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Abstract. The precise mechanisms for the onset of labor at term remain unknown, yet several studies in humans reveal the role
of cytokines in the initiation and maintenance of labor, showing many of the hallmarks of inflammation. Recent findings suggest
a possible relationship between the activity of the autonomic nervous system (ANS) and the vagal anti-inflammatory response
during labor. Furthermore, the role of vaginal microbiota is particularly important during pregnancy because vaginal dismicrobism
is one of the most important mechanisms associated with preterm birth. In this review, we present evidence suggesting that a
sterile anti-inflammatory response is manifested to attenuate the excessive inflammation introduced by low-risk labor at term,
involving either the action of a cholinergic pathway, uterine-like myokines or the vaginal microbiome.
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INTRODUCTION

Human pregnancy and labor are physiological
scenarios during which the fetal allograft must be tol-
erated, fed and allowed to grow. The process of labor
is mounted to deliver the fetus from the woman’s
uterus [1]. Parturition is characterized by both cer-
vical ripening and myometrial maturation followed
by uterine contractions leading to cervical dilatation
and birth [2]. Given that labor seems to be driven by
pro-inflammatory cytokines, we suggest that it shows
inflammation hallmarks and that the immune privileges
that the fetal-placental unit enjoyed during pregnancy
are suppressed at the time of labor [3].
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During term and preterm labor different immuno-
logical changes are observed, including acute
inflammatory features such as an increased influx
of leucocytes and an elevated expression of pro-
inflammatory cytokines that have been observed in
cervical tissues and fetal membranes [4–6]. Likewise,
many studies support the hypothesis that labor involves
an inflammatory event [7–13], but more precisely,
that human labor should be considered as a sterile
inflammatory event mainly because it may be free of
microbes triggering labor. According to Rock et al.
[14], some sterile pro-inflammatory stimuli, like dead
cells, irritant particles (including crystals, minerals and
protein aggregates), trauma, immunogenic antigens
and autoimmune conditions can cause an inflamma-
tory response. An important finding was that all of
such stimuli elicit this inflammation through the same
cytokine mediator, interleukin-1 (IL-1) [14]. Given that
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labor implies substantial muscular work involving sig-
nificant physical efforts, with an important metabolic
activity [15, 16], we hypothesize that rigorous energy
regulation must then be achieved by homoeostatic
physiological processes during this final stage of preg-
nancy where inflammation is also occurring.

Other authors have reported that an inflamma-
tory input activates fast and subconscious anti-
inflammatory neural responses [17]. In fact, Huston
and Tracey [18] defined a neuronal circuit acting as the
anti-inflammatory reflex in which the main component
is the descending branch of the vagus nerve. Centered
on this model, action potentials coming from vagus
nerve lead lymphocytes to release acetylcholine that
inhibits the production of pro-inflammatory cytokines
through �7 nicotinic receptors [18, 19]. This consider-
ation then leads to propose that the observation of the
activity of the vagus nerve can provide a suitable tool
for measuring an anti-inflammatory reflex in various
physiological contexts, thereby supporting a relation-
ship between the activity of the autonomic nervous
system (ANS) and an anti-inflammatory response [18].
A conventional noninvasive method to assess the ANS
is by analyzing heart rate fluctuations (HRF) data [20].
In general, linear and non-linear methods are applied
to obtain measures that are used to estimate parasym-
pathetic and sympathetic activities [20]. Additionally,
some studies reinforce the consideration that the car-
diovagal activity, quantified by the analysis of HRF
data, could provide insights to understand the inmuno-
vagal route [21].

In addition, the role of vaginal microbiota in relation
to the process of labor may be particularly impor-
tant because vaginal dismicrobism is one of the most
important mechanisms associated with preterm birth
and perinatal complication [22]. Some authors have
reported that a probiotic dietary supplementation can
be related to a global anti-inflammatory effect on
the vaginal immunity, with potential implications in
preventing preterm birth [23]. However, most of the
vaginal microbiota of pregnant women has been stud-
ied during pathological situations such as bacterial
vaginosis and aerobic vaginitis [24–28]. As the role
of microbiota should not be limited to pathological
conditions, we consider necessary to reevaluate the
physiological role of vaginal microbiota during preg-
nancy and its relationship with inflammation.

Current research on the microbiome is exposing
several dependencies of the host on microbiota for
the maintenance of health, and also the crucial role
that endosymbionts may play in the initiation and
propagation of disease. Thus, several experimental

model systems, including mice, fish, insects, squid
and non-human primates, continue providing impor-
tant insights about the host–microbiota homeostasis
[29, 30].

