Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Advances in Biomedical Engineering: Research that bridges the gap between Engineering and Medicine
Guest editors: Julius Griškevičius.
Article type: Other
Authors: Ostaszewski, M.a; * | Gosiewski, Z.b
Affiliations: [a] Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland | [b] Aviation Institute, Warsaw, Poland
Correspondence: [*] Corresponding author: M. Ostaszewski. Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland. E-mail: [email protected].
Abstract: BACKGROUND:Support systems designed for human lower limbs are usually characterized by a serial kinematic structure taking into account only one lower limb. To overcome the mobility range limitations, a new structure of the exoskeleton is proposed in this paper. OBJECTIVE:The design process of the dynamic model for the support structure characterized by a parallel-serial mechanism is presented in the paper. The structure works as an exoskeleton and is designed to assist motion of the human lower limb in the process of rehabilitation. METHODS:The structure of the support model was divided into linear (executive system) and nonlinear (the mechanical skeleton of the system) parts. The model of the executive system was designed and its parameters were estimated in the course of tests on a laboratory stand, as well as identification procedures. The nonlinear model was expressed by mathematical equations. The characteristic coefficients in the equation were determined based on a 3d CAD model. RESULTS: To analyze the behavior of the mechanism, a simulation of dynamic responses was compared with experimental results for a real system consisting of a mechatronic device, actuator drivers, a controller, and programmed software. CONCLUSIONS:The proposed new structure enables an increase of the range of rotation angles and can be fitted to an individual person. The derived model is in the analytical form and can also be easily adopted to the different versions of the exoskeleton and used in the design of control systems.
Keywords: Parallel-serial mechanism, dynamic model, electric linear drive, exoskeleton
DOI: 10.3233/THC-182505
Journal: Technology and Health Care, vol. 26, no. S2, pp. 577-594, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]