Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: International Conference on Fracture and Strength 2010 – From Physical to Holistic
Article type: Research Article
Authors: Takakuwa, Osamu | Ohmi, Toshihito | Nishikawa, Masaaki | Yokobori Jr., A. Toshimitsu | Soyama, Hitoshi
Affiliations: Department of Nanomechanics, Tohoku University, Sendai, Japan
Note: [] Address for correspondence: Osamu Takakuwa, Department of Nanomechanics, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan. E-mail: [email protected].
Abstract: In the use of hydrogen energy, the hydrogen embrittlement should be investigated, and it is necessary to improve reliability and safety of machine components which are used in hydrogen environment. The hydrogen sensitivity of material depends on material structure, defect and stress distribution. There is a possibility that the hydrogen invasion into material and the fatigue crack propagation with hydrogen embrittlement can be suppressed by introducing compressive residual stress by using surface modification such as cavitation peening. The cavitation peening is a one of the peening technique, and enhancement of the fatigue strength of the mechanical components and structural materials by cavitation peening have been revealed. In this study, the austenite stainless steel JIS SUS316L with precrack were charged by a cathodic hydrogen charging method, and the fatigue test with and without hydrogen charge were conducted by a plate bending fatigue test. The results demonstrated that the fatigue crack propagation with hydrogen embrittlement can be greatly suppressed by cavitation peening.
Keywords: Hydrogen embrittlement, crack propagation, cavitation peening, stainless steel
DOI: 10.3233/SFC-2011-0126
Journal: Strength, Fracture and Complexity, vol. 7, no. 1, pp. 79-85, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]