Focused in the physiological process of labor at
term, the purpose of this review is to address the fol-
lowing questions linked to labor in healthy women:
Is an anti-inflammatory reflex an adaptive response to
cope with the excessive inflammation occurring during
labor? Could this process be assessed by the analy-
sis of heart rate dynamics, immunological biomarkers
and the characterization of vaginal microbiota? To pro-
vide some insights into these questions, first we review
important issues on the energetic homeostasis during
labor. Then, by presenting evidence about the increased
vagal modulation during labor at term indicated by
HRF data, we focus on the sterile anti-inflammatory
reflex. Finally, by means of a comparative approach, we
present a few evolutionary aspects of the relationship
between vaginal microbiota and pregnancy.

ENERGY HOMEOSTASIS DURING LABOR

During pregnancy, the fetus requires glucose and
amino acids for its growth and development, which sets
the pregnant woman to a continuous state of energy-
demand. Studies of protein and energy metabolism
demonstrate the need of regulating the usage of those
nutrients [31, 32]. Fat is deposited in maternal stores
throughout pregnancy, providing an energy reserve of
30 000 kcal at the end of gestation [31]. Of course this
reserve is important to satisfy the fetal requirements,
but possibly, also, to confront an important period of
energy expenditure caused primarily by an increasing
contractile activity in the myometrium during labor.
In fact, the maternal heart rate during labor increases
up to levels comparable to moderate or heavy exercise
[33].

The molecular mechanisms involved in the uterine
quiescence during gestation and the induction of labor
are not completely known, though it has been demon-
strated that the energetic metabolism of the uterine
muscle is different between pregnancy and labor [34].
As glucose represents the primary maternal energy
reservoir during the first and second stages of labor
[35], if labor is prolonged and the source of glucose
is limited, gluconeogenesis can be insufficient. Dur-
ing normal labor, the concentration of free fatty acids
and ketone bodies increases, leading to the recruitment
of substrates other than glucose and a relative reduc-
tion of carbohydrates [36, 37]. Thus, labor’s efforts
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rapidly decrease the availability of carbohydrates, lead-
ing the women’s body to metabolize fat for obtaining
energy. Consequently, the availability of amino acids in
the mother’s and fetus’ bloodstream is reduced, while
the fatty acids and ketones increase [38]. Furthermore,
Scheepers et al. suggest that maternal hyperglycemia
occurs during labor, leading to increments in mater-
nal and fetal lactate production, resulting in metabolic
acidosis [35].

It is well known that, during physical activity, the
consumption of energy is linked to the actual dura-
tion of this activity [39]. But, given that labor can be
extended for several hours (the average time of labor
for a primiparous woman is about 16 to 17 hours) [40],
it becomes a high energy-demand process similar to
that of mid-heavy exercise according to Söhnchen et
al. [33]. One may ask how much energy is being used
during labor. For instance, if the energy expenditure for
a 55 kg woman during moderate and heavy exercise is
between 3.5–7.7 Kcal/min [41], therefore the estimate
of energy consumption is 3400–7900 Kcal for a woman
during 16 to 17 hours in labor. However, there is few
empirical information about energy-expenditure dur-
ing labor. It has reported as low as 50–100 Kcal per
hour of active labor [42] and as high as 300–520 Kcal,
Maganha and Peraçoli [43]. Why is this big varia-
tion occurring? One likely answer may be related to
the differences in energy expenditure between the first
and second stages of labor [44]. However, Katz et al.
have reported that due to the intermittent character of
uterine contractions, normal labor and delivery do not
impose high energy demands on the parturient, but that
a prolonged labor may result in maternal metabolic
disturbances [45]. Thus, these considerations provide
opportunity for the realization of future research on
this phenomenon.

Other studies indicate that rather than lipids, the
pregnant uterine smooth muscle uses glucose as its
main nutritive metabolite, and that compared to the
striated muscle, the anaerobic pathway of the glucose
metabolism is more active in the myometrium [46].
Also, it has been suggested that glucose has a critical
role as the principal fuel for ATP formation and both
the adenylate kinase and 5′-nucleotidase reactions are
involved in any event of glucose shortage [46]. Other
studies suggest that glycogen is important because the
myometrium content in pregnant rats was found to be
increased just prior to parturition [47]. Findings dur-
ing the latter half of pregnancy in pregnant rats showed
gradual increments of insulin binding sites that peaked
on the day of parturition [48]. Other findings suggested
the effectiveness of insulin in the uterus of pregnant

rats, showing that its sensitivity in the myometrium
was similar to that observed in skeletal muscle [49].
Thus, myometrium inflammation by means of insulin
resistance may be required for maintaining the flow of
energy that sustains uterine contractions.

