a sequence of up and down ticks of a stock upon exercise.
We study the price of European and American versions of this option numerically for automatic complexity, and theoretically
for Kolmogorov complexity. We also consider run complexity, which is a restricted form of automatic complexity.
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1. Introduction

In this article we consider the pricing of American
and European options paying the complexity defi-
ciency, or intuitively the lack of complexity, of a
sequence of up and down ticks for a financial secu-
rity. The complexity notions we consider are plain and
prefix-free Kolmogorov complexity, nondeterministic
automatic complexity, and run complexity.

1.1. Motivation

We believe it may be of value in finance to have
some notions of the complexity of a price path. Agents
may want to insure against too complex or too simple
price paths for a stock, for example. A very simple or
complex path may be a sign that something is going
on that the agent is not aware of.

Weather is somewhat periodic, and automatic com-
plexity measures periodicity, to some extent. Hence a
complexity option may be used as a weather derivative.
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USA. Tel.: +1 808 956 8595; Fax: +1 808 956 9139; E-mail:
bjoernkh@hawaiiedu.

Casino owners may want to ensure that their casinos
are truly random, so as to avoid unexpected losses. In
general, anyone who makes an assumption of random-
ness may want to hedge that, as true randomness is not
easy to guarantee, or even completely well-defined.

Automatic complexity: between two extremes. Of
course, we can insure against certain types of non-
randomness in simple ways. We can insure against a
dramatic fall of a stock price by selling the stock short.
This corresponds to run complexity (Section 3.2). At
the other end, one cannot use Kolmogorov complexity
(Section 2) as a basis for the security, because
Kolmogorov complexity is not computable. The non-
deterministic automatic complexity, being both

• powerful enough to discern a variety of patterns,
and at the same time

• single-exponential time computable,

may be a promising middle ground.

1.2. Automatic complexity and the idea
of complexity deficiency

Kolmogorov complexity is an important notion that
in a way is to complexity as Turing computability is
to computability. It is computably approximable, but
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Fig. 1. A nondeterministic finite automata that only accepts one string x = x1x2x3x4 . . . xn of length n = 2m + 1.

unfortunately not computable. As a remedy, Shallit and
Wang (2001) defined the automatic complexity of a
finite binary string x = x1 . . . xn to be the least number
AD(x) of states of a deterministic finite automaton M

such that x is the only string of length n in the language
accepted by M.

Automatix complexity is computable, but it does
have a couple of awkward properties that make us want
to tweak its definition. First, many of the automata used
to witness the complexity have a dead state whose
sole purpose is to absorb any irrelevant or unaccept-
able transitions. Second, some strings x = x1 . . . xn

have a different complexity from their reverse xn . . . x1.
For instance (Hyde and Kjos-Hanssen 2014; Hyde and
Kjos-Hanssen 2015),

AD(011100) = 4 < 5 = AD(001110).

We tweak the definition of automatic complexity by
introducing nondeterminism.

Definition 1. (Hyde and Kjos-Hanssen (2015)). The
nondeterministic automatic complexity AN (w) of a
word w is the minimum number of states of an NFA M

(having no ε-transitions) accepting w such that there is
only one accepting path in M of length |w|.

Moreover, and most importantly for the present
paper, AN gives rise to a striking instance of the idea
of complexity deficiency:

Theorem 2. (Hyde (2013) and Hyde and Kjos-Hanssen
(2015)). The nondeterministic automatic complexity
AN (x) of a string x of length n satisfies

AN (x) ≤ b(n) := �n/2� + 1.

Proof sketch. The proof is essentially contained in
Fig. 1, although we must modify the picture slightly
if x has even length. �

Definition 3. The nondeterministic automatic com-
plexity deficiency of a string x is defined by

Dn(x) = b(n) − AN (x),

with b(n) as in Theorem 2. Sometimes we write D(x)
for Dn(x).

Experimentally we have found that about half of
all strings have Dn(x) = 0 (Hyde and Kjos-Hanssen,
2015). We call such strings complex, and other strings
simple, herein.

