Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Slomka, Noa | Diamant, Idit | Gefen, Amit; *
Affiliations: Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
Correspondence: [*] Address for correspondence: Dr. Amit Gefen, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel. Tel.: +972 3 640 8093; Fax: +972 3 640 5845; E-mail: [email protected].
Abstract: Vertebral compression fractures are a potentially severe injury, which is characteristic to osteoporotic elderly. Despite being a significant healthcare problem, the etiology of compression fractures is not fully understood, and there are no biomechanical models in the literature that describe the development of these fractures based on cancellous bone failure accumulation. The objective of this study was therefore to develop a computational model of tissue-level failure accumulation in vertebral cancellous bone, which eventually leads to compression fractures. The model predicts the accumulated percentage of broken trabeculae δ in a vertebral region of interest (ROI) over 60 years, by employing Euler's theory for elastic buckling. The accumulated failure δ is calculated as function of the daily activity characteristics and rate of annual bone loss (RABL) with aging. An RABL of unity represents the normal bone loss attributed to aging per se, whereas RABL>1 is assumed to represent pathological bone metabolism such as osteoporosis. Simulations were conducted for a range of RABLs, to determine the effect of changes in bone metabolism on the accumulation of bone failure. Results showed that bone failure rapidly increased with RABL. Generally, trabecular failure was shown to become more severe for RABL>4. Total failure was exhibited at RABL=7.5 for the central ROI, and at RABL=8.5 for the sub-endplate ROI. We concluded that vertebral compression fractures advance monotonically between the age of 50–55 years and 70 years, and may accelerate thereafter if RABL is high (∼8). Additionally, the model identified weight lifting as the action that most dramatically accelerated the destruction of osteoporotic spinal cancellous bone. The present biomechanical model is useful for understanding the etiology of compression fractures, and potentially, depending on further experimental characterization of RABL, for considering the effects of medications that influence bone metabolism on patient prognosis.
Keywords: Osteoporosis, compression fractures, trabecular bone, buckling, model
DOI: 10.3233/THC-2008-16105
Journal: Technology and Health Care, vol. 16, no. 1, pp. 47-60, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]