From an immunological point of view, labor can also
be considered as an inflammatory event [7–13]. From
this perspective, the regulation of energy homeostasis
and the immune response is crucial for an organism’s
survival [50]. For example, in chronic inflammatory
diseases, balanced energy-rich fuel supply is largely
disturbed due to the vast consumption of an activate
immune system [50]. In turn, this process must be
occurring during labor as well to fulfill the energy con-
sumption of the mother and fetus. Thus, the maternal
immune response and the metabolic regulation should
be integrated and the proper function of each must be
highly dependent on the other. According to Hotamis-
ligil et al. this interrelation can be viewed as a central
homeostatic mechanism [51]. It is well known that an
immune response involves a substantial investment of
energy [52–54]; therefore, immunity is dependent on a
trade-off between other highly demanding energy pro-
cesses [55]. Labor is a process of energy consumption
where the energy-immune trade-off between mother
and child is still unclear. Thereby, from this point of
view, labor can be regarded as an ‘energy demand reac-
tion’ caused by the activity of the immune system, the
mobilization of fuel stocks (lipolysis/glucogenolysis),
and the induction of insulin resistance in liver, adipose
tissue and skeletal muscle with the overall purpose of
allocating energy-rich fuels to the activated immune
cells [50] and, clearly, also the myometrium.

An orthodox trigger inflammation is infection, with
the inciting stimulus being certain molecules of the
invading microbes. However, several other stimuli,
including mechanical trauma, ischemia, toxins, min-
erals, crystals, chemicals, and antigens, also trigger
inflammation in a so called sterile fashion [14]; thereby,
we presume that a possible phenomenon of sterile
inflammation could be labor itself. Considering that
most of the signs and symptoms of inflammation
are caused by changes in the local vasculature of an
affected tissue [56], in case of spontaneous deliv-
ery and preterm labor, there are changes mediated by
inflammation in the cervix tissue and the myometrium
membranes [3, 4]. As the immune system needs many
energy-rich supplies [57], local inflammation must be
supported by fuel provision from local or systemic
stores. Thus, the participation of an anti-inflammatory
response is vital to restrain inflammation [17] and to
limit the energy demands.
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This situation then raises the question: Is it possible
to identify a sterile inflammatory response during low-
risk labor at term in women?

Any answer to this question should first consider
that labor becomes exacerbated by inflammatory
process. In fact, pro-inflammatory cytokines such
as interleukin: IL-1, IL -6, Tumor Necrosis Factor
(TNF-�), IL-8, IL- 16, Monocyte Chemoattractant
Protein 1 (MCP -1), Macrophage Inflammatory Pro-
tein (MIP- 1�), and chemokine CCL5 are all known
to be involved as responsible factors for preterm labor
[58]. Furthermore, these cytokines are present in
high concentrations in the amniotic fluid of patients
with infection or inflammation, stimulating uterine
contractility by inducing prostaglandins. As it has
been demonstrated that the activation of Nuclear factor
κ� (NF- κ�) in human myometrium up-regulates
inhibitory progesterone isoforms [59], some studies
have found that the NF- κ� is a key modulator of these
pathways and acts by regulating the expression of
prostaglandins, chemokines and the pro-inflammatory
cytokines involved in both term and preterm labor
[1, 60]. The removal of the immunosuppressive and
quiescent influences of progesterone by its functional
withdrawal may in fact itself be initiated by the inflam-
mation and activation of NF- κ� [1, 61]. Therefore,
they induce premature labor and birth; yet, apparently,
the anti-inflammatory cytokine IL -10 has an impor-
tant role in regulating the immune response because
an increased concentration of it during preterm and
labor at term in amniotic fluid has also been identified
[58].

A STERILE ANTI-INFLAMMATORY
REFLEX DURING LABOR

As described above, pregnancy itself involves an
inflammatory process associated with increased pro-
inflammatory cytokines [1, 4, 58, 60]. In this sense, it
is also known that progesterone has an immunosup-
pressive role which promotes the immune privileges
of the fetus and regulates the levels of cytokines in
the maternal-fetal interface. However, when labor is
triggered, these privileges are no longer preserved,
causing a sterile inflammation (dilation of cervix,
effacement and uterine contractions) and producing
pain [3]. Therefore, to oppose this inflammation,
the anti-inflammatory cholinergic reflex, among other
mechanism explained, could in principle restrain, as
in other contexts, the release of pro-inflammatory
cytokines [17]. In some conditions, a synergistic

coactivation of sympathetic/parasympathetic systems
[17] is also manifested through the release of
adrenaline/noradrenaline and acetylcholine, respec-
tively. Because pain and fight reflexes are probably
manifested during labor, a sympathetic participation
may also be involved. Thus, both systems may proba-
bly act to down-regulate inflammation (Fig. 1).

