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Abstract. Making predictions about what might happen in the future is important for reacting adequately in many situations. For
example, observing that “Man kidnaps girl” may have the consequence that “Man kills girl”. While this is part of common sense
reasoning for humans, it is not obvious how machines can acquire and generalize over such knowledge. In this article, we propose
a new type of memory network that can predict the next future event also for observations that are not in the knowledge base.
We evaluate our proposed method on two knowledge bases: Reuters KB (events from news articles) and Regneri KB (events
from scripts). For both knowledge bases, our proposed method shows similar or better prediction accuracy on unseen events (or
scripts) than recently proposed deep neural networks and rankSVM. We also demonstrate that the attention mechanism of our
proposed method can be helpful for error analysis and manual expansion of the knowledge base.
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1. Introduction

Making predictions about what might happen in the
future is important for reacting adequately in many
situations. For example, observing that “Man kidnaps
girl” may have the consequence that “Man kills girl”.
While this is part of common sense reasoning for hu-
mans, it is not obvious how machines can learn and
generalize over such knowledge automatically.

In this article, we focus on the task of given an ob-
served event (e.g. “Man kidnaps girl”), to score possi-
ble next future events (e.g. “Man kills girl”, or “Man
fires girl”). In the first part, we explain possible ways
to aquire a knowledge base of temporal relations from
existing resources. In the second part, we propose a
new method, which we call Memory Comparison Net-
work (MCN), for distinguishing between likely and
unlikely future events. MCN is a memory network that
can leverage an existing knowledge base of temporal
relations for future prediction of unseen events.

*Corresponding author. E-mail: s-andrade@cj.jp.nec.com.

Since there are only few available resources for tem-
poral relations between events, we discuss, in Sec-
tion 2, how to create a knowledge base of temporal re-
lations. We exploit that if an entailment relation holds
between two events, then the entailed event is likely
to be not a new future event. For example, the phrase
“man kissed woman” entails “man met woman”, where
“man met woman” happens before (not after) “man
kissed woman”. To find such entailments, we exploit
the entailment relation of verbs in WordNet [11]. Verbs
that tend to be in a temporal (happens-before) rela-
tion have been extracted on a large scale and are freely
available in VerbOcean [8]. For example, the event
(subject, buy, object) tends to be temporally preced-
ing the event (subject, use, object). Based on these in-
sights, we created a knowledge base of happens-before
relations between events that were extracted from the
Reuters news corpus (Reuters KB). Additionally, we
created a knowledge base extracted from a standard
data set for script learning [33] (Regneri KB).

However, all knowledge bases are incomplete, and
therefore it is key to develop a method that can gener-
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alize over existing temporal relations. For that purpose,
in Section 3, we present our proposed method MCN
to predict future events given an observed event triplet
(subject, verb, object). In order to allow the model to
generalize to unseen events, we adopt a deep learn-
ing structure such that the semantics of unseen events
can be learned through word/event embeddings. Our
proposed method can learn to compare and combine
the similarity of observed events to the event relations
saved in memory. Furthermore, by using an attention
mechanism, our method is able to provide evidence for
its future prediction decision.

We note that recently several neural network ar-
chitectures have been proposed to exploit word em-
beddings for temporal relation detection [14,23,35].
Though, these networks cannot provide any evidence
for their output, which can be important for the human
decision maker. We discuss the application of these ex-
isting methods to our task of future prediction in Sec-
tion 4.

In Section 5, we evaluate our proposed method and
existing methods on two knowledge bases: Reuters KB
and Regneri KB. For both knowledge bases, our pro-
posed method shows similar or better prediction ac-
curacy on unseen events than the recently proposed
(deep) neural networks and rankSVM [39]. Subse-
quently, we analyze our proposed method’s design
choices and its attention mechanism (Section 6). We
discuss in more detail related work in Section 7. Fi-
nally, we conclude our article in Section 8.

2. Knowledge database construction

In this section, we describe our approach for extract-
ing a knowledge base of happens-before relations with
the help of lexical resources (Section 2.1) and script
data (Section 2.2)

Our main focus is on distinguishing future events
from other events. In texts, like news stories, an event

el is more likely to have happened before event er

(temporal order), if el occurs earlier in the text than
er (textual order). However, there are also many sit-
uations where that is not the case: re-phrasing, intro-
ducing background knowledge, conclusions, etc. One
obvious solution is discourse parsers. But without ex-
plicit temporal markers, they suffer from low recall
[46]. Therefore, in practice, most script-learning sys-
tems use textual order as a proxy for temporal order
[29,30,35].

However, we found that using textual order from
text, leads to a high number of wrong temporal rela-
tions (details see Section 2.1). Therefore, we explore
here the usage of two lexical resources, WordNet and
VerbOcean, which have both high accuracy. WordNet
is a carefully manually curated database of mainly syn-
onyms [11]. VerbOcean contains temporal relations be-
tween verbs that were extracted from corpora via man-
ually created bootstrapping rules followed by statisti-
cally filtering [8].

We assume common knowledge is given in the form
of simple relations (or rules) like

(company, buy, share) → (company, use, share),

where “→” denotes the temporal happens-before rela-
tion, meaning the event at the arrow tail happens be-
fore the event at the arrow head. In Table 1 we give
the definitions of all temporal and logical relations that
we use in this paper. Like the definition for entailment
as in [10], all our definitions are based on defeasible
reasoning.

To extract such common knowledge rules we ex-
plore the use of the lexical resources WordNet [11] and
VerbOcean [8]. As also partly mentioned in [11], logi-
cal and temporal relations are not independent, but an
interesting overlap exists as illustrated in Fig. 1. We
emphasize that, for temporal relations, the situation is
not always as clear cut as shown in Fig. 1 (e.g. repeated
actions). Nevertheless, there is a tendency that a tem-

Table 1

Symbol and corresponding definition for each logical and temporal relation

Symbol Meaning

A ⇒ B Entailment: a human reading A would infer that B is with high probability true (same as definition given in [10]).

A ⇐ B Backward Entailment: a human reading B would infer that A is with high probability true.

A ⇔ B Paraphrase: a human reading A would infer that B is with high probability true, and vice versa.

A �= B Contradiction: a human reading A and B would infer that with high probability both cannot be true at the same time.

A → B Happens-before: a human reading A considers it likely that some time later B will happen.

A ← B Happens-after: a human reading B considers it likely that some time later A will happen.

A � B Not Happens-before: a human reading A considers it unlikely that sometimes later B will happen.
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Fig. 1. Illustration and examples of logical (entailment, contradiction) and temporal (happens-before, happens-after) relation types.

poral relation is either true or false. In particular, in the
following, we consider “wrong” happens-before rela-
tions, as less likely to be true than “correct” happens-
before relations.

2.1. Reuters knowledge base

For simplicity, we restrict our investigation here to
events of the form (subject, verb, object). All events are
extracted from around 790k news articles in Reuters
[17]. We preprocessed the English Reuters articles us-
ing the Stanford dependency parser and co-reference
resolution [19]. We perform lemmatization1 of all
words, and for subjects and objects, we considered
only the head words.

