Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pankowska, Paulinaa; * | Bakker, Barta; b | Oberski, Daniel L.c | Pavlopoulos, Dimitrisa
Affiliations: [a] Vrije Universiteit Amsterdam, The Netherlands | [b] Statistics Netherlands, The Netherlands | [c] Utrecht University, The Netherlands
Correspondence: [*] Corresponding author: Paulina Pankowska, Department of Sociology, Faculty of Social Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 59 83178; E-mail: [email protected].
Abstract: National Statistical Institutes (NSIs) often obtain information about a single variable from separate data sources. Administrative registers and surveys, in particular, often provide overlapping information on a range of phenomena of interest to official statistics. However, even though the two sources overlap, they both contain measurement error that prevents identical units from yielding identical values. Reconciling such separate data sources and providing accurate statistics, which is an important challenge for NSIs, is typically achieved through macro-integration. In this study we investigate the feasibility of an alternative method based on the application of previously obtained results from a recently introduced extension of the Hidden Markov Model (HMM) to newer data. The method allows a reconciliation of separate error-prone data sources without having to repeat the full HMM analysis, provided the estimated measurement error processes are stable over time. As we find that these processes are indeed stable over time, the proposed method can be used effectively for macro-integration, to reconciliate both first-order statistics – e.g. the size of temporary employment in the Netherlands – and second-order statistics – e.g. the amount of mobility from temporary to permanent employment.
Keywords: Hidden Markov Model, register data, survey data, data quality, labour market transitions, measurement error, administrative data
DOI: 10.3233/SJI-170368
Journal: Statistical Journal of the IAOS, vol. 34, no. 3, pp. 317-329, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]