Considering the role of myokines [62], it is now
recognized that skeletal muscles express and release
myokines into the bloodstream in response to mus-
cle contraction by physical activity. Given that muscle
fibers express the myokine IL-6, some studies sup-
port the relationship between an anti-inflammatory
effect of exercise and IL-6 [63, 64] because these
myokines stimulate the production of the classical
anti-inflammatory cytokines IL-1ra. A direct parallel
between the three major myometrial phenotypes (i.e.
proliferative, synthetic, and contractile/labor) and the
three phases of immunological transformation (i.e. ini-
tiation, tolerance and activation) [65] has even been
reported, thus pointing to the question over what
is the participation of myometrial myokines during
labor? Some reports suggest that the stretch of uterine
myocytes increases the IL-8 mRNA expression during
the onset of labor [66]. Moreover, that the cytokines
IL-1�, IL-6 and IL-8 levels are higher in maternal
serum during the onset labor than those of non-labor
women [67]. By making an analogy between exer-
cise and labor, we hypothetisize that the strong uterine
activity induces a sterile anti-inflammatory reflex by
means of myokines production.

One of the major triggers of inflammation is
infection, being certain molecules of the invading
microorganisms the inciting stimuli [68–70]. In this
context, because labor must be free of microbes that
trigger it, and in comparison with some preterm labors
triggered by bacterial infection [22], low-risk labor
could be considered as a sterile inflammatory event.
However, while the final inflammatory manifestation
of labor should be similar between infectious and ster-
ile triggers, the specific control of the response may
be different. Thereby, each inflammatory input may
activate a distinct anti-inflammatory response; in case
of low-risk labor at term a sterile anti-inflammatory
response. Results showed that the IL-1 pathway plays
a key role in the neutrophilic inflammation to diverse
sterile stimuli, including a variety of irritant particles
and dead cells [14]. Interestingly, this same cytokine
has been implicated in the mechanism of human par-
turition, because some results showed that pregnant
women without labor had undetectable IL-1 � concen-
tration in comparison to a labor group [71].
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Fig. 1. Diagram of the inflammatory process as a mechanism
present during labor and its possible association with a regional
anti-inflammatory sterile response. According to Tracey KJ, 2002,
this response sometimes presents a synergistic action by the sym-
pathetic/parasympathetic systems to contend with inflammation.
Uterine-like myokines and the vaginal microbiome may also be
involved (see text). (Image adapted from Peltier MR, Immunology
of term and preterm labor, 2003).

INCREASED VAGAL MODULATION
DURING LABOR AT TERM

A noninvasive method to assess the autonomic ner-
vous system (ANS) is the analysis of HRF data. HRF

analysis aims to separate and quantify the autonomous
cardiac response in sympathetic (adrenergic) and
parasympathetic (cholinergic-vagal) influences. The
sympathetic and parasympathetic branches of ANS
and their influences on heart rate (HR) and HRF are
well understood. Sympathetic activity tends to increase
HR and decrease HRF, whereas parasympathetic tends
to decrease HR and increase HRF [20].

The time intervals between consecutive heart beats
are measured in the electrocardiogram (ECG) from the
beginning of a QRS complex to the beginning of the
next QRS complex. They are conventionally named
RR intervals (Fig. 2a). Thus, the HRF is defined as the
variation of consecutive RR intervals. Among different
mechanisms, this variation depends on the autonomic
control of the heart.

A group of researchers began a series of discus-
sions about the role of HRF analysis as an index
of autonomic control, concluding that different anal-
ysis techniques of HRF provided indices associated
with the autonomic control of the heart [72]. Recent
studies have specifically linked the cholinergic anti-
inflammatory activity with changes in some of these
HRF indices; thereby, considered as important param-
eters useful for recording the activity of such pathway
[18]. In particular, given that the root mean square
of the successive differences (RMSSD) is commonly
used as an index of a vagal nerve mediated cardiac
control, which is closely linked to respiration via the
respiratory sinus arrhythmia (RSA) [73], this is one
of the HRF time-domain tools that may be likely
linked to the anti-inflammatory cholinergic reflex [74].
Parasympathetic activity can also be quantified by the
power-spectral analysis of the HRF, providing the high
frequency (HF) index. Which physiological inflam-
matory processes modify the RMSSD index? For
instance, some atopic diseases, such as dermatitis, have
been linked to changes in the autonomic modulation
towards a higher parasympathetic influence. Patients
with dermatitis had higher values of parasympathetic
parameters (increased RMSSD) than controls. There-
fore, authors have concluded that regional adjustments
should be caused by anti-inflammatory cholinergic
reflex relieving dermatitis symptoms [75]. Further-
more, other studies reinforce the suggestion that
cardiovagal activity, quantified by the analysis of HRF,
could provide insights to understand the immunovagal
route [21]. Importantly, some clinical studies have also
evaluated the relationship between inflammation and
HRF parameters in different contexts [76–84].