An event is defined as a (subject, verb, object)
triplet, denoted as (S, V,O). All relations are de-
fined between two events of the form (S, Vl,O) and
(S, Vr ,O), where subject S and object O are the
same. For extracting the temporal relations we con-
sider only event pairs from the same article. Further-
more, the event (S, Vl,O) is written in the article be-
fore (S, Vr ,O).

1Reduction to the base form of a word. For example, “eating”
becomes “eat”.

Positive samples. We extract positive samples of the
form (S, Vl,O) → (S, V

pos
r , O), if

(1) Vl → V
pos
r is listed in VerbOcean as a happens-

before relation.
(2) According to WordNet Vl ⇒ V

pos
r is not true.

That means, for example, if (S, Vr ,O) is para-
phrasing (S, Vl,O), then this is not considered as
a temporal relation.

This way, we were able to extract 1699 positive sam-
ples. Examples are shown in Table 2.

Negative samples. We extracted negative samples of
the form (S, Vl,O) � (S, V

neg
r , O), if Vl → V

neg
r is

not listed in VerbOcean. This way, we extracted 1177
negative samples.

There are several reasons for a relation not being
in a temporal relation. Using VerbOcean and Word-
Net we analyzed the negative samples, and found that
the majority (1030 relations) could not be classified

Table 2

Examples of happens-before relations of Reuters KB

Examples

(company, buy, share) → (company, use, share)

(ex-husband, stalk, her) → (ex-husband, kill, her)

(farmer, plant, acre) → (farmer, harvest, acre)
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Table 3

Examples of happens-before and not happens-before event relations from
the Regneri KB

Examples

([protagonist], insert, money, machine) → ([protagonist], receive, ticket)

([protagonist], pay ride) → ([protagonist], sit)

([protagonist], order, desert) � ([protagonist], eat, entree)

([protagonist], open, door) � ([protagonist], check, who)

into any relation with VerbOcean or WordNet. We es-
timated conservatively that around 27% of these rela-
tions are false negatives: for a sub-set of 100 relations,
we labeled a sample as a false negative, if it can have
an interpretation as a happens-before relation.2

To simplify the task, we created a balanced data set,
by pairing all positive and negative samples: each sam-
ple pair contains one positive and one negative sam-
ple, and the task is to build a system that gives a higher
score to a correct happens-before relation than to a
wrong happens-before relation. The resulting data set
contains in total 1765 pairs.

We emphasize that this data set is different from
the settings considered for example in [29], where the
events’ order in text is used as a proxy for their tempo-
ral order. We analyzed a random subset of 100 events
of the form (S, Vl,O) →text (S, Vr ,O), where →text

means “occurs earlier in text”. We found that only
around 30% can be considered as happens-before rela-
tions.

2.2. Regneri knowledge base

As an another data-set for evaluation, we created a
knowledge base from the data set prepared in [33]. The
released data-set contains 14 scripts, prototypical event
sequences, like “eating at restaurant” and “going to
laundry”. We extracted the predicate arguments from
the plain text event descriptions by using the Stanford
dependency parser and lemmatization (same as before
in Section 2.1).

Some examples of the event relations are shown in
Table 3.

Unlike Reuters KB, the events in the Regneri data
always have a fixed human subject (protagonist) that is
omitted. Furthermore, the data set has a flexible num-

2Therefore, this over-estimates the number of false negatives. This
is because it also counts relations like “X’s share falls 10%” ↔ “X’s
share rises 10%” as a false negative.

ber of arguments: no arguments, only direct or only
indirect object, both direct and indirect objects.3 Ev-
ery happens-before (positive) relation is paired with a
happens-after (negative) relation. In total, this way we
were able to extract 17939 positive/negative happens-
before event relations that are grouped into the 14 dif-
ferent scripts.

3. Similarity-based reasoning for happens-before
relation scoring

In this section, we describe in detail our proposed
method and its underlying assumptions.

In the following, let r be a happens-before relation
of the form:

r : el → er ,

where el and er are two events, respectively.
Given an unseen event e′ (i.e. an event that is not in

the knowledge base), we can find possible future events
using the following two assumptions:

(I) If
(
e′ ∼ el

) ∧ (el → er), then e′ → er .

(II) If
(
e′ ∼ er

) ∧ (el → er), then el → e′.

Where ∼ denotes some appropriate similarity relation
between two events.

For example, let us assume we have the following
relation in our knowledge base

“John acquires computer” → “John uses com-
puter”.

Furthermore, let us assume that the similarity ∼ is de-
fined such that the following statement is true

“John buys computer” ∼ “John acquires com-
puter”.

3A few events had more than two arguments which we ignored for
evaluation.
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Fig. 2. Illustration of proposed model.

Then, using (I), we can reason that:

“John buys computer” → “John uses computer”.

This example also shows that using the paraphrase
relation ⇔ for the similarity relation ∼ would be too
restrictive.4

It is not clear what the best measure for the similar-
ity ∼ is. Therefore, instead of defining the similarity ∼
manually, we propose to learn a measure for this simi-
larity from data such that it optimizes future prediction
accuracy.

3.1. Memory comparison network

Using the assumptions (I) and (II), we propose
a memory-based network, which we name Memory
Comparison Network (MCN). It bases its decision on
one (or more) training samples that are similar to a
test sample. In contrast to other methods like neural
networks for script learning [14,23], and (non-linear)
SVM ranking models [39], it has the advantage of giv-
ing an explanation of why a relation is considered (or
not considered) as a happens-before relation. Com-

4Let e1 and e2 be two events. It holds that if [e1 ⇔ e2], then
[e1 ∼ e2]. But it does not hold that if [e1 ∼ e2], then [e1 ⇔ e2].

pared to k-nearest neighbor approaches, our proposed
method does not need a fixed k, and instead uses a
trainable softmax to learn attention weights. Further-
more, our proposed method can learn the similarity re-
lation ∼ from data.

The high-level architecture of our proposed model is
shown in Fig. 2. All training data is saved in memory
and accessed during testing. First, we calculate simi-
larity weights between the test input relation and each
happens-before relation (left hand side in Fig. 2) and
each not happens-before relation (right hand side in
Fig. 2). We denote the resulting similarity weights as
upos and uneg, respectively. Next, we use a trainable
softmax function, denoted as softmaxγ , to calculate
attention weights softmaxγ (upos) and softmaxγ (uneg)

(shown in Fig. 2 on the left and right hand side in gray
scale). Finally, using these attention weights, we cal-
culate two weighted averages opos and oneg that repre-
sent the score that the input relation is a happens-before
(positive) and not a happens-before relation (negative),
respectively.

The attention weights help to focus only on a few
relevant training samples. Our analysis, in Section 6,
shows that compared to using the similarity weights
upos and uneg directly, the attention weights help to im-
prove accuracy.
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In the following, we explain in more detail the com-
ponents of our network architecture and its trainable
parameters.

Similarity between events. In order to calculate the
similarity between two relations, we first need to calcu-
late the similarity between events that occur in the rela-
tions. For calculating the similarity between two events
we use a parameterized cosine similarity that can learn
the importance of all arguments. Our parameterization
ensures that the number of trainable parameters is in-
dependent of the size of the word embeddings, which
proves helpful for exploiting high-dimensional word
embeddings (see experimental results and discussion
in Section 6.2).

