Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Vaverka, Michala; * | Návrat, Tomášb | Vrbka, Martina | Florian, Zdeněkb | Fuis, Vladimírb
Affiliations: [a] Institute of Machine Design, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic | [b] Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Corresponding author. Tel.: +420 541 143 237; Fax: +420 541 142 876; E-mail: [email protected].
Abstract: Many disorders of the hip can be treated with a suitable osteotomy based on the improvement of mechanical conditions in the hip joint. These operations, such as osteotomies are very complex. The surface replacement has also been developed as an alternative to a total hip replacement for young and more active people. It is up-to-date to concern with biomechanics of pathological hips and it is necessary to supplement the existing clinical findings with the results of mechanical analyses. Several finite element (FE) models are presented in this paper. The first one offers solutions to the strain-stress analysis of the physiological hip. The second one represents dysplastic hip joint. Another two computational models of both hips of a young patient were created (FE model of physiological hip and pathological hip affected by Perthes disease with a deformed shape of the femoral head). Also a computational model is presented, which enables us to investigate strain and stress parameters in the hip joint with applied surface replacement. The strain and stress analysis was performed by means of finite element method (FEM) in ANSYS system.
DOI: 10.3233/THC-2006-144-510
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 271-279, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]