In a recent study, we explored vagal modulation dur-
ing labor at term assuming that an anti-inflammatory
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Fig. 2. a) An RR interval is the elapsed time between two successive QRS complexes of the ECG. RR intervals show the variation between
consecutive heartbeats. Heart rate fluctuations (HRF) measurements analyze how these RR intervals change over time. b) Typical data of heart
beat fluctuations during the last trimester of gestation prior to labor TRD (Left) and during labor at term LAB (Right) segments. Values of the
parameters HP and RMSSD calculated for those series are also depicted. Bottom of the figure illustrates how these parameters are obtained.
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cholinergic response was manifested during low-risk
labor. Thus, once obtained informed consent, we col-
lected at Maternal and Child Research Center, Mexico
City, Mexico (CIMIGen), 10 minutes segments of elec-
trocardiogram (ECG) from 30 women in low-risk labor
at the semi-Fowler position (mean age of 26 ± 5 years)
without any complication and with normal pregnancy
outcome: mean APGAR (5 minutes) 8.9 ± 0.7 point,
gestational age of 40 ± 1 weeks and birth weight of
3175 ± 297 g.

Women received intravenous oxytocin during early
labor to improve contractility. The ECG were recorded
during periods with low uterine activity or not present-
ing contractions at all (LAB group), with the purpose
that hemodynamic changes due to uterine contractions
did not affect the HRF measurements. A second group
included HRF data segments collected during the last
trimester of gestation prior to labor from a different
group of 30 pregnant women (TRD group) with gesta-
tional age of 35 ± 2 weeks.

A ECG portable device, Monica AN24, was used
for data acquisition. Sampling frequency was 900 Hz.
Required segments were delineated visually by using
the device’s software, displaying values of maternal
and fetal heart rate among ECG-derived uterine
activity.

Raw maternal ECGs were then processed using pre-
vious validated algorithms to generate RR intervals or
HRF series corresponding to LAB and TRD segments
[85]. All series consisted of 600 samples (spanning 5
to 10 minutes duration).

Segments of both groups were analyzed to esti-
mate the average heart period (HP), RMSSD, and
HF peak index to estimate the respiration rate [86].
Previous research [87] has shown that the central fre-
quency location of the HF peak of HRF (Fig. 2b)
can be an appropriate index of respiration rate. There-
fore, the HF component of HRF is a useful proxy
for respiration rate when respiration is not directly
measured.

RMSSD was estimated as:

RMSSD =
√√√√ 1

n − 1

n−1∑
i=1

(NNi+1 + NNi)2 (1)

where NNi is the duration of the i-th NN interval in the
analyzed ECG, and n is the number of all NN intervals
[20, 88].

We found RMSSD statistical differences (p < 0.03)
between LAB and TRD groups (36 ± 14 ms vs.
25 ± 13 ms, respectively), without affecting neither HP
(705 ± 100 ms vs. 705 ± 90 ms, respectively), nor the

Table 1
Mean values (±SD) of parameters of HRF (HP, RMSSD and HF
Peak). Gestational age of LAB (40 ± 1 weeks) vs. gestational age of
TRD (35 ± 2 weeks) were statically different (p < 0.00001) between

LAB and TRD

GROUP HP (ms) RMSSD (ms) HF PEAK (Hz)

LAB 705 ± 100 36 ± 14∗ 0.29 ± 0.06
TRD 705 ± 90 25 ± 23 0.29 ± 0.06
∗p < 0.03 between LAB and TRD.

HF peak (0.29 ± 0.06 Hz vs. 0.29 ± 0.06 Hz, respec-
tively); (Table 1).

These results indicate that the parasympathetic mod-
ulation of HRF was increased in the labor group (we
found higher levels of RMSSD in LAB vs. TRD
groups). This parameter then indicates an increased
parasympathetic activity during labor that may reflect
a counter-regulatory mechanism to restrain inflamma-
tion. Noteworthy, this increment did not affect the HP
parameter and thus we can discard differences in the
influence of ventilation between TRD and LAB groups
as indicated by the HF Peak.

