Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Papers from the Regensburg Applied Biomechanics Symposium, June 2005
Guest editors: Joachim Hammerx and Michael Nerlichy
Article type: Research Article
Authors: Goldmann, Tomáša; * | Seiner, Hanušb; c | Landa, Michalb
Affiliations: [a] Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic | [b] Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic | [c] Department of Materials, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic | [x] Mechanical Engineering Faculty, Laboratory for Materials Technology, University of Applied Science, Regensburg, Germany | [y] University Clinic, Department of Traumatology, Regensburg, Germany
Correspondence: [*] Address for correspondence: Tomáš Goldmann, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, CTU in Prague, Technická 4, 166 07, Prague 6, Czech Republic. Tel.: +420 224 352 561; Fax: +420 233 322 482; E-mail: [email protected].
Abstract: Elastic properties of single parts of a human skeleton are necessary to know for modelling bone tisue-implants interactions as well as for diagnostic purposes. This paper contributes to the methodology of the evaluation of elastic properties of bones by the ultrasonic wave inversion. The method was developed on composite structures such as plates and cylindrical shells. Final results are then demonstrated on the bovine cortical bone specimen. Properties are supposed to exhibit an orthotropic or a transversally isotropic symmetry. Quasi-longitudinal and quasi-transversal waves are generated from the wave diffraction on the liquid/specimen interface. Wave velocity fields obtained by the ultrasonic scanning technique are used as an input to the inversion procedure for all elastic constants determination. Experimental results are confronted with the numerical modelling of the wave propagation and the stability of resulting data is evaluated by the statistical method based on the Monte-Carlo simulation. The suggested approach has a potential for the qualify of such measurements performed on fresh bones and also for improvement in-situ ultrasonic techniques.
DOI: 10.3233/THC-2006-144-505
Journal: Technology and Health Care, vol. 14, no. 4-5, pp. 219-232, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]