Given two events e1 and e2, we measure the simi-
larity relation e1 ∼ e2 using the following non-linear
transformation of the parameterized cosine similarity:

simθ ,A(e1, e2) = gθ

(
cosA(x, y)

)
, (1)

where x and y are the vector representations of the
event e1 and e2, respectively.5 The function gθ is an
artificial neuron with θ = {σ, β}, a scale σ ∈ R, and
a bias β ∈ R parameter, followed by a non-linearity.
We use as non-linearity the sigmoid function. The pa-
rameterized cosine similarity (see e.g. [3]), is defined
as follows:

cosA(x, y) = (A1/2x)T (A1/2y)

‖A1/2x‖2‖A1/2y‖2
,

where A is a positive definite matrix, A1/2 is its square
root, and ‖ · ‖2 denotes the l2-norm. Here, we rep-
resent each event by the concatenation of its predi-
cate and arguments’ word embeddings. An event with
one predicate and two arguments is represented as
xT = (xT

1 , xT
2 , xT

3 ) ∈ R
3d . The first component x1 is

the word embedding of the predicate. For the Reuters
dataset, x2 and x3 correspond to the word embedding
of the subject and object, respectively. For the Reg-
neri dataset, x2 and x3 correspond to the word embed-
ding of the direct and indirect object, respectively. If
an event has a missing argument, then the correspond-
ing word embedding is set to the constant zero vec-
tor. In the following, we assume that all word embed-
dings, except the all zero vector, are l2-normalized, i.e.
‖xi‖2 = 1.

5Remark about our notation: we use bold fonts, like v to denote
a column vector; vT to denote the transpose, and vi to denote the
ith dimension of v. If v is a block vector, then vi , denotes the ith
sub-vector.

For A1/2, we suggest to use the following block di-
agonal matrix

A1/2 =
⎛
⎝

a1 · I 0 0
0 a2 · I 0
0 0 a3 · I

⎞
⎠ ,

where ai ∈ R are trainable parameters, and I ∈ R
d×d

denotes the identity matrix, and 0 ∈ R
d×d is the all

zero matrix. This has the advantage that

wi := a2
i (2)

can be interpreted as the weight of argument i. Further-
more, this choice ensures that the number of trainable
parameters does not increase with the size of the word
embedding d .

Since all word embeddings are l2-normalized, we
have cosA(x, y) equals

a2
1 · xT

1 y1 + a2
2 · xT

2 y2 + a2
3 · xT

3 y3

(

√
a2
1 · xT

1 x1 + a2
2 · xT

2 x2 + a2
3 · xT

3 x3

√
a2
1 · yT

1 y1 + a2
2 · yT

2 y2 + a2
3 · yT

3 y3

= w1 · xT
1 y1 + w2 · xT

2 y2 + w3 · xT
3 y3

w1 + w2 + w3

= w1
w1 + w2 + w3

· xT
1 y1 + w2

w1 + w2 + w3
· xT

2 y2

+ w3
w1 + w2 + w3

· xT
3 y3.

We note that the parameterized cosine similarity has
the advantage that it appropriately re-normalizes the
predicate/argument weights when there is a missing ar-
gument. To understand this, consider the case where
both events have no object. In that case, using the same
derivation as before, we get

cosA(x, y)

= w1

w1 + w2
xT

1 y1 + w2

w1 + w2
xT

2 y2, (3)

since the embeddings x3 and y3 are set to the all zero
vector.

As a computationally less expensive alternative, one
might consider the following weighted dot product
without re-normalization:

dotA(x, y) = (
A1/2x

)T (
A1/2y

)
. (4)

However, note that dotA has the disadvantage that it
does not re-normalize the argument weights, when
some arguments missing. As a consequence, if two
events have missing arguments, the resulting similarity,
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will be smaller than the similarity between the same
events, but with all arguments. Our experimental anal-
ysis in Section 6 shows that this leads to inferior per-
formance.

Similarity between relations. In the following, let ri
be a happens-before relations of the form:

ri : eli → eri ,

where, eli and eri , represents the observed and future
event, respectively. We define the similarity between
two relations r1 and r2 as:

rel-sim(r1, r2)

= simθ ,A(el1 , el2) + simθ ,A(er1 , er2). (5)

Given an input relation r in : ein
l → ein

r , we test whether
the relation r in is correct or wrong as follows.

Let npos and nneg denote the number of positive
and negative samples in memory, respectively. First,
we compare to all positive and negative training rela-
tions in memory, and denote the resulting vectors as
upos ∈ R

npos and uneg ∈ R
nneg , respectively. That is

formally

u
pos
t = rel-sim

(
rin, r

pos
t

)
and

u
neg
t = rel-sim

(
rin, r

neg
t

)
,

(6)

where r
pos
t and r

neg
t denotes the t th positive/negative

sample in memory.

Attention weights. Next, we define the score that r in

is correct/wrong as the weighted average of the relation
similarities:

opos = softmaxγ

(
upos)T upos, (7)

oneg = softmaxγ

(
uneg)T uneg, (8)

where softmaxγ (u) returns a column vector with the
t th output defined as

softmaxγ (u)t = exp(γ ut )∑
i exp(γ ui)

,

and γ ∈ R is a weighting parameter. Note that for γ →
∞, softmaxγ (u) = max(u), and for γ = 0, opos and
oneg is the average of u. We refer to softmaxγ (upos)i
and softmaxγ (uneg)j as the attention weight of the ith
positive and j th negative training sample, respectively.

Finally, we define the happens-before score for r in

as

l
(
r in) = opos(r in) − oneg(r in). (9)

The score l(r in) can be considered as an unnormalized
log probability that relation r in is a happens-before re-
lation.

For optimizing the parameters of our model we min-
imize the margin rank loss:

L
(
r in-pos, r in-neg)

= max
{
0, 1 − l

(
r in-pos) + l

(
r in-neg))}, (10)

where r in-pos : ein
l → e

in-pos
r and r in-neg : ein

l → e
in-neg
r

are positive and negative samples from the training
data that are not in memory. All parameters of the mod-
els are trained using stochastic gradient descent (SGD).
The word embeddings (x1, x2, and x3) are kept fixed
during training.

We emphasis that during training our method, we
put part of the training samples into memory and calcu-
late the loss in Equation (10) with respect to two input
relations r in-pos and r in-neg that are not in memory. This
is necessary, since otherwise, if we put all training sam-
ples into memory, and calculate the loss with an input
relation that is also in memory, our proposed method
will learn that there is always one perfect match in the
memory (e.g. the trainable parameter γ of softmaxγ is
likely to converge towards infinity).

4. Alternative ranking models

Here in this section, we investigate several other
models that can be applied for ranking future predic-
tions. All models that we consider are based on word
embeddings in order to be able to generalize to unseen
events.

Our first model is based on the bilinear model pro-
posed in [2] for document retrieval, with scoring func-
tion l(el, er ) = eT

l Mer , where the event represen-
tation el , er ∈ R

3d are the concatenated word em-
beddings from the predicate and all arguments, and
M ∈ R

3d×3d is the parameter matrix. We denote this
model as Bai2009.

