Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Hazenberg, Jan G.a; b; * | Taylor, Davidb | Lee, T. Clivea; b
Affiliations: [a] Department of Anatomy, the Royal College of Surgeons in Ireland, Dublin, Ireland | [b] Trinity Centre for Bioengineering, Trinity College Dublin, Ireland | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Address for correspondence: Jan Geert Hazenberg, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland. Tel.: +353 1 4022147; Fax: +353 1 4022355; E-mail: [email protected].
Abstract: It is well known for almost half a century that bones contain microcracks. Very little is known about the crack growth behaviour of very small cracks, e.g. the stage before they become macroscopically long. The aim of this work was to investigate the dynamic crack growth behaviour of sub-millimetre microcracks in cortical bone. It was found that slow stable crack growth occurs in specimens subjected to static loading conditions. Crack growth direction was dominated by the local fibre orientation of the bones. Crack angles varied between 10 and 36 degrees of the long axis of the bone. Short cracks were found to show periods of rapid growth followed by intervals of temporary crack arrest. Histological analysis showed that crack arrest occurred due to vascular canals in the bone. During these periods of crack arrest, crack opening displacements increased until the local strain was sufficient to overcome these features. These observations indicate a mechanism for growth of small cracks in bone at constant stress, involving microstructural barriers, time-dependent deformation of material near the crack tip and strain-controlled propagation.
Keywords: Microcracks, crack growth, microstructure
DOI: 10.3233/THC-2006-144-520
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 393-402, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]