Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Karoglan, M.a; * | Schütz, K.a | Schieferstein, H.a; b | Horch, H.-H.a | Neff, A.a
Affiliations: [a] Department of Oral and Maxillofacial Surgery, Technical University Munich, Munich, Germany | [b] Department of Orthopaedics and Sports Orthopaedics, Technical University Munich with Institute of Biomechanics, Munich, Germany | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Address for correspondence: Mislav Karoglan, TU Müenchen, Klinik und Poliklinik für Mund-Kiefer-Gesichtschirurgie, Ismaninger Str. 22, 81675 München, Germany. E-mail: [email protected].
Abstract: The development of new methods and materials for osteosynthesis requires in vitro testing prior to clinical use to exclude major problems or difficulties. In the field of oral and maxillofacial surgery no standardized testing procedures have so far been established. From a biomechanical point of view the lower jaw can be described as a lever that during the chewing cycle various forces at various points of the bone act upon. Standardized solid foam polyurethane mandibles (Sawbones®, Malmö, Sweden) were used for the testing of various types of screws and different types of fractures. Via linkages that were connected to hydraulic cylinders defined forces were exerted on the polyurethane mandibles and the deformation was registered depending on the force. Monitoring was carried out contactless and therefore without back coupling by the use of a video system that recorded well-defined points on both sides of the fracture line. The photographs were then evaluated by special software (SIMI MOTION CAPTURE®). The control of the cylinders was performed through a processor that besides static forces also allowed dynamic testing (e.g. sinusoid oscillation with defined amplitude and number of cycles). For the standardized and realistic three-dimensional static or dynamic testing of new methods and materials for osteosynthesis of the lower jaw this test stand has proved to be optimally suitable. Independent on the type of fracture and the material used the field of application for our test stand is the complete lower jaw. Therefore an ethically correct and economically reasonable testing of industrial products and clinical methods of osteosynthesis can be performed with this simulator.
DOI: 10.3233/THC-2006-144-525
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 449-455, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]