We also compare to three neural network architec-
tures that were proposed in different contexts. The
model in [4], originally proposed for semantic parsing,
is a three layer network that can learn non-linear com-
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binations of (subject, verb) and (verb, object) pairs.
The non-linearity is achieved by the Hadamard product
of the hidden layers. The original network can handle
only events (relations between verb and objects, but not
relations between events). We recursively extend the
model to handle relations between events. We denote
the model as Bordes2012.

In the context of script learning, recently two neural
networks have been proposed for detecting happens-
before relations. The model proposed in [23] (denoted
by Modi2014) learns event embeddings parameterized
with verb and context (subject or object) dependent
embedding matrices. The event embeddings are then
mapped to a score. Their original method gets as in-
put only one event, and returns a score that reflects ab-
solute time, rather than time relative to another event.
We therefore appropriately extend it: in order to score
a relation between two events, we use the dot product
between the two events’ embeddings.6

The model in [14] suggests a deeper architecture
than Modi2014. Their model (denoted by Granroth2016)
uses two additional non-linear layers for combining the
left and right events.

We train all above models in the same way as the
proposed method using margin rank loss.7 For all
methods, we found fixing the word embeddings (i.e. no
adjustment during training) improves performance.

Our final two models use rankSVM [39] with a lin-
ear kernel and a RBF kernel, respectively. The feature
representation is the concatenation of the embeddings
of all words in the relation.

5. Evaluation

In this section, we describe the details of our exper-
imental settings and compare our proposed method to
several previous methods.

Due to the relatively small size of the knowledge
bases we use 10-fold and 14-fold cross-validation for
Reuters KB and Regneri KB, respectively.

For Reuters KB, we use 10 different random splits
with around 50%, 25% and 25% for training, valida-
tion and testing, respectively. We split the data such
that the left event (observation) of the sample contains

6We tried two variants: left and right events with different and
same parameterization. The results did not change significantly.

7Originally, the model in [14] is optimized with respect to neg-
ative log-likelihood, however, in our preliminary experiments we
found that margin rank loss performed better.

a predicate that is not contained in the training set (and
also not in the validation set).

For the Regneri KB, we test on all events belong-
ing to one script, and all events from the remaining
scripts are split into training (8 scripts) and validation
(5 scripts) set. This leads to a 14-fold cross-validation,
since there are 14 scripts.

We implemented all methods using Torch 7 [9].
For the bilinear model and all neural networks, we

performed up to 2000 epochs for 50 dimensional word
embeddings and up to 200 epochs for 300 dimensional
word embeddings.8 To prevent overfitting, we used
early stopping with respect to the validation set. Some
models were quite sensitive to the choice of the learn-
ing rates, so we tested 0.00001, 0.0001, and 0.001, and
report the best results on the validation set.

For our proposed method, for Reuters KB, we used
up to 100 epochs with a fixed learning of 0.001, and
for Regneri KB, we used up to 50 epochs with a fixed
learning rate of 0.01. Therefore, we split the training
data further, into training data in memory (two thirds)
and training data for input (one third).9 As initial pa-
rameters for this non-convex optimization problem we
set σ = 1.0, β = −0.5, γ = 5.0, and the argument
weights to the uniform probability.

For the rankSVM baselines we used the imple-
mentation from [40]. We tested both a linear and a
RBF kernel with the hyper-parameters optimized via
grid-search. For the linear kernel we tested c in the
range 2−5 to 216, with step size 1 of the exponent.
For the RBF kernel’s parameters, due to the high
computational costs, we had to limit the search to
a course grid: c ∈ {2−5, 2−2, 21, 24, 27}, and γ ∈
{2−10, 2−7, 2−4, 2−1}.

We report accuracy, when asking the question: given
observation el , is e

pos
r more likely to be a future event

than e
neg
r ?

We used the 50 and 300 dimensional word embed-
dings from the GloVe tool [27] trained on Wikipedia +
Gigaword 5 provided by the authors. If an event has no
direct or indirect object, we use the all zero vector.

All prediction accuracies (in percent) are shown in
Tables 4 and 5 for Reuters KB, and Tables 6 and 7 for
Regneri KB, respectively. By using the false-negative

8We had to reduce the maximal number of epochs to 200 since
otherwise, for example, the baseline Bordes2000 with all the evalua-
tion of different learning rates and cross-validation would have taken
around 70 days on a GPU.

9Also see explanation at end of Section 3.1.
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Table 4

Results for Reuters KB with 50 dimensional word embeddings. Mean accuracy and
standard deviation (in brackets)

Method Test data

Human estimate 76.7

Memory Comparison Network 60.3 (8.9)

Granroth2016 60.9 (5.3)

Modi2014 57.5 (7.8)

Bordes2012 58.3 (7.8)

Bai2009 58.9 (7.4)

rankSVM (RBF) 60.6 (6.2)

rankSVM (linear) 59.1 (9.4)

Random Baseline 50.0

Memory Comparison Network (all args with cosA, softmaxγ , trained) 60.3 (8.9)

Memory Comparison Network (all args with dotA, softmaxγ , trained) 58.8 (7.7)

Memory Comparison Network (only predicate, softmaxγ , trained) 60.2 (8.9)

Memory Comparison Network (only predicate, max, trained) 59.6 (6.5)

Memory Comparison Network (only predicate, max, no parameters) 60.1 (5.8)

Memory Comparison Network (only predicate, average, no parameters) 60.1 (5.9)

Table 5

Results for Reuters KB with 300 dimensional word embeddings. Mean accuracy and
standard deviation (in brackets)

Method Test data

Human estimate 76.7

Memory Comparison Network 62.8 (7.4)

Granroth2016 61.5 (4.5)

Modi2014 59.7 (7.8)

Bordes2012 51.9 (10.0)

Bai2009 59.1 (7.0)

rankSVM (RBF) 63.6 (5.6)

rankSVM (linear) 60.3 (7.5)

Random Baseline 50.0

Memory Comparison Network (all args with cosA, softmaxγ , trained) 62.8 (7.4)

Memory Comparison Network (all args with dotA, softmaxγ , trained) 61.9 (7.5)

Memory Comparison Network (only predicate, softmaxγ , trained) 63.2 (9.5)

Memory Comparison Network (only predicate, max, trained) 58.1 (7.4)

Memory Comparison Network (only predicate, max, no parameters) 58.3 (7.5)

Memory Comparison Network (only predicate, average, no parameters) 61.0 (6.2)

estimate from Section 2.1, we also calculated an esti-
mate of the human performance (“Human estimate”)
on the task for Reuters KB.10

The results suggest that our proposed model pro-
vides good generalization performance that is at par
or better than the recently proposed neural network
Granroth2016, and SVM ranking with RBF-kernel.
Our results support our claim that the happens-before

10We assume that all false-negatives lead to a wrong human guess.

relation can be detected by similarity-based reasoning.
Furthermore, we can observe that the performance of
our proposed method tends to increase with higher di-
mensional word embeddings.

