Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Singh, Vibhav Prakash* | Srivastava, Subodh | Srivastava, Rajeev
Affiliations: Department of Computer science and Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
Correspondence: [*] Corresponding author: Vibhav Prakash Singh, Department of Computer science and Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India. E-mail: [email protected].
Abstract: Mammogram classification is a crucial and challenging problem, because it helps in early diagnosis of breast cancer and supports radiologists in their decision to analyze similar mammograms out of a database by recognizing the classes of current mammograms. This paper proposes an effective method for classifying mammograms using random forests with wavelet based center-symmetric local binary pattern (WCS-LBP). To classify mammograms, multi-resolution CS-LBP texture characteristics from non-overlapping regions of the mammograms are captured. Further, we examine most relevant features using support vector machine-recursive feature elimination (SVM-RFE). Finally, we feed the selected features to decision trees and construct random forests which are an ensemble of random decision trees. Using wavelet based local CS-LBP features with random forest, we classify the test images into different categories having the maximum posterior probability. The proposed method shows the improved performance as compared with other variant features and state-of-art methods. The obtained performance measures are 97.3% accuracy, 97.3% precision, 97.2% recall, 97.2% F-measure and 94.1% Matthews correlation coefficient (MCC).
Keywords: Computer-aided diagnosis, center symmetric-local binary pattern, discrete wavelet transform, random forest classifier, SVM-RFE, content-based image retrieval
DOI: 10.3233/THC-170851
Journal: Technology and Health Care, vol. 25, no. 4, pp. 709-727, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]