1.3. Option types: Perpetual, American, European

We shall consider the following types of options and
their prices.

V . This is the price of the perpetual option that pays
out the deficiency Dn(x) when we exercise the
option at a time n. (Perpetual here means that we
can exercise the option at any time step labeled
by a nonnegative integer.) The price of a per-
petual option is the supremum, over all exercise
policies τ, of the expected payoff when using
τ. There is no restriction that τ be computable
(and in fact computable before the next market
time step occurs), but if that were to become an
issue one would presumably change the defini-
tion accordingly.

Vn. This is the price of an American option that we
can exercise at any time step labeled by an integer
between 0 and n.

Wn. This is the price of the European option with
expiry n; in this case we must exercise the option
at time n, if at all, and so Wn = E(max{Dn, 0}).
We assume the underlying probability distribu-
tion is given by the fair-coin measure. In a finance
setting it could more generally be given by the
risk-neutral measure determined from a stock
price process.

We have

EDn ≤ Wn ≤ Vn ≤ V,

and
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Theorem 4.

sup
n

EDn ≤ sup
n

Vn ≤ V ≤ E sup
n

Dn.

Proof. For the first inequality, it suffices to show

EDn ≤ V

for each n. This holds because one possible exercise
policy is the static strategy of exercising at time n no
matter what.

For the third inequality, there are two cases.

Case 1: supn Dn is almost surely finite. Note that
Dn is integer-valued, so supn Dn will be realized at
some finite stage n0. Let us call magically prescient
the strategy which waits for supn Dn to be realized
and then exercises the option. By contrast, an exercise
policy should be a stopping time, i.e., it should not
depend on future outcomes. We see that the payoff from
the magically prescient strategy has a higher price than
any exercise policy. It follows that V ≤ E supn Dn in
this case.

Case 2: P(supn Dn = ∞) > 0. Then E supn Dn =
∞ and so we are done. �

Remark 5. In Case of Theorem 4, if P(supn Dn =
∞) = ε > 0 then we can even assert that V = ∞.
Indeed if V < ∞ then we can buy the option, and wait
for Dn > V/ε + 1. The expected payoff is at least

(ε)(V/ε + 1) = V + ε > V,

which would create an arbitrage.
We shall consider several complexity notions:

• prefix-free Kolmogorov complexity K,
• plain Kolmogorov complexity C, and
• nondeterministic automatic complexity AN .

For each notion we first define one or more suit-
able deficiency notions Dn(x): for instance, Dn(x) =
n + cC − C(x) for a suitable constant cC for C, and
Dn(x) = �n/2� + 1 − AN (x) for AN . The following
questions are natural for each of these deficiency
notions:

• Does the price of the European option tend to ∞?
• Does the price of the American option tend to ∞?
• Does the American option for C have an effi-

ciently computable exercise policy?
• If so, is the increase in value of the American

option necessarily slow (say, logarithmic)?

2. Kolmogorov complexity

2.1. Plain complexity C

Let cC be the least constant cC such that C(x |
n) ≤ n + cC for all strings x of any length n. If we
define Dn(x) = n + cC − C(x | n) for x of length n,
then Dn(x) ≥ 0 for all x, and Dn(x) = 0 does occur.
This is theoretically pleasant. Deficiencies are nonneg-
ative and can be zero. Of course, cC depends on the
version of the plain length-conditional Kolmogorov
complexity C(· | ·) that we use. In this setting, we have

Theorem 6. supn EDn < ∞.

Proof. Fix n. For any a, there are only 2a − 1 binary
strings of length at most a. All descriptions witnessing
complexity (given n) being at most a must be among
them, so at most 2a − 1 many strings have complexity
(givenn) of at mosta. Applying this toa = n + cC − k,
at most 2n+cC−k − 1 stringsx (in particular, at most that
many strings of length n) satisfy Dn(x) ≥ k. That is, by
Downey and Hirschfeldt (2010, Corollary 6.1.4),

P(Dn(x) ≥ k) < 2cC−k.