6. Analysis

In this section, we analyze our proposed method
and investigate the usefulness of the attention mecha-
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Table 6

Results for Regneri KB with 50 dimensional word embeddings. Mean accuracy and
standard deviation (in brackets)

Method Test data

Memory Comparison Network 63.5 (7.4)

Granroth2016 57.3 (6.8)

Modi2014 60.1 (9.3)

Bordes2012 55.9 (9.3)

Bai2009 57.5 (6.0)

rankSVM (RBF) 60.3 (8.2)

rankSVM (linear) 60.2 (7.9)

Random Baseline 50.0

Memory Comparison Network (all args with cosA, softmaxγ , trained) 63.6 (7.7)

Memory Comparison Network (all args with dotA, softmaxγ , trained) 60.6 (10.9)

Memory Comparison Network (only predicate, softmaxγ , trained) 62.3 (6.9)

Memory Comparison Network (only predicate, max, trained) 60.4 (5.0)

Memory Comparison Network (only predicate, max, no parameters) 60.2 (5.0)

Memory Comparison Network (only predicate, average, no parameters) 59.8 (6.2)

Table 7

Results for Regneri KB with 300 dimensional word embeddings. Mean accuracy and
standard deviation (in brackets)

Method Test data

Memory Comparison Network 67.3 (9.4)

Granroth2016 62.9 (9.7)

Modi2014 56.6 (9.8)

Bordes2012 48.8 (6.7)

Bai2009 60.6 (9.2)

rankSVM (RBF) 63.6 (9.1)

rankSVM (linear) 65.3 (10.2)

Random Baseline 50.0

Memory Comparison Network (all args with cosA, softmaxγ , trained) 67.3 (9.4)

Memory Comparison Network (all args with dotA, softmaxγ , trained) 66.0 (8.1)

Memory Comparison Network (only predicate, softmaxγ , trained) 67.0 (6.9)

Memory Comparison Network (only predicate, max, trained) 62.4 (4.6)

Memory Comparison Network (only predicate, max, no parameters) 62.3 (4.5)

Memory Comparison Network (only predicate, average, no parameters) 64.9 (7.1)

nism. Furthermore, we discuss the types of errors of
our method and its current limitations.

In order to evaluate the design choices of our pro-
posed method, we tested five variations of our method.
The results are shown in the lower half of Tables 4 and
5 for Reuters KB, and Tables 6 and 7 for Regneri KB,
respectively.

The first variation, “Memory Comparison Network
(all args with dotA, softmaxγ , trained)” replaces the
parameterized cosine similarity by the simplified ver-
sion without normalization, see Equation (4). The re-
sults confirm that without normalization, the parame-

terized cosine similarity performs worse. We suspect
that this is partly due to the wrong handling of missing
arguments (as discussed in Section 3.1).

The next variation uses only the predicates (verbs)
for representing an event. For both knowledge bases,
the results suggests that using only the verbs leads to
similar or only slightly lower accuracy. However, later
in this section, we will also show some examples where
information from arguments is actually necessary to
correctly predict future events.

Finally, we evaluated the effect of using the attention
weights from softmaxγ instead of either the hard max
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function, or the average. In particular, we note that the
method “Memory Comparison Network (only predi-
cate, max, trained/no parameters)”, which replaces the
softmaxγ by max, is a kind of simple 1-nearest neigh-
bor ranking. “no parameters” uses the inner product of
the verb’s embeddings instead of simθ ,A from Equa-
tion (1). The variation, “Memory Comparison Network
(only predicate, average, no parameters)” uses for opos

and oneg, in Equations (7), the average of upos and uneg,
respectively. We can see that the choice of softmaxγ ,
over max or average, improves performance.

Since our model uses a kind of similarity-based rea-
soning, we can easily identify “supporting evidence”
for the output of our system. Four examples from
Reuters KB and Regneri KB are shown in Table 8 and
Table 9, respectively. Here, “supporting evidence” de-
notes the training sample with the highest similarity
rel-sim to the input. In each table, we show two exam-
ples when the input is a happens-before relation (first
and second example), and two examples when the in-
put is not a happens-before relation (third and fourth
example).11

We also tried to quantify the usefulness of the sup-
porting evidence using a random subset of 100 input
happens-before relations from the Reuters KB test set,
where we annotated for each input relation all rela-
tions in the knowledge base, and 280 input happens-
before relations from Regneri KB, where we anno-
tated for each input relation the top 50 relations in the
knowledge base output by our system.12 For Regneri
KB, we annotated a random subset of 20 test relations
from each split of the test and training data, i.e. in total
20 × 14 = 280 input relations, in order to cover all
scripts (see Section 2.2).

For each input relation, we rank the happens-before
relations in the knowledge base by opos. Ideally, our
system should output all supporting evidence in the top
ranks, and all irrelevant relations below.

For evaluation, we use three measures: recall at top
n, R-Precision [18], and missing knowledge probabil-
ity at top n, which we define in the following.

Recall@n = rn

m
,

11Since we considered only the head, a unit like “percent” means
“x percent”, where x is some number.

12For Reuters there were only 83 unique happens-before relations
in the KB, leading to 100 × 83 = 8300 annotations. However, for
Regneri there were more than 2000 relations in the KB which forced
us to limit the annotation to the top 50 output by our system. There-
fore, the recalls shown for Regneri KB are not exact, but based on an
estimate using the top 50 results.

where rn is the number of supporting evidences found
in the top n, and m is the total number of supporting
evidences found in the knowledge base for the input
relation.

R-Precision = rm

m
.

We average Recall@n and R-Precision over all input
relations for which m � 1, i.e. at least one supporting
evidence in the knowledge base.

Furthermore, from a practical point-of-view, we are
also interested in whether the ranking of the rela-
tions can help us to identify missing evidence in the
KB. For that purpose, we calculate the probability
p(missing evidence in KB|rn = 0), which we denote
by Missing@n:

Missing@n

= f (missing evidence in KB ∧ rn = 0)

f (rn = 0)
,

where f (C) denotes the number of annotated input re-
lations which fulfill condition C.13

All results for Reuters KB and Regneri KB are
shown in Tables 10, 11 and 12.

Inspecting the R-Precision and Recall@1, we can
see that the ranking of evidence by our system is not
yet satisfactory. Nevertheless, from Table 12, we see
that if we cannot find supporting evidences in the top
20 relations output by our system, we can conclude
that the KB does not contain sufficient knowledge
with probability up to 98%. This shows that the atten-
tion mechanism can be helpful for detecting missing
knowledge in the KB.

We note that our method can also correctly rank fu-
ture events, even if the predicates are the same. Three
examples are shown in Table 13. This suggests, that
our model uses also the information from the subject
and objects to predict the future event. We confirm this
by inspecting the actual argument weights that were
learned by our proposed method (Table 14).

