Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hossen, Abdulnasir
Affiliations: Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33 Al-Khod, 123 Oman. E-mail: [email protected]
Abstract: A soft decision algorithm for Obstructive Sleep Apnea (OSA) patient classification using R-R interval (RRI) data is investigated. This algorithm is based on fast and approximate estimation of the entropy of the wavelet-decomposed bands of the RRI data. The classification is done on the whole record as OSA patient or non-patient (normal). The ratio of the estimated entropy of the low-frequency (LF) band to that of the very-low frequency (VLF) band is used as a classification factor. RRI data used in this work are drawn from MIT database. The MIT trial records are used to set the threshold value of the classification factor using the Receiver Operating Characteristics (ROC). This threshold value is used then to classify the MIT challenge (test) records to obtain the efficiency of classification. The new algorithm classifies correctly 30/30 of MIT-test data using different wavelet filters. Comparison of the results of different wavelet filters is done in terms of complexity and distance parameters. The method is also compared with other two techniques using wavelets in their analysis. The consistency of the results is examined using the leave-one-out technique.
Keywords: soft decision, obstructive sleep apnea, patient classification, wavelet transform
DOI: 10.3233/THC-2005-13302
Journal: Technology and Health Care, vol. 13, no. 3, pp. 151-165, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]