Affiliations: [a] Highway College, Henan College of Transportation, Zhengzhou, Henan, China
Correspondence:
[*]
Corresponding author: Deng Pan, Highway College, Henan College of Transportation, No. 259, Tonghui Road, Zhengzhou, Henan 450000, China. E-mail: [email protected]
Abstract: The stability of bridges in the face of earthquake hazards has always been the focus of construction engineering. At present, a large number of bridge construction has begun to use isolation rubber bearings to increase the seismic capacity of bridges. However, in the face of high-intensity earthquake disasters, the seismic performance of the bridge is gradually unable to meet, the main reason is the lack of relevant research on the seismic performance of the bridge in high seismic intensity area. Therefore, this study will explore the changes of the bridge in the face of high-strength earthquake, and try to use high damping rubber bearings for the isolation design of the bridge. By establishing the finite element model of continuous bridge combined with isolation rubber bearing, the numerical calculation of bridge element is carried out on this basis, and the isolation effect of isolation rubber bearing is analyzed. The results show that the compression resistance and shear resistance of the isolated rubber bearing are strong. Under the influence of different seismic waves, the maximum displacement of the bearing is 0.131 m and the maximum horizontal force is 389.6 kN, which are lower than the allowable value of the bridge, and the overall seismic performance of the bridge has been significantly improved, which can play a good theoretical support in the construction of continuous bridges in high seismic intensity areas.
Keywords: Rubber bearing, high intensity earthquake, continuous bridge, finite element model