Furthermore, it is intriguing that rankSVM (RBF)
performs comparable to our proposed method on
Reuters KB, whereas on Regneri KB, rankSVM (RBF)
performs worse than the proposed method. As we dis-
cuss in Section 6.1, the difference in training data size
does not seem to be the reason for these differences.
Instead, we suspect that the performance difference is

13“Missing evidence in KB” means that for the input relation, we
could not find any supporting evidence in the knowledge base.
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Table 8

Four examples with input relations, output scores and evidences by our proposed method. Reuters
KB with 300 dimensional word embeddings. An event is shown as a triplet (subject, predicate, object)

input relation: (price, climb, cent) → (price, slide, cent)

opos: 0.977 supporting evidence: (price, rise, percent) → (price, tumble, percent)

oneg: 0.963 supporting evidence: (price, ease, cent) � (price, slide, cent)

input relation: (elephant, grab, him) → (elephant, throw, him)

opos: 0.832 supporting evidence: (ex-husband, catch, her) → (ex-husband, kill, her)

oneg: 0.830 supporting evidence: (ex-husband, catch, her) � (ex-husband, call, her)

input relation: (price, gain, cent) � (price, strengthen, cent)

opos: 0.943 supporting evidence: (investment, build, plant) → (investment, expand, plant)

oneg: 0.956 supporting evidence: (dollar, rise, yen) � (dollar, strengthen, yen)

input relation: (farmer, plant, acre) � (farmer, seed, acre)

opos: 0.813 supporting evidence: (refinery, produce, tonne) → (refinery, process, tonne)

oneg: 0.820 supporting evidence: (refinery, produce, tonne) � (refinery, receive, tonne)

Table 9

Four examples with input relations, output scores and evidences by our proposed method. Regneri
KB with 300 dimensional word embeddings. An event is shown as a 4-tuple (subject, predicate, first
object, second object). Empty slots (e.g. no object) are removed from the 4-tuple. [pro] stands for the
protagonist

input relation: ([pro], insert, money, machine) → ([pro], receive, ticket)

opos: 0.029 supporting evidence: ([pro], tell, order) → ([pro], receive, order)

oneg: 0.022 supporting evidence: ([pro], find, table) � ([pro], receive, order)

input relation: ([pro], pick, handset, phone) → ([pro], press, button)

opos: 0.841 supporting evidence: ([pro], put, food, microwave) → ([pro], press, button)

oneg: 0.835 supporting evidence: ([pro], ask) � ([pro], press, button)

input relation: ([pro], eat, desert) � ([pro], choose, item)

opos: 0.868 supporting evidence: ([pro], eat) → ([pro], take, trash)

oneg: 0.870 supporting evidence: ([pro], eat) � ([pro], decide, what)

input relation: ([pro], eat, desert) � ([pro], give, order)

opos: 0.890 supporting evidence: ([pro], look, menu) → ([pro], give, order, employee)

oneg: 0.899 supporting evidence: ([pro], eat, meal) � ([pro], tell, order)

Table 10

Evaluation of supporting evidence for Reuters KB and Regneri KB
(300 dimensional word embeddings) using R-Precision shown in
percent

Method R-Precision

Reuters KB

Memory Comparison Network 19.5

Random Baseline 9.8

Regneri KB

Memory Comparison Network 16.2

Random Baseline 3.0

due to missing arguments. By construction, events in
Reuters KB do not contain any missing arguments,
whereas Regneri KB does. Analyzing Regneri KB, we
find that around 19% of the events contain 0 argu-

ments (only verb), 60% of the events contain 1 argu-
ment (direct object), and 21% of the events contain 2
arguments (direct and indirect object). As explained in
Section 3.1, and in particular, the derivation of For-
mula (3), our proposed method accounts for missing
arguments by appropriately re-weighting the remain-
ing arguments. This is different from rankSVM, since
rankSVM necessarily needs a fixed vector representa-
tion, where missing arguments are set to the zero vec-
tor. This might partly explain the performance differ-
ence of rankSVM between Reuters KB and Regneri
KB.

6.1. Impact of training data size and runtime

Since the Regneri KB is about 10 times larger than
the Reuters KB, we suspected that some of the per-
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Table 11

Evaluation of supporting evidence for Reuters KB and Regneri KB (300 dimensional word
embeddings) using Recall@n shown in percent

Method Recall@1 Recall@5 Recall@10 Recall@20

Reuters KB

Memory Comparison Network 3.3 17.7 32.9 48.7

Random Baseline 1.2 6.1 12.1 24.3

Regneri KB

Memory Comparison Network 3.4 26.5 47.3 74.1

Random Baseline 1.0 5.1 10.2 20.5

Table 12

Evaluation of supporting evidence for Reuters KB and Regneri KB (300 dimensional word em-
beddings). Missing@n denotes the probability p(missing evidence in KB|rn = 0), shown here in
percent

Method Missing@1 Missing@5 Missing@10 Missing@20

Reuters KB

Memory Comparison Network 69.1 79.3 87.8 91.5

Random Baseline 67.3 74.2 79.4 86.0

Regneri KB

Memory Comparison Network 87.3 92.0 94.9 98.0

Random Baseline 86.1 87.3 88.5 90.2

Table 13

Three examples of our proposed method. The predicates are the same, but the objects are different.
Regneri KB with 300 dimensional word embeddings. An event is shown as a 4-tuple (subject, pred-
icate, first object, second object). Empty slots (e.g. no object) are removed from the 4-tuple. Due to
space limitations, we omit the protagonist

input relation: (put, amount, money) → (take, goods) opos − oneg: −0.001

input relation: (put, money, machine) � (take, money) opos − oneg: −0.002

input relation: (press, button) → (take, item) opos − oneg: 0.002

input relation: (press, button, product) � (take, money, pocket) opos − oneg: −0.003

input relation: (turn, laundry) → (put, clothe, dryer) opos − oneg: 0.007

input relation: (turn, dryer) � (put, clothe, dryer) opos − oneg: −0.063

Table 14

Predicate and arguments weights learned by our proposed model, see Equation (2) for weight
definition

Word embedding dimension Predicate Subject Object

Reuters KB

50 85.5% 7.1% 7.4%

300 75.9% 11.9% 12.2%

Word embedding dimension Predicate Subject Indirect object

Regneri KB

50 91.4% 0.8% 7.8%

300 37.6% 17.7% 44.7%
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Fig. 3. Accuracy of best three methods on Regneri KB for different sizes of training data with 50 dimensional word embeddings. Width of error
bars (shaded areas) is two standard errors.

Fig. 4. Runtime for different sizes of training data on Regneri KB with 50 dimensional word embeddings. Runtime is an estimate of the time
needed to perform all cross-validations on one core.

formance differences of the proposed method and the
baselines are due to the different training data size. We
therefore compared our proposed method, Modi2014,
the best neural network baseline, and rankSVM (RBF)
on Regneri KB with different training data sizes.

As can be seen from Fig. 3, for 50% or more of the
training data size, the proposed method is consistently
better than rankSVM (RBF) and Modi2014. When us-
ing only 20% of the training data, Modi2014 has an ac-
curacy of around 54% whereas the performance of the
proposed method and rankSVM (RBF), are at chance
level and below, respectively. Comparing the low ac-
curacy of all methods on Regneri KB with 20% train-
ing data, suggests that the task setting in Regneri KB is
more difficult than Reuters KB. In fact, recall that the
task setting in Regneri KB is such that testing is per-
formed on a script scenario that is possibly unrelated
to the script scenarios that were used for training.