Then we have

EDn =
∞∑

k=0

k P(Dn = k)

=
∞∑

k=1

P(Dn ≥ k) <

∞∑
k=1

2cC−k = 2cC . �

It turns out that for options expiring at time n, there
is a significantly better exercise policy than the static
strategy of waiting until the very end:

Theorem 7. For plain Kolmogorov complexity,
supn Vn = ∞, even if we require efficient computation
of the exercise policy.

The idea of the proof is to use complexity oscilla-
tions, first observed by Martin-Löf (1971): when the
initial part of a string x is a binary encoding of the
length of x, the plain Kolmogorov complexity of x will
be low.

Proof. Martin-Löf (1971) showed that deficiency is
unbounded for all reals: for each X and b there is
an n with D(X � n) > b. We can computably identify
such an n. The well known idea is that we take a pre-
fix X � m; consider it as a binary representation of a
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length � < 2m; and then consider σ = X � �. Since the
beginning of σ is known just from the length of σ, σ

is compressible. This translates into an exercise pol-
icy for our option: at time m we decide on the time
� at which we are going to exercise. The strategy just
described is efficient, since we decide at time m � �

to exercise at time �. �

Remark 8. Since C(x | n) ≤+ C(x), Theorem 7 holds
equally for length-conditional plain Kolmogorov com-
plexity, and Theorem 6 also holds if we consider plain
Kolmogorov complexity that is not length-conditional.

2.2. Prefix-free complexity K with C-style
deficiency

Let K denote prefix-free Kolmogorov complexity.
With Dn(x) = n − K(x), there is no limiting defi-
ciency distribution in this case (or one could say the
deficiency is in the limit −∞ almost surely). That is,
K(w) ≥ |w| − c for almost all w, for any c. Indeed, for
each c ∈ Z,

lim
n→∞

|σ ∈ 2n : K(σ) ≥ n − c|
2n

= 1,

as is easily shown using
∑

σ 2−K(σ) < 1. If the lim sup
of the complement is δ > 0, then for each ε > 0 there
exist Nk with

1 ≥
∑
σ

2−K(σ) =
∑

n

∑
|σ|=n

2−K(σ)

>
∑

k

δ(1 − ε)2Nk 2−(Nk−c)

= (1 − ε)δ
∞∑
k

2c = ∞.

Theorem 9. For prefix-free Kolmogorov complexity the
price of the perpetual option that pays Dn − a is at
most 2−a.
Proof. We have

P(sup
n

Dn − a > c) = P(∃n K(X � n)

< n − c − a) ≤ 2−c−a.

Let D+
n = max{Dn − a, 0}. Since we would not

exercise an option giving negative payoff, it follows
that

V ≤ E(sup
n

D+
n ) =

∞∑
c=0

c P(sup
n

D+
n = c)

=
∞∑

c=1

c P(sup
n

D+
n = c) =

∞∑
c=1

P(sup
n

D+
n > c)

=
∞∑

c=1

P(sup
n

Dn − a > c) ≤
∞∑

c=1

2−c−a = 2−a. �

2.3. Prefix-free complexity K with its natural
notion of deficiency

Theorem 10. (Deficiency based on an upper bound
for K). If we fix a constant cK such that for prefix-free
Kolmogorov complexity K, K(x) ≤ n + K(n) + cK for
all x of any length n, and let Dn(x) = n + K(n) +
cK − K(x) ≥ 0, then EDn is bounded but Vn → ∞.

Proof. The same proof as for Theorem 6 but using an
analogous property shows that EDn is bounded. In this
case, however, sup Dn(X � n) will be ∞ for almost all
X ∈ 2ω. In fact Li and Vitányi showed Dn(X � n) >

log n for infinitely many n for almost all X.
Solovay showed that lim inf Dn(X � n) will be finite

(Miller and Yu, 2011).
V = ∞ in this case since we can simply wait for a

sufficiently high Dn value. What about Vn? Consider
an arbitrary constant, which for expository vividness
we will take to equal 17. Almost surely there will be
an n with Dn(X � n) ≥ 17. Therefore for each ε there
is an n0 such that

P

⋃
n≤n0

{Dn(X � n) ≥ 17} ≥ 1 − ε

and so Vn0 ≥ 17(1 − ε). Moreover Vn ≤ Vn+1 for
American options. So Vn → ∞ in this case. The exer-
cise policy would be to wait for Dn = 17 to occur and
then exercise. �

An overview of the deficiency option prices is given
in Table 1.