PERINATAL MICROBIOTA

It is now known that vaginal bacteria commensals,
including Lactobacillus crispatus, L. jensenii, and L.
rhamnosus, have strong associations with the vaginal
epithelial cells. Vaginal bacterial commensals do not
trigger cytokine secretion, but as Lactobacilli play and
active role to modulate cytokine production [89], bac-
teria non-commensals can produce an inflammatory
process. Also, this consideration is supported by the
fact that recent discoveries of variation in the compo-
sition of the microbiome of healthy individuals [90–92]
show the importance of identifying the processes that
could possibly give rise to such variation [93], and
there is a rising interest to study microbial community
ecology and the healthy microbiota [94, 95].

Before considering pregnancy, it is necessary to
review how is vaginal microbiota characterized in
non-pregnant women. Studies have described the
composition of the vaginal microbiota during non-
pregnancy: Ravel et al. reported the results of a
pyrosequencing analysis of vaginal specimens from
a sample of 400 non-pregnant healthy women; they
showed that the vaginal microbiota was dominated by
Lactobacilli, including L crispatus, L iners, L jensenii
and L. gasserii [91]. In accordance with these results,
other studies support the observation that species of
Lactobacillus dominate vaginal microbiota in most
normal and healthy women [96–99]. However, the
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dynamics of the community composition of vaginal
microbiota are also affected by the phase of the men-
strual cycle, ethnicity, and to a certain extent, sexual
activity [100]. Moreover, it must be stressed that the
concept of a “normal and healthy” vaginal microbiota
is hard to describe without having a full understand-
ing of its role and its effect on women’s physiology.
According to some studies, one possible way to sepa-
rate between healthy and unhealthy vaginal microbiota
is based on the resulting predisposition to acquire sex-
ually transmitted infections [98, 101].

On the other hand, further evidence indicates that
the structure of the vaginal microbiota differs signifi-
cantly during pregnancy, while other evidence suggests
that the microbiota of pregnant women is less diverse
and rich (in measured variance) throughout gesta-
tion and in proximity to the uterus. According to
Aagaard et al. the richness of vaginal microbiota diver-
sity is reduced in pregnancy, with dominance of the
Lactobacillus species (L. iners crispatus, jensenii and
johnsonii, and the orders Lactobacillales, Clostridi-
ales, Bacteroidales, and Actinomycetales [102]. In this
study authors assume that the increased Lactobacillus
dominance in the vaginal microbiota during pregnancy
may be important for the first inoculum that deter-
mines neonate´s upper gastrointestinal microbiota
upon delivery, or for reducing the risk of ascending
infection or preterm birth. In fact, these results may be
linked with a remodeling of the gut microbiota over
the course of pregnancy. The gut microbiota regis-
tered during the first trimester is comparable to that of
normal healthy controls, but this similarity shifts sub-
stantially (in terms of phylogenetic composition and
structure) over the course of pregnancy. By the third
trimester an enrichment of Proteobacteria and Acti-
nobacteria is observed in the majority of women [103].
Ottman et al. have reported that the activity and com-
position of the gut microbiota is affected by genetic
background, age, diet, and health status of the host
[104].

The possible interactions between gut and vaginal
microbiota are caused by the close proximity of the
vagina to the anus, exposing the vagina, cervix, and
uterus to bacteria and other microorganisms, and some-
how giving the intestine flora access to the reproductive
tract via the rectum and perineum.

What factors lead to this unbalance or dismicrobism
of vaginal microbiota? The incidence of vulvovagi-
nal candidiasis, urinary tract infection, and bacterial
vaginosis (BV), among other infections, affect vagi-
nal microbiota [105–108]. For example, during BV
the microbiota is dominated by Gardnerella vaginalis

[109] and a number of anaerobic organisms. In con-
trast, normal flora is dominated by various Lactobacilli
producing an acid environment with pH in the range
of 3.5 to 4.5 [110]. Bacterial vaginosis and aerobic
vaginitis have been claimed as important mechanisms
responsible for preterm birth and perinatal compli-
cations [22, 111]. In addition, BV flora predisposes
women to infection by the human immunodeficiency
virus and sexually transmitted diseases [98]. Addition-
ally, some authors even suggest that, given the hygienic
practices of contemporary societies, an excessive use
of feminine-hygiene products could cause imbalances
in the vaginal microbiota which may promote infection
[112].