We also investigated the impact of training data size
on the training time and runtime of each method. For
that purpose we ran all experiments on an Intel(R)
Xeon(R) CPU 3.30GHz with 32 cores. However, we
found that the usage of the number of CPU cores of
the proposed method, Modi and rankSVM were con-
siderably different.14 In order to get a rough estimate
of the runtime that can be compared across methods,
we normalized all times by the maximal number of
cores that were actually used. The results for running
the 14-fold cross-validation on Regneri KB with dif-
ferent training data size is show in Fig. 4. We see that
the runtime of rankSVM (RBF) is considerably higher
than or proposed method and Modi2014. Furthermore
we note that our method is easily parallizable, since

14The proposed method used between 5 and 7 cores, Modi and
rankSVM used only one core.
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Table 15

Number of trainable parameters of each model with respect to size
of word embedding dimension d and number of training samples n

Method Parameters

Memory Comparison Network 6

Granroth2016 10.5d2 + 5d + 1

Modi2014 3d2

Bordes2012 12d2 + 6d

Bai2009 9d2

rankSVM (RBF) n

rankSVM (linear) 3d

we can compare to all training instances in memory in
parallel (i.e. calculation of similarities in Equation (6)).
Therefore, we conclude that our method is more scal-
able for training than rankSVM (RBF), while leading
to similar or better performance.

6.2. Impact of number of trainable parameters

In Table 15, we list the number of trainable param-
eters of each neural network. For completeness, we
also include rankSVM’s number of trainable parame-
ters. For the RBF-kernel it is necessary to calculate a
weight for each training sample, whereas for the linear
kernel it is sufficient to learn a projection vector from
the feature vector dimension (3d) to a scalar.

Note that our method’s number of parameters is in-
dependent of the size of the word embedding, whereas
the other neural networks’ number of parameters are in
O(d2). Therefore, our method seems to be able to ben-
efit more from large word embedddings, as suggested
by the results in Tables 5 and 7.

The increase in parameter space when using large
word embeddings, even harms the method of Bor-
des2012. Whereas the network architecture of Gran-
roth2016 seems to be less prone to overfitting on the
large parameter space.

6.3. Error analysis

We identified roughly three types of reasons for er-
rors of our proposed method.

• Semantic parsing errors.
• Insufficient context information.
• Insufficient knowledge in the knowledge base.

Semantic parsing errors. There are some erroneous
events in the knowledge base, which were caused by
parsing errors of the original plain text. For example,
the second event of the input relation in Table 16, con-
fuses the syntactic and semantic subject of the event.
Apparently the semantic subject of the second event
should correctly be “government” or “authorities”.

Insufficient context information. In some cases, we
found that it is even for a human not possible to decide
the correct prediction due to insufficient context infor-
mation. An example from Regneri KB is shown in Ta-
ble 17. In the context of buying a ticket for a theater,
the input relation should be judged wrong, whereas, in
the context of riding a bus, the happens-before relation
should be considered correct.

Insufficient knowledge in the knowledge base. Fi-
nally, we identified prediction errors that are due to in-
sufficient happens-before relations in memory (i.e. the
knowledge base that is in memory is insufficient). An
example from Regneri KB is shown in Table 18. There,
we tested an input relation from the “shower” script,
and the system has in memory parts of the remain-
ing scripts (“ride bus”, “make coffee”, “answer door-
bell”, “eat fast-food”, “eat in restaurant”, “complain
about food”, “iron clothe”, “do laundry”, “microwave
food”, “make omelet”, “make scrambled egg”, “an-
swer telephone”, “buy from vending machine”). Since
none of the remaining scripts are closely related to
the “shower” script, some highest attentions are quite
bizarre: like “warming up food in the microwave”.
Thanks to the attention scores, our method enables de-
tecting dubious predictions that are due to insufficient
knowledge. This can help to decide when and how to
extend the knowledge base.

6.4. Current limitations

Our evaluations focused on the task of comparing
two temporal rules r1 and r2, and asking which one
is more likely, by ranking them. The discriminative
objective training function (see Equation (10)), works
well for ranking events, but it does not guarantee that
the scores can be related to reasonable probabilities
of future events. Reasoning in terms of probabilities
of future events, would allow us to integrate our pre-
dictions into a probabilistic reasoning framework like
MLN [34]. This could allow us to incorporate context
information into the reasoning process, and this way
help in situations like the ones show in Table 17.

In particular, including narrative and semantic frame
information in a probabilistic framework as suggested
in [12] is likely to help the prediction of future events.



480 D. Andrade et al. / Future prediction with memory comparison networks

Table 16

Error of our proposed method due to a wrongly parsed input relation. Example is from Reuters KB
with 300 dimensional word embeddings

input relation: (hijackers, seek, asylum) → (hijacker, grant, asylum)

opos: 0.787 supporting evidence: (we, need, policy) → (we, get, policy)

oneg: 0.791 supporting evidence: (worker, have, access) � (worker, deny, access)

Table 17

Illustrates the need of additional context information. The input relation is from Regneri KB with
300 dimensional word embeddings, script “riding bus” (which is unknown to the system). Correct
scores of the proposed method, but due to wrong reasons

input relation: ([pro], receive, ticket) → ([pro], hold, pole)

opos: 0.382 supporting evidence: ([pro], read, tag, clothe) → ([pro], hold)

oneg: 0.065 supporting evidence: ([pro], do) � ([pro], hold)

Table 18

Error of proposed method due to insufficient knowledge in Regneri KB (300 dimensional word embed-
dings). Input relation is from the script “shower”. Due to space limitations, we omit the protagonist. For
readability, we add prepositions in squared brackets

input relation: (turn [on], water) → (shave)

opos: 0.659 supporting evidence: (turn [on], microwave) → (remove, food, [from] microwave)

oneg: 0.659 supporting evidence: (turn [on], laundry) � (put, clothe, [into] washer)

7. Related work

In this section, we summarize previous work that is
related to our proposed method’s network architecture,
the creation/mining of future prediction rules and ap-
proaches that can generalize to unseen observations.

Memory networks and other related neural networks.
We named our model a memory network, since our
model has some similarity to the general memory net-
works framework proposed in [37,45]. Using the no-
tation from [45], I (·) corresponds to the word embed-
ding lookup, G(·) saves all training samples into the
memory, the O(·) function corresponds to (opos, oneg),
and the output of R(·) equals Equation (9). Noteable
differences are the symmetric architecture for compar-
ing the input to positive and negative training relations,
our parameterization of the similarity measure, and the
trainable softmax.

Our model also has similarity to the memory-based
reasoning system proposed in [36], with two differ-
ences. First, we use here a trainable similarity measure,
see Equation (5), rather than a fixed distance measure.
Second, we use the trainable softmaxγ rather than max.