Remark 11. Of course, one does not need to only con-
sider deficiencies. One could consider an option paying
out K(x) − n. This value will go to infinity, but how
fast? What is our exercise policy if we are not given
access to K? Another possibility is to consider dips in
complexity associated with the Kolmogorov structure
function (N. K. Vereshchagin and Vitányi 2004) and its
automatic complexity variant (Kjos-Hanssen, 2016).
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Table 1

Infinity and finiteness of option prices for various complexity deficiencies Dn(x), for strings x of length n. The conclusions labeled by ∴
(“therefore”) follow from the inequalities supn EDn ≤ supn Vn ≤ E supn Dn (Theorem 4)

Dn supn EDn supn Vn E supn Dn

n + cK − K(x) ∴< ∞ ∴< ∞ < ∞ (Theorem 9)
n + K(n) + cK − K(x) < ∞ (Theorem 10) ∞ (Theorem 10) ∴ ∞
n + cC − C(x) < ∞ (Theorem 6) ∞ (Theorem 7) ∴ ∞
n + cC − C(x | n) < ∞ (Theorem 6 ) ∞ (Theorem 7) ∴ ∞
�n/2� + 1 − AN (x) < ∞? (Conjecture 15) ∞? (Conjecture 15) ∴ ∞?

2.4. Using runs

Remark 12. An anonymous referee suggested the
following approach to obtaining results of the form
Vn → ∞. Let Rn be the longest run of 0s in a string of
length n and let E and Var denote expectation and vari-
ance with respect to the uniform distribution on {0, 1}n.
Now, if U is a universal prefix-free machine, we can
define another machine M by the following algorithm:
on input x∗, simulate U, and if U(x∗) = x, then

M(x∗) = f (x) := x 0�log2 |x|�−c

for a fixed constant c. The domain of M equals the
domain of U, hence M is also a prefix-free machine.
Thus

K(x 0�log2 |x|�−c) ≤+ K(x).

Let now m = |f (x) = |x + �log2 |x� − c and y =
f (x). Since K(n) ≤+ K(m) by the choice of m, we
have

K(y) ≤ n + K(n) + cK ≤+ n + K(m)

+cK = (m + K(m) + cK) − (m − n)

and

C(y) ≤+ n + cC = m + cC − (m − n).

Now we employ the trading strategy whereby we
wait until our input is of the form x 0log2 |x−c|, and then
exercise. By Theorem ?? below, |E(Rn) − log2 n| and
Var(Rn) are both bounded by a constant c. By the argu-
ment in Section 3.2 below, with high probability we
will be able to exercise. Thus for American options,
with payoff Dn(x) either n + K(n) + cK − K(x) or
cC − C(x), we obtain Vn → ∞.

Theorem 13. (Boyd (1972)) Let Rn be the longest run
of heads in a binary sequence of length n distributed
according to the Bernoulli distribution with parameter
1/2. Let log = ln. Then

E(Rn) = log2 n + γ

ln 2
− 3

2
+ ε1(log n/ log 2) + r1(n),

where ε1(α) is a function of period 1 which sat-
isfies |ε1(α)| < 2 × 10−6 for all α, and r1(n) =
O(n−1(log n)4) → 0. Moreover,

Var(Rn) = 1

12
+ π2

6(log 2)2

+ ε2

(
log n

log 2

)
+ O(n−1(log n)5),

where ε2(α) has period 1, and |ε2(α)| < 10−4 for all α.