It is also interesting to understand the mechanisms
of defense used in the control of infections; vagi-
nal defenses include: (i) mechanical barriers such
as the mucus layer, hemocidin and fibronectin, (ii)
host protective enzymes (e. g. lysozyme and lacto-
ferrin), and (iii) host immune responses including
the complement system and secretory immunoglob-
ulin A (IgA), all of which are influenced by the
vaginal microbiota [113–115]. Another way to sus-
tain a healthy vaginal microbiota could be based
on the oral and vaginal administration of probiotics.
The application of multi-strain probiotics to improve
pregnancy outcomes has already been tested in a
pilot study, with some success in terms of modulat-
ing immune parameters and vaginal microbiota [23].
Such probiotic supplementation can be associated with
a global anti-inflammatory effect on vaginal immu-
nity, with potential implications for preventing preterm
birth [23]. Particularly, L. rhamnosus GR-1 is able
to up-regulate the anti-inflammatory cytokine inter-
leukin 10 (IL-10) and the colony-stimulating factor
3 (CSF3); and, independently to down-regulate the
pro-inflammatory cytokine TNF-� in human placental
trophoblast cells [116–118]. Even the TNF-� has been
associated with infection-mediated preterm birth [119,
120]. These studies have suggested that the administra-
tion of probiotics may help restoring and maintaining
a healthy vaginal microbiota, and thus, that some pro-
biotic strains seem to have the ability to interfere with
the inflammatory pathway leading to premature deliv-
ery. Findings such as these lead us to suggest that some
kind of immune modulation by the vaginal microbiota
may be opposing the exacerbated inflammation pro-
cess observed during labor.

Now, which is the importance of the vaginal micro-
biota for the newborn? At the time of birth, the newborn
is exposed to maternal microbiota [121–124]. The
passage through the genital tract is an essential part
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of this process because the mode of delivery alters
the neonatal microbiome [121–126]. In this context,
Dominguez-Bello et al. have shown that vaginally-
delivered newborns acquired bacterial communities
resemble their own mother’s vaginal microbiota (dom-
inated by Lactobacillus, Prevotella, or Sneathia spp.);
and that caesarian section newborns harbored bac-
terial communities that were more similar to those
found on the skin surface, dominated by Staphylo-
coccus, Corynebacterium, and Propionibacterium spp.
[121]. Other results indicate that Lactobacillus found
in the maternal vagina influence the development of
the neonatal immune system [127]. Maternal antibi-
otics during labor were associated with a decreased
transmission rate of vaginal Lactobacillus flora to the
neonate during birth, which may have a preventive role
in the development of allergic diseases in the newborn
[128]. This evidence could be supported by the find-
ings of Reid et al., because they have found that in
some cases of bacterial infections, nonspecific antibi-
otics are used, killing the non-pathogenic members of
the microbiota as well as the pathogens and leading
to a substantial delay in the restoration of a healthy
microbiota [129].

EVOLUTIONARY PERSPECTIVES

As in humans, several taxa have developed associ-
ations with microbial life, affecting different aspects
of their health, sociality and reproduction [e.g., insects
130, 131; aquatic organisms 132; amphibians 133; rep-
tiles 134–136; birds 137, 138; carnivores 139, 140,
primates 141, 142]. Accordingly, the vaginal micro-
biota may also be regarded as a symbiotic relationship.
Symbioses are believed to be ancient, as they involve a
long history of interdependence and natural selection
involving the coevolution of microbial and host traits
that reinforce the relationship [143].

Different species use a variety of behaviors which,
acting also as social bonding mechanisms, may allow
for the direct and indirect transmission of microbiota
[144], including licking [145] and grooming [146]. For
instance, crucial to regulation of mammalian develop-
ment are maternal biochemicals provided to offspring
through lactation [147]: an ancient adaptation aris-
ing several million years ago, with the function of
protecting the product from both desiccation and col-
onization by microbial pathogens [148]. A study by
Bailey and Coe [149] signals the importance of the
mother-infant relationship. These authors found that
in infant rhesus monkeys, the integrity of their micro-

biota suffered important modifications after separation
from their mothers, suggesting that this social disrup-
tion lead to an internal environment that was more
prone to infection by pathogens. Indeed, it is during
suckling when infants receive specific microbe strains
from their mothers [150]. A variety of milk compo-
nents nourish a newborn by providing the compounds
that promote growth, modulate the immune system,
promote cognitive development and help establishing a
normal gastrointestinal microbiota [151]. For example,
human milk contains large amounts of oligosaccha-
rides that are not directly assimilated by infants.
Instead, these oligosaccharides feed the bacteria B.
longum infantis, a primary link in the process of
infant´s nutrition that helps modulating the immune
responses in the intestines and with an important role
in the bioconversion of digested nutrients [152]. Some
authors have suggested that, compared to that found
in other primates and probably due to their beneficial
microbiological properties, the significantly greater
oligosaccharide concentration found in human milk
could have been selected based on the particular dis-
ease ecology of humans [153].