Recently, neural networks with attention mechanism
have been proposed for several tasks like one-shot
learning [42], question answering [45], and machine
translation [1]. In particular, our proposed method is
inspired by memory networks as proposed in [45]. Our

method extends memory networks to allow compar-
ing the input with positive (happens-before) and neg-
ative (not happens-before) event pairs. Our method is
also related to a k-nearest neighbor classifier, with a
trainable distance metric [44]. However, in contrast to
the k-nearest neighbor method there is no fixed hyper-
parameter k, and all parameters can be learned via gra-
dient descent. Our method can also be considered as an
extension of Siamese networks (as used e.g. in [5,16]),
with which our method combines a memory and an at-
tention mechanism.

Mining and creation of future prediction rules. The
work in [32], suggests exploiting causal reasoning for
future prediction. However, temporal reasoning does
not equal causal reasoning. For example, “minister en-
ters hall” happens before “minister leaves hall”. How-
ever, the causal reason for “minister leaves hall” is, for
example, that “the conference ended”. Another differ-
ence of our approach to the method in [32] is that we
exploit word embeddings for generalization rather than
relying on the completeness of manually created on-
tologies.

Temporal annotations in context are made available
by the TimeML corpora15 and the Penn Discourse

15http://www.timeml.org/timebank/timebank.html and more re-
cently by TempEval-3 https://www.cs.york.ac.uk/semeval-2013/
task1/index.html.

http://www.timeml.org/timebank/timebank.html
https://www.cs.york.ac.uk/semeval-2013/task1/index.html
https://www.cs.york.ac.uk/semeval-2013/task1/index.html
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Treebank [31]. However, we found that due to the lim-
ited size only few future prediction rules can be ex-
tracted from such annotated corpora.16

One line of research, pioneered by VerbOcean [8],
extracts happens-before relations from large collec-
tions of texts using bootstrapping methods. In the con-
text of script learning, corpora statistics, such as event
bi-grams, are used to define a probability distribution
over next possible future events [6,28]. However, such
models cannot generalize to situations of new events
that have not been observed before. More recent meth-
ods proposed in [14,23,35] are based on word embed-
dings to address this problem.

The work in [23,33] proposes to evaluate future
prediction based on scripts, i.e. prototypical event se-
quences, that were manually created. The knowledge
base Regneri KB, which we used for evaluation, was
extracted from these scripts.

Another common method for evaluating future pre-
diction is to automatically extract event sequences
from text [6]. However, the disadvantage is that the or-
der of events in a text is not always a good proxy for
temporal order. For example, events later the text might
actually be entailed by events previously mentioned,
i.e. already known events and new events are not dis-
tinguished.

Another approach to acquiring common sense
knowledge about future prediction was recently pre-
sented in [24]. They manually created a set of stories,
where each story contains mainly stereotypical causal
and temporal event sequences. Each story is provided
with a correct and a wrong ending, and the task for
the system is to detect the correct ending (Story Cloze
Test). Their data and task setting are appealing, al-
though it seems that it is still too challenging: in order
to solve the task, a system needs to combine machine
reading (understanding of the semantics of the story)
and common sense knowledge about future events. Our
method (with associated knowledge base) addresses
the simpler, but arguably more ambiguous task of pre-

16Using the Penn Discourse Treebank, we tried to extract
happens-before relations of the form (S, Vl,O) → (S, V

pos
r ,O)

as in Table 2. However, we could extract only very few general
happens-before rules that can be interpreted without further context.
In particular, in a preliminary experiment, we extracted 2000 tempo-
ral rules from the Penn Discourse Treebank [31] and tried to judge
the correctness of each rule. We found that when fixing only the
subject, then, without using further context, only around 10 tempo-
ral happens-after relations could be judged as correct. No happens-
before relations could be extracted when fixing both the subject and
object. We expect similar results for the TimeML corpora.

dicting the next future event, given only one observed
event.

Other recent efforts to enrich language resources for
script learning using crowdsourcing are described in
[22,43]. The work in [43] improves upon [33] by in-
creasing the number of scripts and providing alignment
information between functionally similar phrases. On
the other hand, [22] provides a corpus with event se-
quence descriptions annotated in stories.

Methods for generalizing to unseen events. Apart
from the methods introduced in Section 4, we summa-
rize here several other methods that have been recently
proposed for script learning.

The work in [13] proposes a hierarchical Bayesian
model for classifying two event to be in an happens-
before relation or not. For generalizing to unseen
words, they suggest to use WordNet. However, the re-
sults from [23] suggests that the usage of word embed-
dings, and in particular their model (which we denoted
Modi2014) is better for happens-before classification.

Evaluating the next event in text, is very similar
to language modeling, where we want to predict the
next word given all previous words. Therefore, various
models, including LSTM [29,30] and the Log-Bilinear
Language Model [35], have also been proposed for this
task. However, all these models need large amounts of
training data. Therefore, theses models are trained and
tested on the textual order of events, where there is no
guarantee that this conforms to temporal order.

Similar to the language modeling task, [21] pro-
posed a neural network to predict an event given a set
of surrounding events in text. Their method sums the
event embeddings of the surrounding events, and thus
does not use the order of the events. As such the events
that occurred before and after are not distinguished.

Methods for classifying temporal relations in context.
Classifying temporal relations in text is addressed,
among others, by [7,20]. For example, the work in [7]
extracts several features from two events occurring in
the same (or neighboring) sentences, including tense
markers, prepositions and part-of-speech bigrams. The
work in [20] additionally exploits that two events in a
causal relation tend to be in a happens-before relation.

Other resources for temporal reasoning. Here, we
focused on a statistical machine learning approach
for reasoning about happens-before relations given a
knowledge base of true and wrong happens-before re-
lations. However, the creation of such a knowledge-
base is not trivial, and exploiting other publicly avail-
able resources for temporal reasoning should help to
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improve coverage. For example, temporal relations like
“planting a tree” before “watering the tree” could also
be extracted from the question-answer pairs of the MC-
Script dataset [25] that was created via crowdsourcing
(see e.g. Q2 in Fig. 1 of [25]).

Applications of temporal reasoning. Although, we
focused on an intrinsic evaluation of our system, the
usage of happens-before relations and temporal rea-
soning, in general, has several important applications.
For example, [38] points out the critical importance of
temporal reasoning in the medical domain, e.g. for in-
formation retrieval in clinical texts. A knowledge base
of temporal relations can also help the human expert in
the design of security rules [26], and power manage-
ment systems [15]. Finally, recent work [25,41] sug-
gests to evaluate temporal reasoning on question an-
swering tasks which can be closer to real world appli-
cations.

8. Conclusions

In this article, we proposed the Memory Compari-
son Network (MCN) for distinguishing between likely
and unlikely future events. MCN is a memory network
that can learn how to compare and combine the similar-
ity of input events to event relations in the knowledge
base (Section 3). MCN can effectively leverage an ex-
isting knowledge base of happens-before relations for
future prediction of unseen events. Key to our method
is the ability to automatically learn a similarity relation
between events such that future prediction accuracy is
optimized.

Our evaluations on two different knowledge bases
suggests that our proposed method’s future prediction
accuracy is at par or better than other (deep) neural
networks and rankSVM (Section 5). Furthermore, our
method has the advantage that it gives explanations for
its future prediction (Section 6). This is not only help-
ful to convince human decision makers, but also allows
to judge when the rules in the knowledge base are in-
sufficient (Section 6.3).
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