3. Computable forms of complexity

3.1. Automatic complexity

Now the goal is to price the European/American
option that pays the nondeterministic automatic com-
plexity deficiency Dn of the movements of a stock
from time 0 to the time n when the option is exer-
cised. We suspect that finding the exact price is a
computationally intractable problem, both because
of the conjectured intractability of computing auto-
matic complexity (Hyde and Kjos-Hanssen 2015), and
because of the exponential number of price paths to
consider.

The interest rate r can be set to 0 or to a positive
value. For pedagogical reasons, Shreve (2004) uses r =
1/4 for his main recurring example, and we sometimes
adopt that value as well.

• For n = 0 the option would pay 0 as there are
no simple strings, and moreover the situation is
anyway already known at time 0.

• For n = 1 the actual string (0 or 1) is not known
at time 0 but it does not affect the payoff, which
is 0 either way as there are no simple strings.
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• For n = 2, with up-factor u = 2, down-factor d =
1
2 , and r = 1/4, there is a risk-neutral probability
of 1/2 of one of the strings 00, 11, both of which
pay $1. So the value is

(1 + r)−2 · 1

2
· 1 = 16

50
.

In general when the risk-neutral probabilities are 1/2
each for up and down, then the value of the option is
directly related to the distribution of the deficiency Dn:

n/2∑
d=0

d · P(Dn = d) · (1 + r)−n = E(Dn) · (1 + r)−n.

If Dn happened to be Poisson for large n, this is
approximately λ(1 + r)−n, which is decreasing in n.
However, we have just seen that the value for n = 2 is
higher than for n = 0 and n = 1.

Remark 14. For an American version, one question
is whether to exercise the option at time n = 2 after
having seen 00. If we exercise we get $1. Otherwise
the deficiency can at most go up by 1 each time step,
whereas the interest factor with r = 1/4 > 0 is expo-
nential, so an upper bound for our payoff is

(n/2)(1 + r)−n = n

2
e−n ln(5/4).

indent This expression is maximized at n = 4 and at
n = 5. Both places it takes the value 0.8192.

To obtain a reasonable level of abstraction it is valu-
able to consider infinite price paths and associate a
finite complexity deficiency with them. We can do
so if the nondeterministic automatic complexity defi-
ciencies of prefixes of an infinite binary sequence
are almost surely bounded (Conjecture 3.1; see also
Table 1).

Table 2

Static versus dynamic exercise policies for nondeterministic
automatic complexity

Length EDn ≤ Vn

0 0 = 0
2 0.5 = 0.5
4 0.625 < 0.75
6 0.687 < 0.875
8 0.765 < 1.070
10 0.791 < 1.191
12 0.720 < 1.236

Conjecture 15. For nondeterministic automatic
complexity AN ,

P(sup
n

Dn < ∞) = 1, and yet sup
n

Vn = ∞.

Remark 16. Pakravan and Saadat (2013) studied a
perpetual American option that pays the complexity
deficiency of the sequence of up and down ticks (con-
sidered as 1s and 0s) upon exercise. With interest rate
set to zero (r = 0) the price of this security may be
infinity, based on tentative numerical evidence. That
is, for AN ,

sup
n

Vn = ∞,

although EDn seems to approach a finite limit (see
Table 2). For positive interest rates the price is finite
(see Remark 4). They found numerical evidence that
for r = 1/4 the price is 0.47. See Fig. 2 for the defi-
ciencies of strings of length at most 4, and Fig. 3 for
corresponding calculated option prices. The price of
the American option with expiry 2k and expiry 2k + 1
are the same, as is easy to prove.

Definition 17. Let V (n) be the price of the Euro-
pean option paying the nondeterministic automatic
complexity deficiency D(x) for the price path x of
length n.
Decision problem: PRICE.
Instance: A pair of nonnegative integers n and k with

0 ≤ k

2n
≤ �n/2� + 1.

Question: Is V (n) ≥ k/2n?
Recall that E is the class of single-exponential time

decidable decision problems.

Theorem 18. PRICE is in E.