Recent developments in metagenomic methods
allow the identification of the microbial communities
composition by means of DNA sequencing, without the
need for specific cultures, providing important insights
into within and inter-individual variation [154].
Evidence suggests that, in contrast to bacterial commu-
nities found in non-human primates and as described
before, the healthy human vaginal microbiota is char-
acteristically dominated by the presence of Lactobacil-
lus [30]. Such findings allow asking about the selective
pressures leading to the establishment of this relation-
ship across the evolutionary history of the organisms
involved. Stumpf et al. [30] have recently suggested
three hypotheses explaining the comparative unique-
ness of the human vaginal microbiome. Their first
argument is that, given that the abundant Lactobacillus
are related to estrogen levels in women of reproductive
age, their presence could be related to differences in the
reproductive cycles between humans and non-human
primates. As the vaginal microbiota of most other non-
human primates of reproductive age resembles that of
non-reproductive human females, its presence could
offer protective advantages from pathogens during the
crucial periovulatory periods [30]. In this sense, com-
parative evidence from apes suggests that menopause
is not common among chimpanzees [155], gorillas
[156] or orangutans [157], and therefore, that the abun-
dant presence of Lactobacillus and menopause could
be both derived features of the human life-cycle [155,
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Fig. 3. Suggested interaction among mother, fetus and vaginal microbiota during labor. A sterile anti-inflammatory response is manifested
during low-risk labor at term, by either the action of a cholinergic pathway, uterine-like myokines or vaginal microbiome (Image adapted from
[159]).

158]. The second hypothesis of Stumpf et al. is that the
uniqueness of the human vaginal microbiome may be
related to human’s unique sexuality, i.e., the continuous
female sexual receptivity increases females exposure
to greater risks of infection and thus a symbiosis that
could, somehow, minimize such risks would be highly
advantageous and selected. Perhaps current devel-
opments involving the primate vaginal microbiome
should focus research efforts on the wide variety of
primate’s reproductive systems and expand our knowl-
edge on this aspect of the distinctiveness of the human
primate [30]. Last but not least, by means of an “obstet-
ric protection hypothesis”, Stumpf et al. suggest that
the size of the product in relation to the size of the pelvic
outlet could increase the risks of infection to the mother
and the fetus, and therefore that a symbiosis reducing
such risks would be highly advantageous [30].

CONCLUSION

On the basis of this review, we consider low-
risk labor at term as a sterile inflammatory event

where three important entities come into interplay
(Fig. 3). The first is the mother, whose HRF anal-
ysis provides a non-invasive tool to disentangle the
role of the anti-inflammatory vagal reflex during labor.
The second entity is the vaginal microbiota, where
its immunomodulation properties may be based on
the modification of bacterial colonies; in particular,
the family of Lactobacilli seems to play a key role
in this process. The final entity is the fetus, play-
ing an important role on the labor process; the fetal
heart rate fluctuations may also represent another
important marker to understand more about the anti-
inflammatory process during the process of labor.
While this is a promising path for future research, in
this review we have focused our efforts in underlying
the primary role of the mother.
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[34] Laudański T. Energy metabolism of the myometrium in
pregnancy and labor. Zentralbl Gynakol. 1985; 107(9): 568-
573.

[35] Scheepers HC, de Jong PA, Essed GG, Kanhai HH. Fetal
and maternal energy metabolism during labor in relation to
the available caloric substrate. J Perinat Med. 2001; 29(6):
457-464.

[36] Kashyap ML. Carbohydrate and lipid metabolism during
human labor: Free fatty acids, glucose, insulin and lactic
acid metabolism during normal and oxytocin-induced labor
for postmaturity. Metabolism. 1976; 25: 865-871.

[37] Felig P, Lynch V. Starvation in human pregnancy; Hypo-
glycemia, hypoinsulinemia and hyperketonemia. Science.
1970; 170: 990.

[38] Keppler AB. The use of intravenous fluids during labor.
Birth. 1988; 15: 75-79.

[39] Wood C, Ng KH, Honslow D. Time – an important variable
in normal delivery. J Obstet Br Commonw. 1973; 80: 295-
300.

[40] Limmer D, et al. Emergency Care. 9th ed. Englewood Cliffs,
New Jersey: Prentice Hall, 2000.

[41] McArdle WD, Katch FI, Katch VL. Exercise Physiology:
Energy Nutrition and Human Performance. 6th ed. Balti-
more, MD: Lippincott Williams & Wilkins; 2007.

[42] Marchese T, Coughlin JH, Adams CJ. Nurse midwifery:
Health care for women and newborns. J Nurse Midwifery.
1983; 18: 115-75.

[43] Maganha e Melo CR, Peraçoli JC. Measuring the energy
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