Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Caulfield, James B.a | Janicki, Joseph S.b; *
Affiliations: [a] Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA | [b] Department of Physiology and Pharmacology, Auburn University, Auburn, Alabama, USA
Correspondence: [*] Address correspondence to: Joseph S. Janicki, 106 Greene Hall, Auburn University, Auburn, Alabama 36849–5517, USA. Tel.: +1 334 844 3700; Fax: +1 334 844 3697.
Abstract: The extracellular collagen matrix of the myocardium plays an important role in maintaining muscle fiber and cardiac alignment and ventricular shape and size. It also influences tissue and ventricle stiffness. This network consists of an organized hierarchy of collagen that is intimately associated with individual and groups of myocyte and muscle fibers, as well as the coronary vasculature. In renovascular and genetic hypertension, the hypertrophic response of the myocardium includes an increase in collagen concentration, thickening of existing fibrillar collagen, and addition of newly synthesized collagen to all of the matrix components. The consequences of this remodeling are a stiffer myocardium and left ventricular diastolic dysfunction. With removal of less than half of the normal amount of collagen the opposite occurs. That is, the ventricle dilates and there is an increase in ventricular compliance. Thus an abnormal accumulation of collagen is a major distinguishing factor between physiologic and pathologic hypertrophy while an abrupt decrease in collagen concentration results in a ventricular remodeling similar to that of a heart in failure.
DOI: 10.3233/THC-1997-51-209
Journal: Technology and Health Care, vol. 5, no. 1-2, pp. 95-113, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]