Proof. Hyde and Kjos-Hanssen (2015) considered the
problem DEFICIENCY of deciding whether, given
an integer k and a sequence x, the nondeterministic
automatic complexity deficiency D(x) satisfies D(x) ≥
k. They showed that DEFICIENCY is in E. Since
there are only single-exponentially many price paths
of length n, the usual backwards recursive algorithm
for option pricing in the binomial model (Shreve, 2004)
gives the theorem. �

The same proof shows that the analogous statement
to Theorem 18 for American options holds as well.
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Fig. 2. Deficiency tree for n = 4, see Remark 16.

3.2. Run complexity

If the payoff of our option is just the longest run of
heads then Alikhani (2014) showed that the price of
the option is �(log2 n). This corresponds to automata
that always proceed to a fresh state, except that one
state may be repeated (namely, the state of the longest
run).

Definition 19. The run complexity CR of a binary
sequence x is defined by CR(x) = n + 1 − r, where
n is the length of x and r is the length of the longest
run of 0s or 1s in x.

This complexity notion has the advantage that it is
efficiently computable. Kjos-Hanssen (2014) studied
it in more detail and also considered multiple runs, as
in the Wald–Wolfowitz runs test.

In the rest of this subsection we give the argu-
ment of Alikhani (2014). We assume familiarity with
basic discrete options (Shreve, 2004). A coin tossing
sequence is ω1 . . . ωN where each ωi ∈ {H, T }. (Read
H as “heads” and T as “tails”.)

Definition 20. For each 0 ≤ n ≤ N, the current run
of heads in the coin tossing sequence ω1 . . . ωn is
defined by
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Fig. 3. Option prices corresponding to Fig. 2.

Gn(ω) = max{r : ωn−r+1 = · · · = ωn = H}.
The run option is the American option where the

payoff when exercised at time n ≤ N is Gn(ω). Let
VA be the price of the run option. Define a stopping
time τt by

τt(ω1 . . . ωN ) = min{s : Gs = [E(RN )] − t},
where RN is the longest run of heads in a coin tossing
sequence of length N.

Thus, the trading strategy corresponding to τt is to
wait for a run of heads that is almost as long as we

ever expect to see before time N, with “almost” being
qualified and measured by the parameter t.

Definition 21. Let [x] denote the nearest integer of x. In
particular, [x] is an integer k with k − 1 ≤ x ≤ k + 1.

Theorem 22. Given N there is a deterministic choice
of t = tN such that there is a sequence of numbers εN

with limN→+∞ εN = 0, and constants c2 and c, such
that for large N,

E(GτtN
) ≥ (log2 N − c2 − c

3
√

ln N)(1 − εN ).
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Proof. The price process VA
n for the run option satisfies

the American risk-neutral formula

VA
n = max

τ∈Sn

En[Iτ≤NGτ], for n = 0, 1, . . . , N.

So for each t,

VA
n ≥ En[(Iτt≤N )Gτt ].

Now we find a lower bound on E(Gτt ).

E(Gτt ) = E(Gτt |Gτt > 0) Pr(Gτt > 0)

= ([E(RN )] − t)(Pr{RN ≥ [E(RN )] − t})
≥ ([E(RN )] − t)(Pr{RN ≥ E(RN ) − t + 1})
≥ ([E(RN )] − t)(Pr{|RN − E(RN )| ≤ (t − 1)})

≥ ([E(RN )] − t)

(
1 − Var(RN )

(t − 1)2

)

(by Chebyshev’s Inequality)

≥ (E(RN ) − 1 − t)

(
1 − Var(RN )

(t − 1)2

)
.

By Theorem 13,

Var(RN ) = π2/6 ln2(2) + 1/12 + r2(N) + ε2(N) ≤ 4

for large N. Let E(RN ) = a; then we get

E(Gτt ) ≥ (a − t − 1)

(
1 − 4

(t − 1)2

)
. (*)

Now we find the t = tN such that the right-hand side
of (∗) is maximized. The corresponding third degree
polynomial has negative discriminant. Therefore it has
one real root, which was calculated by Mathematica:

t =
(

2
3

)2/3 3

√
9 ln2(2) ln(N) + √

3
√

27 ln4(2) ln2(N) + 4 ln6(2)

ln(2)

− 2 3
√

2
3 ln(2)

3

√
9 ln2(2) ln(N) + √

3
√

27 ln4(2) log2(N) + 4 ln6(2)

.

