Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rajeshkumar, C.a; * | Soundar, K. Rubab
Affiliations: [a] Department of Information Technology, Sri Krishna College of Technology, Coimbatore, India | [b] Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India
Correspondence: [*] Corresponding author: C. Rajeshkumar, Department of Information Technology, Sri Krishna College of Technology, Coimbatore, India. E-mail: [email protected].
Abstract: BACKGROUND: Due to the increasing prevalence of respiratory diseases and the importance of early diagnosis. The need for non-invasive and touchless medical diagnostic solutions has become increasingly crucial in modern healthcare to detect lung abnormalities. OBJECTIVE: Existing methods for lung abnormality detection often rely on invasive and time-consuming procedures limiting their effectiveness in real-time diagnosis. This work introduces a novel Touchless Lung Abnormality (TO-LAB) detection model utilizing universal software radio peripherals (USRP) and machine learning algorithms. METHODS: The TO-LAB model integrates a blood pressure meter and an RGB-D depth-sensing camera to gather individual data without physical contact. Heart rate (HR) is analyzed through image conversion to IPPG signals, while blood pressure (BP) is obtained via analog conversion from the blood pressure meter. This touchless imaging setup facilitates the extraction of essential signal features crucial for respiratory pattern analysis. Advanced computer vision algorithms like Mel-frequency cepstral coefficients (MFCC) and Principal Component Analysis (PCA) process the acquired data to focus on breathing abnormalities. These features are then combined and inputted into a machine learning-based Multi-class SVM for breathing activity analysis. The Multi-class SVM categorizes breathing abnormalities as normal, shallow, or elevated based on the fused features. The efficiency of this TO-LAB model is evaluated with the simulated and real-time data. RESULTS: According to the findings, the proposed TO-LAB model attains the maximum accuracy of 96.15% for real time data; however, the accuracy increases to 99.54% for simulated data for the efficient classification of breathing abnormalities. CONCLUSION: From this analysis, our model attains better results in simulated data but it declines the accuracy while processing with real-time data. Moreover, this work has a significant medical impact since it presents a solution to the problem of gathering enough data during the epidemic to create a realistic model with a large dataset.
Keywords: Breathing abnormality, touchless detection, universal software radio peripherals, machine learning, multi-class SVM
DOI: 10.3233/THC-240149
Journal: Technology and Health Care, vol. 32, no. 6, pp. 4309-4330, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]