By the second derivative test, since

d2

dt2 (a − t)(1 − 4/t2) = −3t2 − 4 ≤ 0,

we see that t maximizes the right-hand side of (∗). We
have

lim
n→∞

− 2 3
√

2
3 ln(2)

3

√
9 ln2(2) ln(n) + √

3
√

27 ln4(2) ln2(N) + 4 ln6(2)

= 0

and hence
t

(4/ ln 2)1/3( 3
√

ln N)
→ 1.

Therefore, t = tN ∈ �( 3
√

ln N) and so

E(GτtN
) ≥ (log2 N − c2 − c

3
√

ln N)(1 − εN ).

�
Corollary 23. VA ∼ log2 N.

Proof. VA is bounded below by the expected payoff
of the strategy that waits for [E(RN )] − tN heads, with
tN as in Theorem 22, and then exercises. On the other
hand, VA is bounded above E(RN ). Therefore

E(RN ) − tN ≤ VA ≤ E(RN ).

By Theorem 13,

E(RN )= log2(N/2) + γ/ ln 2 − 1/2 = log2 N + O(1),

and so by Theorem 22,

log2 N − c2 − 3
√

ln N ≤ VA ≤ log2 N + O(1).

Dividing by log2 N we get

1 − o(1) ≤ VA

log2 N
≤ 1 + o(1).

�
4. Robustness

We now consider whether, in the phrase of an anony-
mous referee,

small perturbations on input sequences can have
drastic effects on our studied measurements of
complexity.

In other words, whether errors in the measurement
of a sequence will lead to large errors in the calculated
complexity. Let d(x, y) denote the Hamming distance
between two sequences of the same length x and y.

Run complexity. Here a change in a single bit
sometimes cuts the longest run in half. That is, if
d(x, y) = 1 then CR(x) = n − rx and CR(y) = n − ry
where rx ≤ 2ry + 1.

On the other hand, since the longest run will only
be about log2 n (Boyd, 1972), a random change in a
single random bit will tend to leave the complexity
unchanged.

Automatic complexity. Here we have numerical
evidence that a change in a single bit sometimes has
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Table 3

Nondeterministic automatic complexity in the Hamming ball of
radius 1 around 0n, n = 23

w AN (w)

023 1
0221 2
02110 3
020102 4
019103 5
018104 6
017105 7
016106 8
015107 9
014108 8
013109 8
0121010 8
0111011 7

large effects. For instance, consider the string 0n which
becomes 0a10n−a−1; see Table 3.

Kolmogorov complexity. A change in a single bit
will affect the complexity only logarithmically (by at
most about 2 log n) since a description of the sequence
can include hard-coded information about where the
changed bit is. Fortnow, Lee, and N. Vereshchagin
(2006) studied Kolmogorov complexity with error in
detail.

5. Enhanced content

AutoComplex. This app for Android devices (Bjørn
Kjos-Hanssen 2013) lets you look up nondeterministic
automatic complexity values of particular strings. The
app tells you the complexity of a given string and also
provides a “proof” or “witness”.

This witness is a uniquely accepting state sequence,
i.e., a sequence of states visited during a run of a
witnessing automaton. It is analogous to a shortest
description x∗ of a string x, familiar from the study
of Kolmogorov complexity.

The app also provides some extensions of the string
suggested by the familiar autocompletion feature used
in search engines.

The Complexity Guessing Game and the Com-
plexity Option Game. These two online games (Bjørn
Kjos-Hanssen 2015a, 2015b) invite the player to guess
complexities, or implement an exercise policy for a
complexity-based financial option, respectively. The
games include graphical displays of millions of the
relevant automata.
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